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Abstract
Purpose JQ1 is a bromo- and extraterminal (BET) domain inhibitor that downregulates MYC expression and impairs the 
DNA damage response. Poly (ADP-ribose) polymerase (PARP) inhibitors prevent DNA damage sensing and repair. We 
hypothesized that JQ1 would promote a DNA repair-deficient phenotype that sensitizes neuroblastoma cells to PARP 
inhibition.
Methods Four human neuroblastoma cell lines were examined: two MYCN-amplified (BE(2)-C and IMR-32), and two 
non-MYCN-amplified (SK-N-SH and SH-SY5Y). Cells were treated with JQ1 (BET inhibitor), Olaparib (PARP inhibitor), or in 
combination to assess for therapeutic synergy of JQ1 and Olaparib. Treated cells were harvested and analyzed. Quantita-
tive assessment of combination treatment synergy was performed using the median effect principle of Chou and Talalay.
Results Combination treatment with Olaparib decreased the  IC50 of JQ1 by 19.9-fold, 2.0-fold, 12.1-fold, and 2.0-fold in 
the BE(2)-C, IMR-32, SK-N-SH, and SH-SY5Y cell lines, respectively. In the MYCN-amplified cell lines, BE(2)-C and IMR-32, 
combination treatment decreased gene expression of MYCN relative to single-drug treatment alone or control. Com-
bination treatment decreased protein expression of DNA repair proteins Ku80 and RAD51, led to accumulation of DNA 
damage marker phospho-histone H2A.X, and increased caspase activity. In the non-MYCN-amplified cell lines, SK-N-SH 
and SH-SY5Y, combination treatment induced G0/G1 cell cycle arrest.
Conclusions Combination BET and PARP inhibition synergistically inhibited neuroblastoma tumorigenesis in vitro. In 
MYCN-amplified neuroblastoma cells, this effect may be induced by downregulation of MYCN transcription, defects in 
DNA repair, accumulation of DNA damage, and apoptosis. In non-MYCN-amplified cell lines, combination treatment 
induced cell cycle arrest.
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BRD  Bromodomain or bromodomain-containing protein (when referring to BRD2, BRD3, BRD4)
BRDT  Bromodomain testis-specific protein
CCK-8  Cell Counting Kit-8
CI  Combination index
DAPI  4’,6-Diamidino-2-phenylindole
DRI  Dose-reduction index
Fa  Fraction of cells affected
FBS  Fetal bovine serum
FDA  Food and Drug Administration
HR  Homologous recombination
IQR  Interquartile range
NB  Neuroblastoma
NF-M  Neurofilament-medium
NHEJ  Non-homologous end-joining
NSE  Neuron-specific enolase
PARP  Poly (ADP-ribose) polymerase
PBS  Phosphate-buffered saline
PTEN  Phosphatase and tensin homolog
RPMI  Rockwell Park Memorial Institute
RT-qPCR  Reverse transcription-quantitative polymerase chain reaction
SD  Standard deviation
SEM  Standard error of the mean

1 Introduction

Despite advances in treatment, high-risk neuroblastoma (NB) accounts for approximately 15% of cancer-related mortality 
in children with a five-year survival rate of less than 40% [1]. Furthermore, despite more aggressive therapeutic regimens, 
which are associated with increased treatment morbidity, the overall prognosis for high-risk NB remains dismal with 
high rates of recurrence and many tumors demonstrating resistance to current therapies, including chemotherapy [2]. 
Therefore, there is a substantial need for novel therapeutic options.

MYCN amplification, a feature of high-risk NB due to its role in promoting NB tumorigenesis and proliferation, has made 
transcription factors of oncoproteins such as N-myc attractive potential therapeutic targets. However, these oncoproteins 
have historically been resistant to conventional treatment strategies due to a paucity of high-affinity binding sites [3]. 
Moreover, designing novel small molecules to specifically disrupt or recruit protein–protein or protein-DNA interactions 
has been a challenging requirement [4]. This has led to further study and development of epigenetic modifiers such as 
the bromo- and extraterminal (BET) domain family of proteins, composed of bromodomain-containing protein 2 (BRD2), 
BRD3, BRD4, and bromodomain testis-specific protein (BRDT) [5, 6]. BET proteins are regulators of transcription that play 
vital roles in homeostasis, cell cycle progression, DNA repair (particularly repair of double strand DNA breaks), and cell 
survival [7–9]. BET inhibitors have demonstrated efficacy in treating both solid tumor and hematologic malignancies in 
preclinical models [7]. In preclinical models of NB, BET inhibitors such as JQ1, a novel thienotriazolo-1,4-diazepine, have 
been demonstrated to downregulate MYC expression by displacing BET bromodomains from chromatin after selectively 
recognizing and competitively binding histone acetylated lysine residues [5, 6]. JQ1 has demonstrated efficacy in inhibit-
ing N-myc expression and cell proliferation, as well as inducing differentiation and apoptosis in preclinical models of NB 
[5, 6, 10, 11]. Despite these results, clinical testing and application of BET inhibitors for various cancers has been limited 
by unexpected dose-limiting toxicity [7, 12].

Poly(ADP-ribose) polymerase (PARP) proteins play a vital role in numerous cell processes including DNA repair, cell 
signaling, and cell death [13]. PARP inhibitors, including Olaparib, have been approved by the United States Food and 
Drug Administration (FDA) as anti-cancer therapy for numerous malignancies, including breast, ovarian, prostate, and 
pancreatic cancer [14]. PARP proteins, especially PARP1, function as DNA damage sensors, binding to sites of DNA strand 
breaks, PARylating histones, and inducing the recruitment of effectors of DNA repair, only unbinding once DNA is repaired 
[13, 15–17]. In tumor cells, this process of DNA damage repair can also prevent cell death [17, 18]. PARP inhibitors pre-
vent PARylation and trap PARP onto DNA [19]. This can enhance DNA damage and also convert single-strand lesions 
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on DNA to double-strand breaks, therefore enhancing dependence on double-strand break repair pathways such as 
homologous recombination (HR) and non-homologous end-joining (NHEJ) [13, 15, 20, 21]. Recently, increased PARP1 
and PARP2 expression have been found to be significantly associated with high-risk NB and predictive of poor survival 
[16]. Furthermore, PARP inhibition was found to enhance replication stress, leading to the accumulation of DNA dam-
age, and ultimately inducing mitotic catastrophe in MYCN-amplified NB cells in vitro [16]. Tumors that are deficient in HR 
are extremely sensitive to PARP inhibitors [13]. This has prompted efforts to identify drug combinations that impair HR 
or create DNA repair-deficient phenotypes in cancer cells in order to enhance tumor sensitivity to PARP inhibitors [13].

A combination of BET and PARP inhibition has demonstrated efficacy in inhibiting tumorigenesis in preclinical models 
of multiple cancer types, including pancreatic, breast, ovarian, prostate, and lung cancers [13, 15, 17, 22]. However, cur-
rent studies have largely been limited to cancers with known defects in HR. Despite preclinical studies demonstrating 
the efficacy of BET and PARP inhibitors individually against NB tumorigenesis, to our knowledge, this is the first study 
evaluating whether BET and PARP inhibition could function synergistically in combination against NB tumorigenesis. 
We hypothesized that the BET inhibitor JQ1 would promote a DNA repair-deficient phenotype, sensitizing NB cells to 
PARP inhibition by Olaparib, and sought to determine how MYCN amplification status may affect the efficacy of this 
combination therapy.

2  Materials and methods

2.1  Antibodies and reagents

Primary antibodies against Neurofilament-M (NF-M)(#2838), caspase3 (#9662, #9664), pAKT (#4060), AKT (#4685), p53 
(#2524), N-myc (#94055), C-myc (#5605), Ku80 (#2180), RAD51 (#8875), phospho-histone H2A.X (Ser139) (#2577), and 
PTEN (#9118) were purchased from Cell Signaling Technology (Danvers, MA, USA). Primary antibody against neuron-
specific enolase (NSE) (ab53025) was obtained from Abcam (Cambridge, UK). Primary antibody against p21 (#610234) 
was obtained from BD Bioscience (Franklin Lakes, NJ, USA). Primary antibodies against β-actin and Ponceau S solution 
were obtained from Sigma-Aldrich (St. Louis, MO). Anti-GAPDH antibody (#20357) and secondary anti-mouse, anti-rabbit, 
and anti-goat antibodies were obtained from Santa Cruz Biotechnology, Inc (Santa Cruz, CA, USA).

2.2  Cell lines and culture

The human NB cell lines SK-N-SH, SH-SY5Y, BE(2)-C and IMR-32 were purchased from the American Type Culture Collec-
tion (Manassas, VA). Cells were maintained in Rockwell Park Memorial Institute (RPMI) culture medium 1640 with 10% 
fetal bovine serum (FBS) at 37 °C in a humidified atmosphere consisting of 5%  CO2 and 95% air.

2.3  Cell viability assay

SK-N-SH, SH-SY5Y, BE(2)-C, and IMR-32 cells were plated in 96-well plates at 3 ×  103, 2 ×  103, 1 ×  103, and 3 ×  103 cells 
per well, respectively, in RPMI culture medium with 10% FBS and allowed to attach overnight. Cells were subsequently 
treated with JQ1, Olaparib, or both. Cell viability with combination treatment was measured after same day treatment 
with both drugs for all four cell lines. The SK-N-SH, BE(2)-C, and IMR-32 cell lines also underwent a second experiment 
evaluating the effects of staggered treatment (JQ1 followed by Olaparib 24 h later). Cell viability was measured using 
Cell Counting Kit-8 (CCK-8) colorimetric assay (Dojindo Molecular Technologies, Inc., Rockville, MD, USA) 72 h after last 
treatment dose for each treatment group.

2.4  Microscopy

Each cell line was plated at two different cell densities in 6-well plates. SK-N-SH, SH-SY5Y, BE(2)-C, and IMR-32 cells were 
plated at 8000 and 16,000, 3000 and 10,000, 5000 and 10,000, and 100,000 and 150,000 cells per well, respectively. Cells 
were allowed to attach for 48 h prior to treatment with JQ1, Olaparib, or combination. JQ1 and Olaparib dosages were 
300 nM for the SK-N-SH and BE(2)-C cell lines and 150 nM for the IMR-32 cell line. The SH-SY5Y cell line was treated with 
200 nM of JQ1 and 500 nM of Olaparib. Cells were observed for five to seven days after treatment to evaluate for changes 
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in treatment-induced morphology. Images were captured using a BioTek Cytation 5 Cell Imaging Multi-Mode Reader 
(Agilent, Santa Clara, CA, USA).

2.5  Clonogenic assay

SK-N-SH, BE(2)-C, and IMR-32 cells were plated at 3000, 1000, and 10,000 cells per well, respectively, on 12-well plates 
in triplicate. 48 h after plating, cells were treated with JQ1, Olaparib, or both. The JQ1 dose was 50 nM for the SK-N-SH 
and BE(2)-C cell lines and 125 nM for the IMR-32 cell line. The Olaparib dose was 100 nM for the SK-N-SH and IMR-32 
cell lines and 1000 nM for the BE(2)-C cell line. Cells were allowed to grow for 6–10 days after treatment. SK-N-SH and 
BE(2)-C colonies were stained with 0.01–0.05% crystal violet dye, photographed, and counted using the Bio-Rad Gel Doc 
XR + Imager (Bio-Rad, Hercules, CA, USA).

Due to the IMR-32 cell line’s propensity to detach from wells with washing, cells were alternatively trypsinized, centri-
fuged, resuspended in fresh media, and placed on dual chamber slides with trypan blue dye for cell counting using the 
Bio-Rad TC10 Automated Cell Counter (Bio-Rad, Hercules, CA, USA).

In order to assess for a dose-dependent response to treatment using clonogenic assays, the SK-N-SH and BE(2)-C cell 
lines were also plated at 1500 and 500 cells per well, respectively, in 24-well plates in triplicate. Cells were treated with 
varying doses of JQ1, Olaparib, or combination treatment 48 h after plating. SK-N-SH and BE(2)-C cells were allowed to 
grow for 8 or 5 days after treatment, respectively, prior to staining with 0.02% crystal violet dye, photographing, and 
colony counting.

2.6  RNA isolation and qPCR with reverse transcription

Total RNA was isolated and purified using a Trizol Reagent (Thermo Scientific, Waltham, MA). The High-Capacity cDNA 
Reverse Transcription Kit (Applied Biosystems, Carlsbad, CA) was used to synthesize complementary DNA. Reverse tran-
scription quantitative polymerase chain reaction (RT-qPCR) was performed using iTaq Universal SYBR Green Supermix 
(Bio-Rad, Hercules, CA), and data were collected with a CFX96 instrument (Bio-Rad, Hercules, CA, USA). Results were 
normalized to an endogenous control, ACTB. Amplification was performed for 40 cycles of 30 s at 95 °C, 30 s at 55 °C, and 
40 s at 72 °C. Primers used to detect the expression of qPCR were the following: MYCN (forward: 5’-GCT TCT TAC CCG GAC 
GAA GATG-3’; reverse: 5’-CAG CTC GTT CTC AAG CAG CAT), PTEN forward: 5’-CGG GCT CAG GCG AGG GAG AT-3’, reverse: 5’-GCC 
CAC GGC TCC ACC TTC C-3’), ACTB (forward: 5’-GAG CGC GGC TAC AGCTT-3’; reverse: 5’-TCC TTA ATG TCA CGC ACG ATTT-3’).

2.7  Immunoblotting

Cells were collected using cell lysis buffer and denatured samples were prepared for immunoblotting, as we have previ-
ously described [23, 24]. Equal amounts of protein were loaded and separated by NuPAGE 4–12% Bis–Tris gel, followed 
by transfer onto PVDF membranes (Bio-Rad, Hercules, CA, USA). Membranes were blocked with 5% nonfat milk in TBS-T 
for one hour at room temperature. The blots were then incubated with antibodies against the human target proteins 
by using rabbit or mouse anti-human antibodies (1:500 – 2000 dilution) overnight at 4 °C. Anti-rabbit or anti-mouse 
secondary antibodies conjugated with HRP were incubated for one hour and visualized using an enhanced chemilu-
minescence detection system (PerkinElmer, Waltham, MA, USA). Densitometry was used to assess quantitative protein 
expression using ImageJ software (Rasband, W.S., ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, 
https:// imagej. nih. gov/ ij/, 1997–2018).

2.8  Cell cycle analysis and flow cytometry

SK-N-SH and SH-SY5Y cells were plated separately in 6-well plates at 180,000 cells per well and allowed to attach over-
night. Cells in the treatment group received a combination of JQ1 (200 nM) and Olaparib (500 nM) at 0 and 24 h time 
points. Samples were collected 16, 24, and 48 h after initial treatment. Samples were trypsinized, centrifuged, washed 
and resuspended in phosphate-buffered saline (PBS), and fixed in 70% ethanol at 4 °C. Prior to cell staining, samples 
were centrifuged and resuspended in PBS. RNase, DNase-free was added to each sample and subsequently incubated 
at 37 °C for 30 min. Samples were chilled on ice prior to staining with propidium iodide. Stained cells were analyzed with 
the flow cytometer (BD Accuri C6 + , BD Biosciences, Franklin Lakes, NJ).

https://imagej.nih.gov/ij/


Vol.:(0123456789)

Discover Oncology          (2022) 13:103  | https://doi.org/10.1007/s12672-022-00563-5 Research

1 3

2.9  Immunohistochemistry and immunofluorescence staining

The phospho-histone H2A.X (Ser139) antibody was obtained from Cell Signaling Technology (Danvers, MA, USA). 
BE(2)-C cells were plated on coverslips in a 12-well plate at a density of 2–6 ×  103 cells per well and allowed to attach 
overnight. Cells were treated as part of one of four treatment groups (control, JQ1 (1000 nM), Olaparib (3000 nM), 
or combination) and cultured for 72 h. Cells were subsequently washed with PBS and fixed with 4% formaldehyde 
in 1× PBS at room temperature. They were then washed in 1 × PBS three times prior to being blocked in blocking 
buffer for one hour. Primary antibody was subsequently applied at a concentration of 1:400 and incubated at room 
temperature for 1.5 h. The samples were again washed three times in 1× PBS prior to incubation with Alexa Fluor 594 
dye-tagged secondary antibody (Life Technologies, Grand Island, NY) at a concentration of 1:500 for 30 min. Sam-
ples were again washed in 1× PBS three times. Coverslips were mounted and slides were left to dry. 4’,6-diamidino-
2-phenylindole (DAPI) was used for staining nuclei. Images were captured using a Biotek Cytation 5 Cell Imaging 
Multi-Mode Reader (Agilent, Santa Clara, CA, USA).

2.10  Quantification of therapeutic synergy

Therapeutic synergy of combination BET and PARP inhibition was quantitatively assessed using the Chou-Talalay 
calculation and Compusyn software (ComboSyn, Inc., Paramus, NJ, USA) [25].

2.11  Statistical analysis and experimental analysis

All experiments were repeated in triplicate. The scoring index and relative expression values were expressed as 
mean ± SEM or SD. Statistical analyses were performed using Student’s and Welch’s t-tests, Mann–Whitney U tests, 
and analyses of variance using GraphPad Prism (version 9.4.1, GraphPad Software, San Diego, California USA, www. 
graph pad. com). A p value ≤ 0.05 was considered significant.

3  Results

3.1  Combination treatment with JQ1 and Olaparib synergistically inhibited NB cellular proliferation

We first examined whether BET inhibition with JQ1 plus PARP inhibition with Olaparib efficaciously inhibits NB cel-
lular proliferation in vitro using CCK-8 assays 72 h after treatment. Two MYCN-amplifying NB cell lines, BE(2)-C and 
IMR-32, and two non-MYCN-amplifying NB cell lines, SK-N-SH and SH-SY5Y, were treated with JQ1 alone and Olaparib 
alone to identify the  IC50 doses of each drug. Each cell line was subsequently treated using increasing doses of JQ1 
in combination with each cell line’s respective  IC50 dose of Olaparib. When treated on the same day in combination, 
the  IC50 dose of JQ1 decreased 19.9-fold, 2.0-fold, 12.1-fold, and 2.0-fold in the BE(2)-C (Fig. 1A), IMR-32 (Fig. 1B), SK-
N-SH (Fig. 1C), and SH-SY5Y (Fig. 1D) cell lines, respectively.

We subsequently tested whether treating each cell line with JQ1 24 h prior to treatment with Olaparib could 
sensitize NB cells and enhance this inhibitory effect in the BE(2)-C, IMR-32, and SK-N-SH cell lines. When staggering 
treatment with these two drugs by 24 h, the  IC50 of JQ1 increased 6.4-fold in the BE(2)-C cell line and decreased 1.7-
fold and 51.3-fold in the IMR-32 and SK-N-SH cell lines, respectively (Additional file 1: Fig. S1). The increase in  IC50 
seen in the BE(2)-C cell line may reflect the relatively more rapid doubling time of this cell line. Together, this data 
suggest that the optimal timing of combination treatment may vary by cell line.

3.2  Treatment with JQ1 and Olaparib induces differentiation, as demonstrated by neurite outgrowth

Previous studies have shown that treatment with JQ1 induces neuroblastoma cell differentiation in BE(2)-C cells, 
demonstrated by morphologic changes including a polarized phenotype with longer neurites, as well as increased 
protein expression of neural differentiation markers ZNF423 and NF-M [5].

http://www.graphpad.com
http://www.graphpad.com


Vol:.(1234567890)

Research Discover Oncology          (2022) 13:103  | https://doi.org/10.1007/s12672-022-00563-5

1 3

Using microscopy, we found that both MYCN-amplifying and non-MYCN-amplifying cells demonstrated changes 
in morphology after treatment with JQ1, as well as after combination treatment with JQ1 and Olaparib (Fig. 2A–D). 
Specifically, they demonstrated changes consistent with neural differentiation, including the extension of neurites.

This was also associated with a 1.12-fold increase in neurofilament-medium (NF-M) protein expression in the BE(2)-C 
cell line and a 2.0-fold increase in neuron-specific enolase (NSE) protein expression in the SK-N-SH cell line with combina-
tion treatment at 24 h, demonstrated by immunoblotting with densitometry in Fig. 2E, F respectively.

Fig. 1  Combination treatment with BET inhibitor JQ1 and PARP inhibitor Olaparib inhibited NB cellular proliferation in vitro and decreased 
the  IC50 of JQ1. Cell viability was measured 72 h after same-day combination treatment using CCK-8 assays. A Combination treatment of 
BE(2)-C neuroblastoma cells with JQ1 and Olaparib (2898 nM) decreased the  IC50 dose of JQ1 19.9-fold. B Combination treatment of IMR-32 
neuroblastoma cells with JQ1 and Olaparib (32.8 nM) decreased the  IC50 dose of JQ1 2.0-fold. C Combination treatment of SK-N-SH neuro-
blastoma cells with JQ1 and Olaparib (51.5 nM) decreased the  IC50 dose of JQ1 12.1-fold. D Combination treatment of SH-SY5Y neuroblas-
toma cells with JQ1 and Olaparib (3735 nM) decreased the  IC50 dose of JQ1 2.0-fold
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Fig. 2  Combination treatment with BET inhibitor JQ1 and PARP inhibitor Olaparib induced changes in cellular morphology, including differentiation, as dem-
onstrated by neurite outgrowth. A–D Human neuroblastoma BE(2)-C (A), IMR-32 (B), SK-N-SH (C), and SH-SY5Y D cells were plated as monolayers in serum-
supplemented media and treated for five to seven days. All cell lines demonstrated changes in morphology with drug treatment. Both MYCN-amplifying and 
non-MYCN-amplifying cell lines demonstrated changes consistent with neural differentiation, including the extension of neurites (red arrowheads), after treat-
ment with JQ1, as well as combination treatment with JQ1 and Olaparib. Scale bar: 100 μm. E Combination treatment induced a 1.12-fold increase in NF-M 
protein expression in BE(2)-C cells after 24 h of treatment, as demonstrated by immunoblotting. F Combination treatment induced a 2.0-fold increase in NSE 
protein expression in SK-N-SH cells after 24 h of treatment, as demonstrated by immunoblotting (p = .004). (Statistical analysis was performed using Welch’s 
t-tests to evaluate for differences in means between treatment groups. Mean ± SEM; * = p ≤ .05 vs. control, ** = p ≤ .01 vs. control, *** = p ≤ .001 vs. control)
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3.3  Combination treatment with JQ1 and Olaparib synergistically inhibited colony formation in vitro

Clonogenic assays were performed on the BE(2)-C and SK-N-SH cell lines to quantitatively assess colony formation in 
cells treated with JQ1 alone, Olaparib alone, or both drugs in combination relative to control. Combination treatment 
significantly decreased colony formation in both the BE(2)-C and SK-N-SH cell lines with better efficacy than either drug 
treatment alone. Figure 3A demonstrates colony formation after staining with 0.01–0.05% crystal violet dye. Combination 
treatment resulted in a 42.5% and 43.1% decrease in colony formation in the BE(2)-C and SK-N-SH cell lines, respectively, 
relative to control (p = 0.0097 and p = 0.0012, respectively)(Fig. 3B).

Due to the IMR-32 cell line’s propensity to detach from wells with washing, in lieu of staining as described above for 
colony counting, cells were typsinized, aspirated, centrifuged, resuspended in fresh media, and placed on dual chamber 
slides with trypan blue dye for cell counting using the Bio-Rad TC10 Automated Cell Counter (Bio-Rad, Hercules, CA, 
USA). Combination treatment of IMR-32 with JQ1 and Olaparib decreased the number of viable cells by 78.6% relative 
to control (p = 0.0019)(Fig. 3B).

To assess for a possible dose-dependent response to treatment, colony counts were also performed in the BE(2)-C 
and SK-N-SH cell lines after treatment with increasing doses of JQ1, Olaparib, or combination therapy (Fig. 3C). Each cell 
line was plated in 24-well plates and treated with a low dose of each drug (i.e.,  JQ1L,  OlapL), as well as a dose 2.5 times 
higher in concentration (i.e.,  JQ1H,  OlapH). Each cell line was then treated with varying combinations of these doses (i.e., 
 JQ1L +  OlapL,  JQ1H +  OlapL,  JQ1L +  OlapH, or  JQ1H +  OlapH). As expected, each cell line demonstrated a dose-dependent 
response to single drug and combination treatment. Fewer colonies were formed after high dose single drug treatment 
relative to low dose single drug treatment relative to low dose for each drug and the  JQ1H +  OlapH treatment group 
demonstrated the lowest number of colonies overall for each cell line. In the BE(2)-C cell line, the  JQ1L +  OlapL and 
 JQ1H +  OlapH treatment groups demonstrated a 16.5% and 47.5% decrease in colony formation relative to control. In 
the SK-N-SH cell line, the  JQ1L +  OlapL and  JQ1H +  OlapH treatment groups demonstrated a 31.8% and 71.4% decrease in 
colony formation relative to control.

3.4  BET inhibition downregulated MYCN transcription and N‑myc protein translation in MYCN‑amplifying NB 
cell lines with the greatest effect observed with combination treatment with PARP inhibition

BET inhibition with JQ1 has been demonstrated to displace BRD4 from the MYCN promoter, leading to decreased tran-
scription of MYCN [6, 26]. The effects of BET inhibition, PARP inhibition, and combination treatment on MYCN expression 
were therefore evaluated using RT-qPCR. We found that BE(2)-C and IMR-32 NB cells treated with JQ1 demonstrated 
decreased expression of MYCN with lowest expression seen in cells treated with both JQ1 and Olaparib (Fig. 4A). The 
BE(2)-C cell line demonstrated a 2.70-fold and 4.48-fold decrease in MYCN expression with JQ1 and combination treat-
ment, respectively (p = 0.0002 and p = 0.000008, respectively). The IMR-32 cell line demonstrated a 2.25-fold and 4.51-fold 
decrease in MYCN expression with JQ1 and combination treatment, respectively (p = 0.0129 and p = 0.0028, respectively).

Fig. 3  Combination treatment with BET inhibitor JQ1 and PARP inhibitor Olaparib synergistically inhibited colony formation in vitro. A Clo-
nogenic assays were performed on BE(2)-C and SK-N-SH cells separated into four treatment groups: control, JQ1, Olaparib, or combination 
treatment. The treatment dose of JQ1 was 50 nM for both cell lines. The treatment dose of Olaparib was 1 μM for BE(2)-C cells and 100 nM 
for SK-N-SH cells. Figures are representative images of colonies formed from single cell proliferation. B Clonogenic assay experiments rep-
resented in Figure A were assessed and quantified for the BE(2)-C and SK-N-SH cell lines. Due to the IMR-32 cell line’s propensity to detach 
with washing, in lieu of washing and staining with crystal violet dye to obtain colony counts, cells were alternatively trypsinized, centri-
fuged, resuspended in fresh media, and placed on dual chamber slides with trypan blue dye for cell counts. The JQ1 and Olaparib doses 
for the IMR-32 cell line were 125 nM and 100 nM, respectively. Statistical significance was performed using independent samples t-tests to 
compare means of each treatment group relative to control. (Mean ± SEM; * = p ≤ .05 vs. control, ** = p ≤ .01 vs. control, *** = p ≤ .001 vs. con-
trol). C To assess for a potential dose-dependent response to single and combination drug therapy, BE(2)-C and SK-N-SH cells were plated in 
24-well plates. Each cell line was treated with a low dose of each drug (i.e.,  JQ1L,  OlapL), as well as a dose 2.5 times higher in concentration 
(i.e.,  JQ1H,  OlapH). Each cell line was also treated with varying combinations of these doses (i.e.,  JQ1L +  OlapL,  JQ1H +  OlapL,  JQ1L +  OlapH, or 
 JQ1H +  OlapH). As expected, each cell line demonstrated a dose-dependent response to single drug and combination treatment, with fewer 
colonies (mean ± SD) formed in the high-dose single drug treatment relative to low-dose, and  JQ1H +  OlapH treatment group demonstrating 
the lowest number of colonies overall for each cell line. In the BE(2)-C cell line, the  JQ1L +  OlapL and  JQ1H +  OlapH treatment groups dem-
onstrated a 16.5% and 47.5% decrease in colony formation relative to control. In the SK-N-SH cell line, the  JQ1L +  OlapL and  JQ1H +  OlapH 
treatment groups demonstrated a 31.8% and 71.4% decrease in colony formation relative to control. Figures are representative images of 
colonies formed from single cell proliferation
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Immunoblotting was performed to assess the effects of treatment on N-myc protein expression at 24, 48, and 72 h 
(Fig. 4B). BE(2)-C cells treated with JQ1 demonstrated a 21.7% and 88.8% decrease in N-myc protein expression rela-
tive to control at 24 and 48 h, respectively, followed by a 21.4% increase at 72 h. BE(2)-C cells treated with combination 
therapy demonstrated a sustained decrease in N-myc protein expression at 37.5%, 80.3%, and 49.9% at 24, 48, and 72 h, 
respectively (Fig. 4C). Likewise, in the IMR-32 cell line, JQ1 induced a 40.1%, 24.56%, and 32.0% decrease in N-myc pro-
tein expression relative to control at 24, 48, and 72 h, respectively, likely contributing to the 51.8% decrease in N-myc 
protein expression seen in the combination treatment group at 72 h (Fig. 4C). The increase in N-myc protein expression 
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seen with Olaparib treatment relative to control in the BE(2)-C cells at 72 h and at each time point in the IMR-32 cells 
suggests that the decrease in N-myc protein expression seen with combination treatment is driven by JQ1, specifically.

3.5  Combination BET and PARP inhibition caused apoptosis in MYCN‑amplifying NB cells

In order to elucidate the mechanism of inhibition and decreased cell proliferation seen with combination therapy, 
immunoblotting was performed to assess for markers associated with apoptosis (Fig. 5A). The MYCN-amplifying 
BE(2)-C and IMR-32 cell lines demonstrated increased caspase activity, expressed as a ratio of cleaved caspase-3 to 
full-length caspase-3 protein, with combination treatment relative to control or single drug treatment beginning 48 
and 24 h after treatment, respectively (Fig. 5B). Both cell lines also demonstrated an increase in expression of p53 
protein relative to control or single drug treatment (Fig. 5C, D). Interestingly, this increase in p53 and caspase activity 
was not seen in the non-MYCN-amplifying SK-N-SH cell line in response to treatment (Fig. 5A–C).

Fig. 4  Combination treatment with BET inhibitor JQ1 and PARP inhibitor Olaparib downregulated MYCN transcription and N-myc protein 
expression. Although this effect appears to be induced by JQ1, greatest effect was seen with combination treatment. A Treatment with JQ1 
alone was associated with a 2.70-fold and 2.25-fold decrease in MYCN gene expression relative to control in the BE(2)-C and IMR-32 cell lines, 
respectively (p = .0002 and p = .0129, respectively). Combination treatment was associated with a 4.48-fold and 4.51-fold decrease in MYCN 
gene expression relative to control in the BE(2)-C and IMR-32 cell lines, respectively (p = .000008 and p = .0028, respectively). (Mean ± SEM; 
* = p ≤ .05 vs. control, ** = p ≤ .01 vs. control, *** = p ≤ .001 vs. control). B Combination treatment decreased N-myc protein expression in BE(2)-
C and IMR-32 cells, as seen by Western blotting. C Densitometry analysis of N-myc protein expression was performed and presented as 
a ratio of N-myc protein band density relative to the density of each housekeeping control band. BE(2)-C cells treated with combination 
therapy demonstrated a sustained decrease in N-myc protein expression at 37.5%, 80.3%, and 49.9% at 24, 48, and 72 h, respectively. IMR-32 
cells treated with combination therapy demonstrated a 51.8% decrease in N-myc protein expression relative to control at 72 h. (Mean ± SEM; 
* = p ≤ .05 vs. control, ** = p ≤ .01 vs. control, *** = p ≤ .001 vs. control)
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Given p53’s known role in inducing apoptosis in DNA damaged cells, the data suggest that combination treat-
ment with JQ1 and Olaparib may cause an accumulation of p53 that contributes to apoptosis in MYCN-amplifying NB 
cell lines. However, attributing causality between p53 and induction of apoptosis would be problematic given that 
BE(2)-C NB cells are known to have a p53 mutation. Therefore, this accumulation of p53 may instead be a surrogate 
of another process, such as accumulation of DNA damage. These findings prompted the inclusion of the IMR-32 cell 
line for analysis in this study given its p53 wild type status.

3.6  JQ1 and Olaparib treatment inhibited NB proliferation in the non‑MYCN‑amplified cell lines SK‑N‑SH 
and SH‑SY5Y via G0/G1 cell cycle arrest and cellular senescence

Given that the SK-N-SH cell line did not demonstrate a sustained increase in caspase activity or an accumulation of 
p53 protein with combination treatment (Fig. 5A–C), a different mechanism of action may contribute to combination 
therapy’s anti-cancer activity in non-MYCN-amplifying cell lines. After immunoblotting demonstrated SK-N-SH cells’ 
increase in protein expression of p21 (Fig. 5C), a cyclin-dependent kinase inhibitor that indicates the transcriptional 
activity of p53 [27], with combination treatment relative to control, we hypothesized that checkpoint-induced cell cycle 
arrest and cellular senescence may explain the decreased cellular proliferation seen in non-MYCN-amplifying cell lines 
after combination therapy.

Cell cycle analysis was performed on SK-N-SH cells using flow cytometry (Fig. 6A). After combination treatment, SK-N-
SH cells demonstrated an 11.93% ± 2.09% increase in G0/G1 cell cycle arrest at 16 h relative to control (p = 0.01, Fig. 6B).

This proposed mechanism of cell cycle arrest was subsequently also tested in the non-MYCN-amplifying SH-SY5Y cell 
line using flow cytometry (Fig. 6C). After combination treatment, SH-SY5Y cells demonstrated a 6.78% ± 0.30% increase 
in G0/G1 cell cycle arrest at 48 h relative to control (p < 0.001, Fig. 6D).

3.7  JQ1 and Olaparib synergistically increased DNA damage in MYCN‑amplifying NB cells

To further assess the hypothesis that combination treatment may be associated with apoptosis in the setting of DNA 
damage in MYCN-amplifying cell lines, immunofluorescence was performed on BE(2)-C cells using the phospho-histone 
H2A.X (Ser139) antibody to evaluate whether JQ1 enhances DNA damage induced by Olaparib treatment. The phos-
phorylated Ser139 variant of histone H2A.X is a known marker of DNA damage and signifies cellular response to DNA 
strand breaks [13, 22, 28]. Consistent with previous studies of other cancers, Olaparib alone was sufficient to induce DNA 
damage; however, DNA damage was relatively enhanced by combination treatment (Fig. 7A–C). The median (IQR) fluores-
cence intensity of phospho-histone H2A.X for the control, JQ1, Olaparib, and combination treatment groups were 9551.0 
(9154.0–9813.5), 9316.0 (9015.3–9549.0), 14,325.5 (10,525.8–19,253.0), and 27,270.0 (20,287–27,544.5) a.u., respectively 
(Fig. 7C). There was a statistically significant difference in mean and median fluorescent intensity across all four treat-
ment groups (p < 0.0001). There was also a statistically significant difference in mean and median fluorescence between 
control and Olaparib treatment groups (p < 0.0001), as well as control and combination treatment groups (p < 0.0001).

3.8  DNA damage after combination BET and PARP inhibition was due to downregulated expression of DNA 
repair proteins required for NHEJ and HR double strand DNA break repair pathways

JQ1 inhibits and regulates BRD4, a member of the BET family of bromodomains and a transcriptional and epigenetic 
regulator. BRD4 serves as a chromatin platform responsible for gene expression and recruitment of components of DNA 
repair to sites of DNA-double strand breaks to facilitate DNA damage repair [9]. We therefore hypothesized that JQ1 
induces a DNA repair-deficient phenotype that increases susceptibility to Olaparib-induced DNA damage. To further 
evaluate the mechanism of action of enhanced DNA damage seen with combination treatment, immunoblotting was 
performed to assess for protein expression of the DNA damage repair proteins Ku80 and RAD51 (Fig. 8A).

It is thought that cells that incur DNA damage marked by 5’-3’ resection of DNA ends will utilize HR mechanisms 
and prevent NHEJ [29]. RAD51 is a highly conserved protein that facilitates and serves as a marker of DNA repair via HR 
[30, 31]. Alternatively, binding of the Ku70/Ku80 heterodimer to double strand break ends protects DNA ends against 
exonucleases, promoting NHEJ and inhibiting HR [29]. HR is generally considered to be a conservative double strand 
break repair pathway, whereas NHEJ has poor fidelity and is often associated with nucleotide deletions or insertions at 
repair junctions [32].
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With combination treatment, BE(2)-C cells demonstrated a sustained 2.08%, 2.58%, and 9.62% decrease in Ku80 protein 
expression at 24, 48, and 72 h, respectively, relative to control (Fig. 8B). IMR-32 cells treated with JQ1 alone demonstrated 
a 13.3%, 36.1%, and 17.62% decrease in RAD51 protein expression at 24, 48, and 72 h, respectively, relative to control 
(Fig. 8C). Combination treatment resulted in a decrease in RAD51 protein expression of 23.0% at 72 h versus 17.62% with 
JQ1 treatment alone (Fig. 8C). Conversely, SK-N-SH cells demonstrated only a transient decrease in both Ku80 and RAD51 
protein expression at 24 h with combination treatment (Fig. 8A), further suggesting that the mechanism of inhibited 
tumorigenesis may differ based on MYCN amplification status.

Given phosphatase and tensin homolog (PTEN)’s known role in regulation of DNA repair via induction of RAD51 
expression [33], we evaluated whether the sustained decrease in RAD51 expression in IMR-32 cells treated with JQ1 
and Olaparib was associated with a decrease in PTEN expression. The decrease in RAD51 protein expression seen with 
combination treatment of IMR-32 cells at 48 and 72 h relative to control was associated with a 32.5% and 68.7% decrease 
in PTEN protein expression at 48 and 72 h, respectively, relative to control (Fig. 8D).

To determine whether this decrease in PTEN was limited to the functional/protein level or due to changes in gene 
transcription, RT-qPCR was performed to evaluate for changes in gene expression of PTEN after drug treatment. The 
IMR-32 cell line demonstrated no significant difference in PTEN gene expression between treatment groups (Fig. 8E), 
suggesting that the decrease in PTEN protein expression associated with decreased RAD51 protein expression is occur-
ring at the functional level.

3.9  Combination treatment with JQ1 and Olaparib functioned synergistically against neuroblastoma 
tumorigenesis in both MYCN‑amplifying and non‑MYCN‑amplifying cell lines when assessed 
quantitatively using the median‑effect principle of Chou & Talalay

The proposed mechanism of action of combination therapy against neuroblastoma tumorigenesis suggests functional 
synergy. Olaparib converts single-strand DNA breaks to double-strand DNA breaks, increasing cells’ dependence on NHEJ 
and HR double-strand break DNA repair pathways. In MYCN-amplifying cells, specifically, JQ1’s downregulation of MYCN 
and DNA damage repair proteins Ku80 and RAD51 decreases the efficacy of the double-strand break DNA repair pathways 
that Olaparib-treated cells are now dependent upon, contributing to an accumulation of DNA damage and ultimately 
apoptosis. Meanwhile, treatment with Olaparib decreases the  IC50 of JQ1 regardless of MYCN-amplification status.

However, the absence of a standardized definition of therapeutic synergy has historically allowed for additive effects 
of combination therapy to be mistaken for synergy [34]. We therefore sought to quantitatively assess whether JQ1 and 
Olaparib combination therapy demonstrates therapeutic synergy against the MYCN-amplifying BE(2)-C and non-MYCN 
amplifying SK-N-SH cell lines based on the median-effect principle of Chou and Talalay using Compusyn software (Com-
boSyn, Inc., Paramus, NJ, USA) [25]. The results of the previously described experiments were input into the Compusyn 
software. For anti-cancer agents, given that the goal of therapy is tumor eradication, combination index (CI) values indi-
cating synergy at higher doses and high treatment effect (i.e., Fa) are considered more relevant to therapy than CI values 
at lower doses and low treatment effect [25]. Fa ranges from 0 to 1 and refers to the fraction of cells affected (e.g., Fa = 0.5 
signifies 50% inhibition of cell viability) [25]. Therefore, experiments with at least two data points and the widest range 
of treatment doses were selected for analysis. As described by Chou & Talalay, a CI less than 1 was considered indicative 
of synergy (additive effect: CI = 1, antagonistic effect: CI > 1) [25, 35].

Both the MYCN-amplifying BE(2)-C and non-MYCN amplifying SK-N-SH cell lines demonstrated therapeutic syn-
ergy at increasing Fa values as demonstrated by CIs less than 1. For instance, combination treatment of BE(2)-C cells 

Fig. 5  Combination BET and PARP inhibition caused apoptosis in MYCN-amplifying NB cells that was associated with accumulation of p53 
protein. A MYCN-amplified BE(2)-C and IMR-32 cells demonstrated increased expression of cleaved caspase-3 protein on Western blotting 
relative to inactive full-length caspase-3 protein expression beginning 48 and 24 h after combination therapy, respectively, relative to con-
trol. This sustained increase was not seen in the non-MYCN-amplified SK-N-SH cell line. B Densitometry analysis of caspase-3 and cleaved 
caspase-3 protein expression was performed, analyzed as a ratio of each protein band density relative to the density of each housekeeping 
control band, and then presented as a ratio of cleaved caspase-3 protein expression to full-length caspase-3 protein expression to represent 
caspase activity. MYCN-amplified cells demonstrated a sustained increase in caspase activity with combination therapy relative to control. 
This effect was not seen in the SK-N-SH cell line. C MYCN-amplified BE(2)-C (p53 mutated) and IMR-32 (p53 wild type) cells demonstrated 
accumulation of p53 protein after combination treatment relative to control on Western blotting. Non-MYCN-amplified SK-N-SH cells dem-
onstrated accumulation of p21 protein with combination treatment relative to control. D Densitometry analysis of p53 protein expression 
in the BE(2)-C and IMR-32 cell lines, as well as p21 protein expression in the SK-N-SH cell line are shown. Combination treatment induced an 
increase in p53 expression in the BE(2)-C and IMR-32 cell lines, as well as an increase in p21 expression in the SK-N-SH cell line. (Mean ± SEM; 
* = p ≤ .05 vs. control, ** = p ≤ .01 vs. control, *** = p ≤ .001 vs. control)
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with JQ1 and Olaparib at their approximate  IC50 dosages led to an Fa = 0.509 and CI = 0.33, signifying therapeutic 
synergy. Furthermore, at these treatment doses and Fa = 0.509, dose-reduction index (DRI) data demonstrated that 
combination treatment required 3.9-fold less JQ1 plus 14.0-fold less Olaparib to achieve the same 50% inhibition in 
a 1:1 combination in comparison to the doses required of each drug alone. However, combination treatment at lower 

Fig. 6  Combination treatment 
induced cell cycle (G0/G1) 
arrest in the non-MYCN-ampli-
fied SK-N-SH and SH-SY5Y cell 
lines. A Cell cycle analysis was 
performed on SK-N-SH cells 
using flow cytometry to com-
pare the effects of combina-
tion treatment (red line) ver-
sus control (black line) at 16, 
24, and 48 h after treatment. 
B Combination treatment 
resulted in an 11.93% ± 2.09% 
increase in G0/G1 cell cycle 
arrest at 16 h relative to 
control (p = .01). C Cell cycle 
analysis was performed on 
SH-SY5Y cells using flow 
cytometry to compare the 
effects of combination treat-
ment (red line) versus control 
(black line) at 16, 24, and 48 h 
after treatment. D Combina-
tion treatment resulted in a 
6.78% ± 0.30% increase in G0/
G1 cell cycle arrest at 48 h 
relative to control (p < .001).
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doses yielding lower Fa did not consistently demonstrate a CI less than 1. Similarly, combination treatment of SK-N-
SH cells with lower doses of JQ1 and Olaparib yielding lower Fa (0.3–0.5) was associated with CIs of 0.95–1. However, 
higher doses yielding a higher Fa of 0.7 were associated with a substantial decrease in CI to 0.45. Furthermore, this 
was associated with a DRI of 2.2-fold less JQ1 plus 374.7-fold less Olaparib to achieve the same 70% inhibition in a 

Fig. 7  JQ1 and Olaparib functioned synergistically to enhance DNA damage in MYCN-amplifying NB cells. A Immunofluorescence was 
performed using antibody against phospho-histone H2A.X (Ser139), a known marker of DNA damage, to evaluate for treatment-induced 
nuclear DNA damage on BE(2)-C cells separated into four treatment groups: control, JQ1 (1000 nM), Olaparib (3000 nM), or combination 
treatment. B Representative, enlarged images of a single nucleus or a single cluster of nuclei stained with phospho-histone H2A.X are 
depicted for each treatment group. C Immunofluorescence was measured and quantified relative to control. The median (IQR) fluorescence 
intensity of phospho-histone H2A.X for the control, JQ1, Olaparib, and combination treatment groups were 9551.0 (9154.0–9813.5), 9316.0 
(9015.3–9549.0), 14,325.5 (10,525.8–19,253.0), and 27,270.0 (20,287–27,544.5) a.u., respectively. Statistical significance was determined 
between each treatment group relative to control using Mann–Whitney U tests (* = p ≤ .05 vs. control, ** = p ≤ .01 vs. control, *** = p ≤ .001 vs. 
control)
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Fig. 8  DNA damage after combination BET and PARP inhibition was due to downregulated expression of DNA repair proteins required for NHEJ and 
HR double strand DNA break repair pathways. A Combination BET and PARP inhibition of BE(2)-C cells was associated with a sustained decrease in 
the expression of Ku80, a DNA damage repair protein required for NHEJ, relative to control on Western blotting. Combination treatment of IMR-32 
cells was associated with a sustained decrease in the expression of RAD51, a DNA damage repair protein required for HR, relative to control. Combi-
nation treatment of SK-N-SH cells resulted in a decrease in expression of both Ku80 and RAD51 relative to control at 24 h that was not sustained at 
48 or 72 h. B Densitometry analysis of Ku80 protein expression was performed and presented as a ratio of Ku80 protein band density relative to the 
density of each β-actin control band. BE(2)-C cells demonstrated a sustained 2.08%, 2.58%, and 9.62% decrease in Ku80 protein expression relative 
to control at 24, 48, and 72 h after combination treatment, respectively. (C) Densitometry analysis of RAD51 protein expression was performed and 
presented as a ratio of RAD51 protein band density relative to the density of each β-actin control band. IMR-32 cells treated with JQ1 alone demon-
strated a 13.3%, 36.1%, and 17.62% decrease in RAD51 protein expression at 24, 48, and 72 h, respectively, relative to control (A and C). Combination 
treatment resulted in a 23.0% decrease in RAD51 protein expression at 72 h relative to control. D PTEN is known to induce RAD51 expression. The 
combination treatment-induced decrease in RAD51 protein expression seen in IMR-32 cells was associated with a 32.5% and 68.7% decrease in PTEN 
protein expression at 48 and 72 h, respectively, relative to control. E The IMR-32 cell line demonstrated no significant difference in PTEN gene tran-
scription after drug treatment, suggesting that the decrease in PTEN protein expression is limited to the functional level
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1:1 combination in comparison to the doses required of each drug alone. This data suggest that combination treat-
ment of both MYCN-amplifying and non-MYCN-amplifying cells with doses of JQ1 and Olaparib sufficient to yield 
higher treatment effect are associated with true synergy and substantial dose-reduction indices compared to single 
drug treatment.

4  Discussion

Patients with high-risk NB undergo multimodality treatment consisting of multi-agent chemotherapy induction, surgi-
cal resection, consolidation chemotherapy, autologous stem cell rescue, and radiation therapy followed by treatment 
with anti-ganglioside-2 (anti-GD2) immunotherapy, cytokines, and cis-retinoic acid [36]. Despite this aggressive and 
often highly morbid treatment, high-risk NB remains difficult to treat and continues to account for approximately 15% 
of pediatric cancer deaths with a five-year survival rate of less than 40% [1]. Furthermore, many patients, including 
those who initially demonstrated tumor regression with current standard therapies, later demonstrate tumor recur-
rence that is often marked by resistance to established chemotherapy agents and radiation [2]. Therefore, there is a 
need to develop and utilize new agents and combinatorial therapy strategies for the treatment of NB.

In preclinical models of NB, BET inhibition has been shown to downregulate MYCN expression, induce differentia-
tion toward a neural fate, prevent proliferation, and induce cell cycle arrest and apoptosis [5, 6, 10, 11]. PARP inhi-
bition has been demonstrated to inhibit checkpoint inhibition in MYCN-dependent NB cells, causing progression 
through the cell cycle despite DNA damage and ultimately mitotic catastrophe and apoptosis [16, 37]. Widespread 
clinical utilization of each of these treatment strategies individually, however, has been limited. The clinical use of 
BET inhibition for various cancer types has been limited by dose-limiting toxicities [7]. The use of PARP inhibition in 
NB has also been relatively limited. Existing studies of PARP inhibition in NB have largely established its efficacy in 
specific tumor types, including those that amplify or overexpress MYCN, as well as those with 11q deletion and/or 
low ataxia-telangiectasia mutated (ATM) expression [16, 37–42]. Given the significant heterogeneity in NB tumors, it 
is possible that this has led to doubt over its widespread efficacy in other NB tumor types. Our results demonstrate 
that combination treatment strategies can both overcome the weaknesses of either drug class as a monotherapy 
and work synergistically to provide greater anti-cancer efficacy than either drug alone.

A combination of BET and PARP inhibition has demonstrated efficacy in inhibiting tumorigenesis in preclinical 
models of numerous malignancies, including pancreatic, breast, ovarian, prostate, and lung cancers [13, 15, 17, 22]. 
Given previous reports of NB’s susceptibility to BET and PARP inhibitors in preclinical models testing each drug class 
individually [5, 6, 10, 11, 16], we hypothesized that JQ1, a BET inhibitor, would promote a DNA repair-deficient phe-
notype that would function synergistically with Olaparib, a PARP inhibitor, to inhibit NB tumorigenesis. Our results 
demonstrate that combination BET and PARP inhibition functions synergistically against NB tumorigenesis in vitro 
with greater efficacy than either drug alone. Furthermore, these synergistic effects are seen regardless of MYCN 
amplification status, although the mechanism may vary.

In MYCN-amplified NB cell lines, combination treatment was associated with downregulation of MYCN gene expres-
sion and N-myc protein expression, downregulation of DNA repair proteins, accumulation of p53 and DNA damage, 
and induction of apoptosis. This proposed mechanism of downregulation of the DNA damage response contributing 
to synergistic cytotoxicity is consistent with preclinical studies of other cancer types, including pancreatic, ovarian, 
breast, prostate, and lung cancers [13, 15, 17, 22].

Previous preclinical studies of BET and PARP inhibitors have largely focused on cancer cell lines with MYC amplifi-
cation. Fiorentino et al. concluded that combination BET and PARP inhibition demonstrated preferential or selective 
inhibition on small cell lung cancer cells with an active MYC signaling pathway [17]. However, we found that non-MYC-
amplified NB cells remain susceptible to combination treatment, albeit seemingly through a different mechanism of 
action. Lee et al. demonstrated that JQ1 alone was sufficient to halt proliferation in the SK-N-SH cell line [5]. Wyce et al. 
also found that BET inhibition induced a concentration-dependent G1 arrest in the non-MYCN-amplifying SK-N-SH 
and SK-N-AS cell lines [43]. Given that SK-N-SH demonstrated an increase in p21 protein expression with combined 
BET and PARP inhibition treatment in this study, we hypothesized that cell cycle arrest may be contributing to the 
inhibition in cell proliferation seen in non-MYCN-amplifying cell lines. Our results supported this hypothesis, with 
an 11.93% increase in G0/G1 cell cycle arrest at 16 h and a 6.78% increase in G0/G1 cell cycle arrest at 48 h in the 
SK-N-SH and SH-SY5Y cell lines, respectively, after combination treatment relative to control. This data suggest that 
combination treatment may affect cell cycle progression and alter checkpoint inhibition.
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The results of this study have substantial potential translational relevance. Several PARP inhibitors, including 
Olaparib, Rucaparib, Talazoparib, and Niraparib, have already been approved by the FDA for the treatment of other 
cancers [41, 44]. Numerous BET inhibitors, including oral agents, are currently in early phase clinical trials for the 
treatment of both hematological and solid tumor malignancies [7]. Therefore, if future clinical trials demonstrate 
anti-cancer effectiveness of combination BET and PARP inhibition treatment against neuroblastoma, this treatment 
strategy could be more rapidly implemented relative to other novel, untested, or unapproved agents.

The BET and PARP inhibition combination treatment strategy may also aid in overcoming other challenges in cancer 
treatment, such as treatment resistance. Our results demonstrated that BET inhibition sensitized neuroblastoma cells to 
PARP inhibition in vitro. These results are consistent with studies of other cancer types. PARP inhibition is a known clinical 
strategy against BRCA -mutated ovarian cancers. However, Karakashev et al. demonstrated that combination treatment 
with BET inhibition suppressed TOPBP1 and WEE1 expression, resulting in accumulation of DNA damage, checkpoint 
defects, and apoptosis in preclinical models of BRCA -wild type ovarian cancer [15].

BET inhibition may also work synergistically with other agents and treatment modalities. BET inhibition downregulates 
RAD51, whose overexpression has been associated with chemoresistance in multiple cancer types, including neuroblas-
toma [45–47]. In addition, Li et al., in a preclinical model of prostate cancer, found that BET inhibition’s downregulation of 
RAD51 and DNA damage repair both enhanced radiation effect and aided in overcoming radioresistance [8]. Given that 
chemotherapy and radiation are vital modalities in the treatment of high-risk NB, these findings could have potential 
important clinical significance in NB treatment outcomes, both during initial treatment and in cases of relapse marked 
by chemo- and radioresistance.

This study is limited by its preclinical design. Further work is needed to test the safety and effectiveness of combination 
BET and PARP inhibition clinically. Another limitation is that BET inhibition likely affects the expression of other genes 
and proteins not tested in the current study that may affect or correlate with the observed synergistic effects of BET and 
PARP inhibition. Future directions include evaluating the effects of BET and PARP inhibition on other therapeutic agents 
and treatment modalities, such as radiation therapy, used in the management of NB.

In conclusion, the combination of BET and PARP inhibition synergistically inhibited NB tumorigenesis in vitro. These 
results were seen regardless of MYCN amplification status; however, the mechanism of action may vary. In MYCN-amplified 
cell lines, combination treatment was associated with downregulation of MYCN transcription, defects in DNA repair, 
accumulation of DNA damage, and apoptosis. In non-MYCN-amplified cell lines, combination treatment induced cell 
cycle arrest. A combination of BET and PARP inhibition is a potentially novel, efficacious treatment strategy in the man-
agement of NB.
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