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COVID-19 is a respiratory disease caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2). Due to the rapid
spread of COVID-19 around the world, the number of COVID-19 cases continues to increase, and lots of countries are facing
tremendous pressure on both public and medical resources. Although RT-PCR is the most widely used detection technology with
COVID-19 detection, it still has some limitations, such as high cost, being time-consuming, and having low sensitivity. According
to the characteristics of chest X-ray (CXR) images, we design the Parallel Channel Attention Feature Fusion Module (PCAF), as
well as a new structure of convolutional neural network MCFF-Net proposed based on PCAF. In order to improve the recognition
efficiency, the network adopts 3 classifiers: 1-FC, GAP-FC, and Convl-GAP. The experimental results show that the overall
accuracy of MCFF-Net66-Convl-GAP model is 94.66% for 4-class classification. Simultaneously, the classification accuracy,
precision, sensitivity, specificity, and Fl-score of COVID-19 are 100%. MCFF-Net may not only assist clinicians in making

appropriate decisions for COVID-19 diagnosis but also mitigate the lack of testing kits.

1. Introduction

Coronavirus disease 2019 (COVID-19) is a respiratory
disease caused by severe acute respiratory syndrome coro-
navirus (SARS-CoV-2). Since its discovery in December
2019, the disease has spread rapidly around the world and is
highly infectious. On March 11, 2020, the disease was de-
clared a global pandemic by the World Health Organization
(WHO) [1]. With the reopening of daily activities in
countries around the world, the morbidity and mortality of
COVID-19 have continued to increase, putting tremendous
pressure on medical institutions and medical resources.
Therefore, finding a quick and effective diagnosis method
has become a top priority.

The current mainstream COVID-19 diagnosis tech-
nology is real-time reverse transcription polymerase chain
reaction (RT-PCR) technology. However, the detection
process is cuambersome and the diagnosis result has a high
false-negative rate [2]. At the same time, chest imaging
examinations, such as computed tomography (CT) and
chest X-ray detection, also play a vital role in the early
diagnosis of the disease [3]. Although the diagnostic

efficiency of COVID-19 is constantly improving, the cur-
rent cost of testing and diagnosis is still at a relatively high
level. By examining the patient’s lung imaging images, the
diagnosis efficiency of COVID-19 can be greatly
accelerated, and the patient can be treated as soon as
possible.

Some studies have shown that COVID-19 has obvious
clinical imaging characteristics. The study of Zu et al. [2] showed
that some patients with COVID-19 had lung opacity in chest CT
images. Zhao et al. [4] proposed that most patients have ground
glass opacity (GGO), and some patients have lung consolidation
and vasodilatation in chest lesions. Li and Xia [5] proposed that
the CT imaging lesions of COVID-19 patients showed signs of
GGO, lung consolidation, thickened interlobular septa, and air
bronchography. Compared with CT, chest X-Ray (CXR) di-
agnosis has the advantages of convenient detection process, low
cost, and low ionizing radiation intensity [6], which is more
patient-friendly and easy to promote in remote and underde-
veloped areas. In addition, manual image reading is a time-
consuming and error-prone task. In order to reduce the pressure
of medical imaging physicians, it is necessary to propose an
efficient and accurate COVID-19 detection method.
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In recent years, deep learning has become one of the
most popular research fields in artificial intelligence. Deep
convolutional neural network (DCNN) has excellent per-
formance in computer vision tasks such as image classifi-
cation, image segmentation, and target detection. A wealth
of research results has emerged in this field. For example,
Wang et al. [7] proposed and improved a deep learning
method for detecting colon polyp images and achieved good
results. Wang et al. [8] introduced the dense connection idea
of the DenseNet model in the MobileNet model and pro-
posed a new type of image classification model Dense-
MobileNet. On the basis of the original model, the accuracy
of the image classification task is improved and the com-
plexity of the model is reduced. Wang et al. [9] combined the
dense connection idea with the full convolutional network
FCN model, proposed a dense full convolutional network
DFCN, and used this model to perform semantic segmen-
tation tasks on the Chenzhou remote sensing image dataset,
achieving good results. After the outbreak of the COVID-19
epidemic, the use of DCNN to detect COVID-19 has become
a current hot research field. At the same time, many out-
standing research results have emerged in this field. Based on
the characteristics of CXR images, Wang et al. [10] designed
the Channel Feature Weight Extraction module (CFWE)
and proposed a new network structure CFW-Net on this
basis, which has achieved a good classification effect. Wang
et al. [11] designed a Multiattention Interaction Enhance-
ment module (MAIE) and proposed a new convolutional
neural network, MAI-Net. The overall accuracy and
COVID-19 category accuracy were 96.42% and 100%, re-
spectively, which were better than those of ResNet [12].
Based on the VGG19 [13] network model, Apostolopoulos
and Mpesiana [14] conducted a three-category classification
experiment on a dataset containing COVID-19 positive,
common pneumonia, and normal CXR images, and the
overall classification accuracy rate was 93.48%. Wang et al.
[15] proposed a COVID-Net network model based on the
PEPX structure and introduced the depthwise separable
convolution [16] into the network. The accuracy of the 3-
class classification was 93.3%, which reduced the amount of
model parameters and had good classification performance.
Khan et al. [17] proposed a CoroNet network model based
on the structure of Xception [18] and conducted 2-class, 3-
class, and 4-class classification experiments for CXR images.
The classification accuracy rates were 99%, 95%, and 89.6%.
On this basis, Hussain et al. [19] improved Khan’s work and
proposed the CoroDet network structure. The classification
accuracy of 2-class, 3-class, and 4-class were 99.1%, 94.2%,
and 91.2%, respectively.

Unlike conventional image classification tasks, CXR
images have high interclass similarity and low intraclass
variability. This kind of data characteristics can easily lead to
model deviation and overfitting problems, reduce the
generalization performance of the network, and increase the
difficulty of image classification tasks. To solve these
problems, the Parallel Channel Attention Feature Fusion
Module (PCAF) is designed. Based on the PCAF module, a
new convolutional neural network structure, MCFF-Net, is
proposed. MCFF-Net is used to perform a 4-class
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classification experiment on a dataset containing four types
of image of COVID-19, normal, bacterial pneumonia, and
viral pneumonia, with excellent performance. Compared
with the deep learning methods in other documents, MCFF-
Net has higher classification accuracy and stronger gener-
alization ability.

2. CNNs

In recent years, deep convolutional neural networks have
been widely used in the field of computer vision, and its basic
structure is shown in Figure 1. In view of the brand-new
techniques such as ReLU [20], LRN [20], and Dropout [21],
AlexNet [22] designed by Hintion and AlexKrizhevsky won
the championship in 2012 ImageNet Challenge, with ex-
cellent performance. At the same time, AlexNet reduces the
problem of network overfitting and enhances the general-
ization ability of the model. In 2014, Simonyan and Zis-
serman proposed the visual geometry group network
(VGGNet) [14], which increased the network depth to 19
layers by alternately using 3 x 3 convolution kernels and
2 x 2 maximum pooling layers, significantly improving the
network performance. Christian Szegedy et al. [23] designed
the Inception module and constructed the GoogLeNet
network based on this module. By increasing the width and
depth, GoogLeNet also improves the utilization of the in-
ternal resources of the network and alleviates the problem of
overfitting to a certain extent.

Increasing the network depth can improve network
performance, but it can also cause some problems such as
overfitting, network degradation, gradient disappearance,
and gradient explosion. In 2015, He et al. [12] proposed the
residual network named ResNet, which solved the degra-
dation problem of the network through skip connection
and increased the network depth to 1000 layers for the first
time, making the deep convolutional neural network reach
an unprecedented depth. Inspired by the residual network,
the dense network named DenseNet was proposed by
Huang et al. [24] in 2017 based on the idea of dense
connections. By directly introducing short connections in
any two layers to realize the reuse of features, it greatly
reduces the amount of network parameters and effectively
alleviates the problem of gradient disappearance of deep
network.

3. PCAF Module

In order to relieve the pressure of current medical staff and
improve the diagnostic speed of COVID-19, we adopt a
convolutional neural network that can adaptively learn the
feature information exhaustively to identify and classify
CXR images. CXR images have high interclass similarity and
low intraclass variability. These problems will lead to model
deviation and overfitting as well as reduce the recognition
ability and generalization performance of the network.
Hence, the PCAF module has been designed, whose
structure is shown in Figure 2. C is the number of channels
related to the input feature map. H and W represent the
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height and width of the feature map, respectively. “r
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FiGure 1: The basic structure of convolutional neural network [25].

X
CxHxW

GAP
Cx1x1 CxHxW
Clrx1x1 Clrx Hx W

BN BN
Cx1x1 CxHxW

BN BN

Outputs

Ficure 2: The structure of PCAF module.

represents the channel compression ratio. “GAP” [26]
represents the global average pooling. “PWConv” represents
the 1 x 1 pointwise convolution. “BN” [27] is on behalf of
batch normalization. “LeakyReLU” [28] and “Sigmoid” are
activation functions. “®@” represents the feature matrix bit-
wise addition operation. “®” represents the feature matrix
bitwise multiplication operation.

The PCAF module is composed of two parallel branches,
namely, the global feature extraction branch and the local
feature extraction branch. The input feature map is imported
into the two branches for feature extraction. Local feature
extraction branch is composed of two PWConvs. The size of
convolution kernel for the first PWConv is C/r x1x 1,
compressing the channels of feature map to C/r, reducing
the dimension of the feature map. The size of the second
PWConv convolution kernel is Cx 1 x 1, restoring the
channels of the feature map toC, raising the dimension of the
feature map.

Based on the above, the global feature extraction branch
consists of one GAP layer and two PWConv layers. The GAP
operation can compress the global information into a real
number, which has the receptive field of global information
to a certain extent.

Therefore, the global feature extraction branch focuses
on extracting widely distributed global information in the
feature map. The size of feature map in local feature ex-
traction branch remains H x W. It has not been compressed
by the global average pooling from beginning to end.
Consequently, more attention is paid to extract the local
subtle information of the feature map.

The output features of the two branches can be expressed
as

G (X) = d{BN[PWConv2[d [BN[PWConv1[GAP (X)]]]]1},
L (X) = d{BN[PWConv2[d [BN[PWConvl (X)]]]]},
(1)

where BN represents batch normalization operation and d
represents LeakyReLU activation function.

After output features L(X) and G(X) of the two
branches are fused by matrix bitwise addition operation, the
tusion feature F(X) is obtained by the sigmoid activation
function, which can be described by the following formula:

F(X)=G(X)®L(X). (2)



The features of different scales are merged by F(X). In
this way, the weight of each channel in the feature map is
recalibrated. The model can learn the weight coefficient of
each channel in the global feature and the weight coefficient
of each channel in the local feature, respectively.

Finally, the mask F (X) and the input feature map X are
processed by matrix bitwise multiplication operation, and the
output feature map X' is obtained. The formula is as follows:

X' =Xoo(F(X)=Xod[(L(X)®G(X))], (3)

where o represents Sigmoid activation function.

After the input feature map is processed by the PCAF
module, the network can learn more important information
in a targeted manner, ignoring the secondary information.

4. MCFF-NET

Based on the PCAF module, three convolutional neural
networks with different depths are proposed: Multiscale
Channel Feature Fusion Network (MCFF-Net), as shown in
Table 1. When calculating the network depth in Table 1, a
PCAF module is recorded as one layer, and the depth of the
classifier in MCFF-Net is uniformly recorded as one layer.
The “Conv” structure in Table 1 can be expressed as a
composite structure including “convolution,” “batch nor-
malization”, and “ReLU activation function.” The value after
“Conv” represents the number of channels corresponding to
the structure. The network diagram is shown in Figure 3.

In traditional convolutional neural networks such as
AlexNet [22] and VGGNet [14], three fully connected layers (3
tull connection layer, 3-FC) are used as classifiers. This can
increase the nonlinear expression ability of network, accom-
panied by a large amount of memory occupation and high
calculation overhead, which has caused a substantial increase in
the amount of network parameters. In order to reduce the
network parameters, our network uses a fully connected layer
(1-FC) as the classifier to convert the computational overhead
of the image recognition task to the convolutional layer, which
reduces the burden of the fully connected layer.

Due to the extremely large number of features output by
the convolutional layer, one fully connected layer as a
classifier will cause excessive parameters. Therefore, we first
reduce the output feature map size of the convolutional layer
to 1x1 through the GAP operation and then classify
through the fully connected layer, which greatly reduces the
amount of parameter of the network model. “GAP-FC” is
used to represent this structure.

Besides, 1x1 point convolution is considered to be
inserted in front of the GAP structure, reducing the dimen-
sionality of the output feature map at the end of the network.
The classifier designed under this idea has nothing to do with
the fully connected layer, thereby further reducing the amount
of parameter. “Conv1-GAP” is used to represent this structure.

When using different depth networks and different
classifiers to recognize CXR images, there are differences
among the amount of parameter and calculation of the
network. Take the 4-class classification task as an example,
and suppose the output feature map size of the last
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TaBLE 1: MCFF-Net configuration.

MCFF-Net50 MCFF-Net66 MCFF-Net134
Conv7 x 7-64, stride 2
3 x 3 maxpooling, stride 2
Conv3 x 3-64 Convl x 1-64 Convl x 1-64
Conv3 x 3-64 3 Conv3 x 3-64 3 Conv3 x 3-64 3
PCAF-64 Convl x 1-256 Convl x 1-256
PCAF-256 PCAF-256
Conv3 x 3-128 Convl x 1-128 Convl x 1-128
Conv3 x 3-128 4 Conv3 x3-128 4 Conv3 x 3-128 4
PCAF-128 Convl x 1-512 Convl x 1-512
PCAF-512 PCAF-512
Conv3 x 3-256 Convl x 1-256 Convl x 1-256
Conv3 x 3-256 6 Conv3 x 3-256 %6 Conv3 x 3-256 %23
PCAF-256 Convlx1-1024 Convlx1-1024
PCAF-1024 PCAF-1024
Conv3 x 3-512 Convl x 1-512 Convl x 1-512
Conv3 x 3-512 Conv3 x 3-512 Conv3 x 3-512
X3 X3 X3

Convl x 1-2048
PCAF-2048

PCAF-512 Convl x 1-2048
PCAF-2048
Average pooling

Classifier, softmax

convolutional layer in the network is H x W x D. When
using a fully connected layer “1 — FC” as the classifier, the
parameter of the network is 4 x H X W x D + 4. When the
“GAP-FC” structure is used as the classifier, the parameter of
the network is D+ D x4 +4. When the “Convl-GAP”
structure is used as the classifier, the parameter of the
network is H x W x 4 + D x 4 + 4. When MCFF-Nets with
different depths use different classifiers, the parameters are
shown in Figure 4. Comparison of floating point of oper-
ations (FLOPs) is shown in Figure 5.

From Figure 4, the sort of classifier has great influence on
the network parameters. In the case of the same network
depth, the networks using the “1 — FC” classifier are obviously
larger than those using other classifiers. Therefore, using the
“1-FC” classifier should be avoided as much as possible
under the premise of ensuring the classification accuracy. In
addition, the network depth also has a huge impact on the
amount of network parameters. The parameters of MCFF-
Net134-GAP-FC are 3.90 times that of MCFF-Net50-GAP-
FC, and the parameters of MCFF-Net134-GAP-FC are 1.26
times that of MCFF-Net66-GAP-FC.

According to Figure 5, the computational cost is mainly
determined by the depth of network. MCFF-Net134 is very
computationally intensive. Compared with MCFF-Net66,
MCFF-Net134 has a FLOPs increase of 94.87%. MCFF-
Net66 has an increase of 53.18% compared to MCFEF-Net50.
Compared with MCFF-Net66, MCFF-Net134 has an in-
crease of 194.87%, which is the largest increase in calcula-
tions. In conclusion, when there is no notable difference in
recognition accuracy, in order to save computational cost,
MCFF-Net66 has the highest cost performance.

5. Experiments and Results

5.1. Datasets. Since COVID-19 is a new type of disease, there
is a lack of datasets suitable for this study. In this paper, we
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Ficure 3: The network structure of MCFF-Net.
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MCFF-Net134-1-FC 181.04
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FIGURE 4: The parameter comparison of MCFF-Nets.
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FIGURE 5: The comparison of floating points of operations (FLOPs).

have constructed a dataset by collecting CXR images from
public image databases.

In order to further evaluate the generalization perfor-
mance of the MCFF-Net, a 4-class dataset has been con-
structed. Dataset collects CXR images from five different
public databases. These databases are (1) Actualmed-
COVID-chestxray-dataset [29]; (2) COVID-19 Radiogra-
phy Database [30]; (3) Figure 1-COVID-chestxray-dataset
[31]; (4) Pneumonia Virus vs. Pneumonia Bacteria [32];
and (5) Chest X-ray Image [33]. Dataset contains four
classes of CXR images, namely, COVID-19, normal, bac-
terial pneumonia, and viral pneumonia, totaling 5,985
images. There are 5300 images in training sets, including
800 COVID-19 patient images, 1300 normal images, 1600
viral pneumonia images, and 1600 bacterial pneumonia
images. There are 741 images in the test sets, including 142
images of COVID-19 patients, 200 normal images, 202
bacterial pneumonia images, and 197 viral pneumonia
images.

The eight sample images from the dataset that we have
established are shown in Figure 6.

5.2. Experimental Setup. The experiments are carried out on
the same platform and environment to ensure the credibility
of the comparison results between different network models.
Table 2 shows the software and hardware configuration
information of the experimental platform. The batch size of
the training set and the test set is both 16.

The learning rate annealing algorithm is introduced in
the training process, and a larger learning rate is used in the
initial stage of training. As the number of iterations in-
creases, the learning rate is gradually reduced. This algo-
rithm can avoid large fluctuations of classification accuracy
in the later stage of training, so as to get closer to the optimal
solution. After repeated experiments, we finally adjusted the
parameter settings as follows: the initial learning rate is set to
0.001. Since the first 50 epochs, the learning rate decays twice
as much as before and then decreases by 2 times every 50
epochs. A total of 300 epochs are used for training. In order
to evaluate the performance of the model more objectively,
we take the recognition accuracy of the last 10 epochs on test
set to calculate the average value, which is used as the final
classification accuracy.

5.3. Evaluation Criteria. In this section, we will explain the
evaluation indicators used to quantify the classification
performance of the network: accuracy, precision, sensitivity,
specificity, and Fl-score. In order to represent the above
indicators, we also need to count the four numbers in the
confusion matrix: true positive (TP), true negative (TN),
false positive (FP), and false negative (FN).

5.4. Experimental Results and Discussion. In order to further
verify the generalization ability of MCFF-Net66-Convl-
GAP in the CXR image recognition task, we increase the
difficulty of the classification task and use the model to
conduct experiments on dataset with four classes of CXR
images. The training period is 300 epochs, which is divided
into 6 stages, each with 50 epochs. We take test set recog-
nition accuracy of the last 5 epochs in each stage and cal-
culate the average value as the experimental result of the
corresponding stage. Figure 7 shows the 4-class confusion
matrix of MCFF-Net66-Convl-GAP. Figure 8 shows the
overall accuracy of MCFF-Net66-Conv1-GAP in each stage
of the 4-classification experiment.

According to Figures 7 and 8, the overall accuracy of the
four classification tasks of MCFF-Net66-Convl-GAP rea-
ches 94.6%, showing that the MCFF-Net has excellent
classification performance in CXR image recognition tasks.
In the discussion of Introduction, we briefly described a
variety of COVID-19 detection methods proposed by
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(g) (h)

FIGURE 6: Chest X-ray images. (a) COVID-19, (b) COVID-19, (c) normal, (d) normal, (e) pneumonia—bacteria, (f) pneumonia—bacteria,

(g) pneumonia—viral and (h) pneumonia—viral.

TaBLE 2: Experimental platform configuration.

Attributes Configuration information
Operating Ubuntu 18.04.5 LTS
system
CPU Intel (R) Xeon (R) silver 4214 CPU @ 2.20 GHz
GPU GeForce RTX 2080
CUDNN CUDNN 7.5.0
CUDA CUDA 10.0.130
Frame Fastai
IDE PyCharm
Language Python
4-class confusion matrix for MCFF-Net66-Convl-GAP
COVID-19 175

150
Normal 125

100

Predicted label

Bacterial pneumonia 4

Viral pneumonia

COVID-19 A

Normal

Bacterial pneumonia A
Viral pneumonia

Ground truth label

FiGure 7: The 4-class confusion matrix of the MCFF-Net66-
Conv1-GAP.

Experimental results

95
94.5
94
93.5
93
92.5
92
91.5
91

9444 94006

Accuracy (100%)

0 50 100 150 200 250 300 350

Numbers of epochs

FIGURE 8: The 4-class accuracy rate of MCFF-Net66-Conv1-GAP.

researchers from various regions of the world. Some models
are suitable for 2-class classification, and some models are
suitable for multiclass classification. Hence, the model
MCFF-Net66-Convl-GAP is compared with the methods of
Khan [17], Hussain [19], Mangal [34], and Joshi [35]. The
comparison results are shown in Table 3.

According to Table 4, our proposed network model
MCFF-Net66-Conv1-GAP can efficiently help classify CXR
images of COVID-19-positive patients, normal, and ordi-
nary pneumonia patients. What is more, the overall accu-
racy, sensitivity, specificity, and Fl-score of COVID-19
images have reached 100%.

The various methods in Table 3 use different numbers of
CXR images from different data sources for training. The
number of images used for training is shown in the fourth
column. When there are four values in the number of images
column, then the first value indicates the number of
COVID-19 images, the second value indicates the number of
viral pneumonia images, the third value indicates the
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TaBLE 3: Accuracy comparison of our proposed method with other existing deep learning methods.

Study Architecture Accuracy 4-class (%) Number of images # of parameters (in millions)
Khan et al. [17] CoroNet 89.60 284, 327, 330, 310 33

Hussain et al. [19] CoroDet 91.20 500, 400, 400, 800 N/A

Mangal et al. [34] CovidAID 87.20 115, 1337, 2530, 1341 N/A

Joshi et al. [35] DarkNet-53 76.46 659, 1493, 2772, 1660 N/A

Proposed method MCFE-Net 94.66 800, 1600, 1600, 1300 45.78

TABLE 4: Average class-wise accuracy, precision, recall, specificity, F1-score of 4-class MCFF-Net66-Conv1-GAP (%).

Class Accuracy (%) Precision (%) Recall (%) Specificity (%) Fl1-score (%)
COVID-19 100 100 100 100 100
Normal 98.38 99 95.19 99.63 97.06
Viral pneumonia 95.82 85.64 98.86 94.88 91.78
Bacterial pneumonia 95.01 95.43 87.04 98.29 91.04
Average 97.3 95.02 95.27 98.2 94.79

number of bacterial pneumonia images, and the fourth value
indicates the number of normal images. “N/A” indicates an
item of information that is not disclosed in the above-
mentioned documents.

Compared with other methods, we have used the largest
number of COVID-19 images to train our MCFF-Net model
and have got 94.66% classification accuracy in the 4-class
recognition task, which are higher than other methods in
Table 3. This shows that the MCFF-Net has better perfor-
mance in CXR image classification tasks.

5.5. Experimental Analysis. According to the experimental
results in Section 5.4, we can find that, in the 4-class clas-
sification experiments, MCFF-Net66-Convl-GAP has been
chosen to conduct a 4-class classification experiment. The
experimental results are compared with other existing
methods. The overall accuracy of the 4-class classification
experiment is 94.66%. In conclusion, the overall perfor-
mance is better than other existing methods.

Through experimental analysis, it can be seen that, in the
CXR image classification task of COVID-19, the network
depth should be kept moderate. If the network is too shallow,
it is hard to fully extract the feature information. If the
network is too deep, while greatly increasing the amounts of
parameters and calculations, it is also likely to overfitting and
gradient explosion problems.

Because CXR images have high similarity between
classes and low intraclass variability, it is easy to cause model
deviation and overfitting, which increases the difficulty of
image classification tasks. Therefore, this paper designs a
PCAF module, which is composed of two parallel branches,
and includes “GAP” and “PWConv” structures. After the
input feature map is processed by the PCAF module, the
output feature map will both have global and local infor-
mation in the image, which improves the feature extraction
capability of the network.

6. Conclusions

In this paper, a Parallel Channel Attention Feature Fusion
(PCAF) module is designed according to the characteristics

of CXR images. And based on this module, a new con-
volutional neural network structure MCFE-Net is proposed
to classify CXR images in order to diagnose and detect
COVID-19 cases. Through the analysis and comparison of
the experimental results, we believe that MCFF-Net66-
Convl-GAP has the highest application value. The overall
accuracy of the 4-class classification experiment and the
COVID-19 image recognition accuracy have reached 94.66%
and 100%, respectively. Despite the fact that good results
have been achieved, MCFF-Net still needs clinical research
and testing. We will overcome the limitations of hardware
conditions and train the MCFF-Net with a larger dataset to
further improve its classification accuracy.
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