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Obesity-related kidney disease is now recognized as a global health issue, with

a substantial number of patients developing progressive renal failure and end-

stage renal disease. Interestingly, recent studies indicate light pollution is a

novel environmental risk factor for chronic kidney disease. However, the

impact of light pollution on obesity-related kidney disease remains largely

unknown, with its underlying mechanism insufficiently explained. Renal

hypoxia induced factor 1a (HIF1a) is critical in the development of

glomerulosclerosis and renal fibrosis. The present study explored effects of

constant light exposure on high fat diet (HFD) -induced renal injury and its

association with HIF1a signal pathway. Thirty-two male Sprague Dawley rats

were divided into four groups according to diet (HFD or normal chow diet) and

light cycles (light/dark or constant light). After 16 weeks treatment, rats were

sacrificed and pathophysiological assessments were performed. In normal

chow fed rats, constant light exposure led to glucose abnormalities and

dyslipidemia. In HFD fed rats, constant light exposure exacerbated obesity,

glucose abnormalities, insulin resistance, dyslipidemia, renal functional decline,

proteinuria, glomerulomegaly, renal inflammation and fibrosis. And, constant

light exposure caused an increase in HIF1a and a decrease in prolyl hydroxylase

domain 1 (PHD1) and PHD2 expression in kidneys of HFD-fed rats. Then, we

demonstrated that BMAL1 bound directly to the promoters of PHD1 in mouse

podocyte clone 5 cell line (MPC5) by ChIP assays. In conclusion, chronic

constant light exposure aggravates HFD-induced renal injuries in rats, and it

is associated with activation of HIF1a signal pathway.
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Introduction

Obesity has long been associated with chronic kidney disease

(CKD) (1). The characteristic features of obesity-related kidney

disease include glomerular hypertrophy, thickening of the

glomerular basement membrane, mesangial matrix expansion,

and increased renal inflammation (2). Although most patients

with obesity-related kidney disease have stable or slowly

progressive proteinuria, up to one-third develop progressive

renal failure and end-stage renal disease (ESRD) (3). With the

rapid increase in obesity prevalence worldwide, obesity-related

kidney disease is becoming a prominent cause of ESRD (4).

Nonetheless, the mechanisms responsible for progression of the

disease and its underlying pathogenesis are not yet

well understood.

Roles of environmental risk factors, such as light pollution,

in CKD have gained increasing interest in recent years (5). Light

pollution is caused by excessive and inappropriate introduction

of artificial light by humans into indoor and outdoor

environments (6). With rapid urbanization and economic

development, light pollution has inevitably become globalized

(7) . Light pollut ion contr ibutes to several human

pathophysiologies, though has not been examined as a risk

factor for kidney diseases. However, a recent epidemiological

study demonstrated that shift-workers (in a sense, they expose to

high levels of artificial light at night in the workplace) had

increased CKD risk (8), thus raising the possibility that

prolonged exposure to light (light pollution) might play a role

in kidney diseases.

As the most prominent chronobiology disruptor, light

pollution is considered detrimental to human health because

of its disruptive effect on circadian rhythms (9). The circadian

clock is an endogenous timing-system that enable living

organisms to coordinate their behavior and physiology with

daily environmental changes (10). It is generated by a series of

physiological clocks, the master clock located in the

suprachiasmatic nucleus, and other physiological clocks

located in peripheral tissues, including kidney (11). The kidney

circadian clock contributes to the regulation of renal functions

such as renal plasma flow, glomerular filtration rate and tubular

transport activities (12). There appears to be a connection

between circadian disruption and CKD. For example, in

patients with mild to moderate CKD, lower eGFR was

associated with shorter sleep duration, greater sleep

fragmentation and later timing of sleep (13). As noted in

animal models, Clock KO mice developed more severe kidney

fibrosis upon ureteral obstruction (14).

These observations indicate that circadian disruption affects

the development of CKD and light pollution may theoretically

play a role in the progression of obesity related kidney disease.

Moreover, links between obesity and light pollution have been

well reported. Epidemiological evidence suggests shift workers
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are more prone to weight gain and are susceptible to obesity-

linked pathophysiologies (15). Further, mice exposed to

nighttime light are prone to obesity (16). We previously found

that constant light exposure aggravated obesity and visceral

adiposity in rats fed with high fat diet (HFD) (17). However,

few studies have observed the effects of constant light exposure

(i.e. light pollution) on obesity related kidney disease.

Hypoxia-inducible factor 1a (HIF1a) is a master signal mediator

of hypoxic responses. Under normoxic conditions, HIF1a protein is

rapidly hydroxylated by a group of prolyl hydroxylase domain (PHD)

enzymes – PHD1, PHD2 and PHD3 – and are degraded by

proteasomes (18). Conversely, during hypoxia HIF1a is not

hydroxylated, which results in increased net levels of HIF1a and

subsequent activation of HIF1a target gene expression, such as

transforming growth factor-b (TGF-b), connective tissue growth

factor (CTGF) and vascular endothelial growth factor (VEGF), and

plays a critical role in glomerulosclerosis and renal fibrosis in CKD

(19). Genetic ablation of proximal tubule epithelial HIF1a appears to

impede the development of kidney fibrosis in unilateral ureteral

obstruction in mice (20). In mouse models of diabetic nephropathy,

downregulation of HIF1a is associated with improved renal function,

reduced proteinuria, and glomerulosclerosis (21). Glomerulosclerosis

is one of several pathological characters of obesity-related kidney

disease, with renal fibrosis being the final common pathway between

kidney diseases and ESRD. However, the role of HIF1a in obesity-

related kidney disease remains largely unexplored.

To investigate the impact of chronic constant light exposure

on the development of obesity-related kidney disease, we utilized

an HFD-induced obesity model, and explored effects of constant

light exposure on HFD-induced renal injury and its association

with HIF1a signal pathway.
Materials and methods

Animals and experimental design

All animal experimental procedures were approved by the

Medical Ethics Committee of Central South University and

performed in accordance with the guidelines established by the

committee (No.2018sydw184). Thirty-two male SD rats (six-

week-old, weighing 250–270g) obtained from the Hunan Slac

Jinda Laboratory Animal Company (Changsha, China), were

housed under controlled conditions (22 ± 2°C, 40 ~ 50%

humidity) with free access to water and food. After acclimating

for one week, rats were randomly divided into four groups (n=8

per group) and housed in two separate rooms (1): ND-LD group,

rats were fed on a normal chow diet (ND, fat 12%, protein 22%,

carbohydrate 66%, 3.48 kcal/g) and exposed to a standard 12:12

hour light/dark (LD) cycle (light:7am-7pm, 200lux; dark: 7pm-

7am) (2), ND-LL group, rats were fed on a normal chow diet and

exposed to constant light (LL) (200 lux) (3), HFD-LD group,
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rats were fed on a high-fat diet (HFD, fat 37%, protein 17%,

carbohydrate 46%, 4.40 kcal/g) and exposed to standard 12:12

hour LD cycle, and (4) HFD-LL group, rats were fed on an HFD

and exposed to constant light (LL) (200 lux). The light source was

regular natural white fluorescent light tubes with a wavelength

range of 400~560 nm.

Body weight was recorded weekly for all animals throughout

the experiment. Glucose and insulin tolerance tests were

performed at the end of the 14th week and the beginning of

the 15th week of intervention. Twenty four-hour urine collection

using a metabolic cage was performed at the 8th and 15th week

of intervention.

At the end of the 16th week of intervention, the rats were

sacrificed between 8:00 am and 11:00 am in two consecutive days

by intraperitoneal injection (a single dose) of pentobarbital

sodium (100 mg/kg) accompanied by isoflurane inhalation to

maintain anesthesia of the animal throughout the surgical

protocols. Blood samples were collected from the inferior vena

cava, and the kidneys were harvested immediately for histological

study and biochemical analysis. Perirenal and epididymal adipose

tissue weights were measured to assess visceral fat mass. Kidney

tissues were immediately frozen in liquid nitrogen and stored at

-80°C for RNA extraction and western blot, or fixed in 10%

neutral formalin and 2.5% glutaraldehyde respectively for paraffin

sections and ultrastructural examination by transmission

electron microscope.
Glucose and insulin tolerance tests

Briefly, the rats were fasted overnight and injected

intraperitoneally with 50% D-glucose (2.0 g/kg, kelun, Hunan,

China) or insulin (0.75 IU/kg, Novolin R, Novo Nordisk,

Denmark). Blood glucose levels were measured at 0, 15, 30, 60

and 120 minutes via tail bleed with the Accu Check Advantage

system (Roche Diagnostics, Mannheim, Germany). Plasma

glucose concentrations following the glucose or insulin loading

was expressed as total area under the curve for glucose (AUC)

using the trapezoidal rule.
Serum analysis

Serum triglycerides (TG), total cholesterol (TC), low-density

lipoprotein cholesterol (LDL-C), high-density lipoprotein

cholesterol (HDL-C), free fatty acid (FFA), blood urea

nitrogen (BUN), and creatinine levels were measured using

commercially available reagents (Serotec Co., Sapporo, Japan).

Serum tumor necrosis factor-a (TNF-a) and interleukin 6

(IL-6) were measured using respective commercial rat-specific

enzyme-linked immunosorbent assay (ELISA) kits (Cusabio,

Wuhan, China).
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Urinary albumin concentration

Urinary albumin excretion was determined using a

commercially available ELISA kit (Cusabio, Wuhan, China)

according to the manufacturer’s instructions and was

expressed as total albumin excretion in 24 h.
Renal histopathology

Renal tissues were fixed in 10% neutral formalin, embedded

in paraffin, serially sectioned (3 µm), and stained with

hematoxylin-eosin (HE), periodic acid–Schiff (PAS), and

Masson’s trichrome solution as previously described (22). HE

staining was used to assess the level of renal injury by calculating

glomerular injury scores on a blinded basis (23). More than 10

consecutive fields were examined at 400× magnification. The

score index in each rat was expressed as a mean value of all

scores obtained. Mesangial matrix expansion was defined by

PAS-positive area in the mesangial region. Masson’s trichrome

staining was used to evaluate extent of interstitial fibrosis and

glomerulosclerosis, which was quantified by Image J (National

Institutes of Health, Bethesda, MD).
Transmission electron microscopy

Renal tissues were promptly cut into 1 mm3 pieces and fixed

in 2.5% glutaraldehyde, post-fixed in 1% osmium tetroxide,

dehydrated in graded alcohols, and embedded in Epon.

Ultrathin sections (200–400 Å) were cut on nickel grids,

stained with uranyl acetate and lead citrate, and examined

using a transmission electron microscope (Hitachi H-7500,

Chiyoda-ku, Tokyo, Japan) (24).
Quantitative real-time polymerase
chain reaction

Total kidney RNA was extracted using TRIzol reagent (Life

Technologies Corporation, Woburn, MA, USA) and reverse

transcribed using HiFiScript cDNA synthesis kit (Cowin

Bioscience, Jiangsu, China). The PCR primers (sequences were

listed in Supplementary Table 1) were obtained from Shanghai

Bioshang biotechnology company, and qRT-PCR was

performed on a Rotor-Gene 6000 instrument (Corbett Life

Science, Mortlake, NSW, Australia). The cycling program was

95°C for 10 minutes followed by 40 cycles of 95°C for 15

seconds, and 60°C for 1 minute. The relative abundance of the

target genes was normalized to b-actin as an internal control.
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Western blot analysis

Renal tissues were homogenized in lysis buffer (Cowin

Bioscience, China), and the protein concentrations were

measured using a BCA Protein Assay Kit (Biosharp life

science, China). Protein samples (20 mg/lane) were then

subjected to SDS-PAGE electrophoresis, transferred to

polyvinylidene fluoride (PVDF) membranes (Millipore,

Billerica, MA, USA), and blocked in 5% non-fat dry milk at

room temperature for 90 min. The membranes were incubated

with anti-TGF-b (1:1000 dilution, Abcam, Cambridge, UK),

anti-HIF1a (1 mg/mL, R&D systems, Minneapolis, MN, USA),

anti-PHD1 (1:1000 dilution, Proteintech, Wuhan, China), anti-

PHD2 (1:500 dilution, Proteintech, Wuhan, China), and anti-b-
actin (1:5000 dilution, Proteintech, Wuhan, China) at 4°C

overnight and then incubated with horseradish peroxidase

(HRP)-conjugated secondary antibodies (Proteintech, Wuhan,

China) at room temperature for 90 min. The immune reactivity

was detected by an enhanced chemiluminescence reagent

(Biosharp life science, Hefei, China).
Immunohistochemistry staining

For IHC, paraffin-embedded kidney sections (3 µm) were

deparaffinized, rehydrated, blocked, and incubated with various

primary antibodies, including anti-CD68 (1:500, Boster

Biological Technology, Wuhan, China), anti-Nephrin (1:100,

Affinity Biosciences, Cincinnati, OH, USA), anti-TGF-b (1:500,

Abcam, Cambridge, UK), and anti-HIF1a (5 mg/mL, R&D

systems, Minneapolis, MN, USA) overnight at 4°C. Sections

were then washed with PBS containing 0.1% Triton and

incubated with HRP-conjugated secondary antibody (ZSGB

Biotechnology, Beijing, China) for 1 h at room temperature.

After the final wash with PBS/triton, sections were stained with

DAB (ZSGB Biotechnology, Beijing, China) substrate and

hematoxylin. The images of stained sections were acquired by

bright field microscope, and quantitative analysis of positive

staining areas (%) in images was done using ImageJ (National

Institutes of Health, Bethesda, MD). Identical staining without

the primary antibody was used as a negative control.
Cell culture

MPC5, a conditionally immortalized mouse podocyte clone 5

cell line was purchased from Cell Bank of the Chinese Academic of

Sciences (Shanghai, China) and cultured as previously described

(25). Briefly, cells were cultured in Dulbecco’s Modified Eagle

Medium (DMEM, Gibco, USA) supplemented with 10% fetal

bovine serum (FBS; Gibco, USA) in a humidified atmosphere at

37°C with 5% CO2. Cells were passaged at 33°C and treated with

10U/mL mouse recombinant interferon gamma (IFN-g). To
Frontiers in Endocrinology 04
induce podocyte differentiation, the temperature was increased

to 37°C and cells were cultured in medium without IFN-g for 14
days, after which subsequent experiments were performed.
Chromatin immunoprecipitation assays

The ChIP assay was performed using a commercial kit (ab500,

Abcam, Cambridge, UK) according to the manual instructions.

MPC5 cells were fixed with 1% formaldehyde for 10 min at room

temperature (25°C) for protein-DNA crosslinking. Subsequently,

cells were quenched by incubation with 125mMglycine for 5 min.

After washing with cold PBS, the cells were pelleted at 500 × g for

5 min at 4°C. The pellets were resuspended and lysed by adding 1

mL of cold lysis buffer containing protease inhibitor cocktail. Cell

lysates were then sonicated with Misonix S3000 Sonicator

(Farmingdale, USA). After centrifugation at 14,000 × g for 5

min at 4°C, chromatin supernatants were diluted with cold ChIP

dilution buffer. The antibody against BMAL1 (1µg, 14268-1-AP,

Proteintech, Wuhan, China), or normal IgG (1µg, ab171810,

Abcam, Cambridge, UK) was added and incubated at 4°C

overnight. The precipitates were washed. The chromatin

complexes were eluted. The DNA was purified and used as a

template for qPCR. The sequences of primers used for ChIP assays

are listed in Supplementary Table 1.
Statistical analysis

Statistical analysis was carried out using GraphPad Software

(San Diego, CA). All values are presented as mean ± SEM. The

significance of differences was determined by the use of a one-

way or two-way ANOVA followed by a Bonferroni post-hoc

analysis where appropriate. Differences were considered

significant when p<0.05.
Results

Effects of constant light exposure on
body weight and metabolic parameters

There were no significant differences in caloric intake or

weight gains during 16 weeks of feeding between the ND-LD and

ND-LL groups (Figures 1A, B). HFD-LL group had increased

body weights than the HFD-LD group from the 12th to the 16th

week of HFD feeding (Figures 1A, B). At the end of experiment,

kidney weight/body weight was lower in HFD-fed rats vs. ND-

fed rats [p (diet) <0.001] (Table 1). Body weight, lee’s index, and

visceral fat mass were significantly higher in the HFD-LL group

vs. the HFD-LD group, with the significant main effects of both

diet (p<0.001) and interactive effects between diet and light

(p<0.05) (Table 1). In ND-fed rats, constant light exposure
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FIGURE 1

Effects of constant light on calorie intake, body weight gains, intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT) and renal
function in rats. (A) Changes of calorie intake. (B) Changes of body weight gain. (C) IPGTT. (D) Area under the curve (AUC) of IPGTT. (E) ITT.
(F) AUC of ITT. (G, H) Serum creatinine (Scr) and blood urea nitrogen (BUN) at the end of the experiment. Values represent mean ± SEM (n=8).
Differences were determined using either a one-way ANOVA (A–C, E) or a two-way ANOVA followed by a Bonferroni post hoc analysis (D, F–H).
ap<0.05 vs. ND-LD group, bpp<0.05, vs. ND-LL group, cpp<0.05, vs. HFD-LD group. #p<0.05, ##p<0.01, vs. ND counterpart. *p<0.05, vs. LD
counterpart. p (diet), main effect of diet; p (light), main effect of light; p (light × diet), interaction effect of light and diet.
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caused an increase in serum TC levels. In HFD-fed rats, constant

light exposure led to a comparable increase in serum TC and

LDL-C levels. (Table 1).
Effects of constant light exposure on
glucose homeostasis

In ND-fed rats, ND-LL animals had significantly higher

blood glucose levels at 15min and 30 min than the ND-LD group

during the IPGTT. AUC for IPGTT was higher in ND-LL group

than that of ND-LD group [p (diet) <0.001; p (light) <0.01]

(Figures 1C, D). As for ITT, there were no statistical differences

in blood glucose levels or AUC-ITT between ND-LD and ND-

LL groups (Figures 1E, F).

IPGTT and ITT revealed impaired glucose tolerance and

greater insulin resistance in HFD-fed rats. Compared with the

HFD-LD group, HFD-LL rats had elevated blood glucose levels

at 15 min during IPGTT and higher AUC-IPGTT (Figures 1C,

D). ITT showed greater insulin resistance in HFD-LL vs. HFD-

LD group [p (diet) <0.001] (Figures 1E, F).
Effects of constant light exposure on
proteinuria, renal function and
glomerulopathy

At the 8th week of experiment, there was no significant

difference in urinary albumin excretion among groups. At the
Frontiers in Endocrinology 06
15th week, HFD-fed groups had significantly greater excretion

of proteinuria than ND-fed rats. Urinary albumin excretion

was significantly higher in the HFD-LL group vs. the HFD-LD

group [p (diet) <0.001; p (light) <0.05] (Figure 2A). At the end

of experiment, ND-LL, HFD-LD and HFD-LL groups had

higher concentration of serum creatinine than the ND-LD

group. In HFD-fed rats, HFD-LL group displayed higher

serum BUN than HFD-LD group [p (diet) <0.001; p (light)

<0.01] (Figures 1G, H).

Pathologically, ND-LL ras manifested glomerular hypertrophy

(Figure 2B), and had slightly higher glomerular injury scores than

ND-LD rats (Figure 2D). In HFD-fed rats, glomerular mesangial

expansion and glomerular basement membrane thickening were

observed. And these changes were more severe in HFD-LL rats vs.

HFD-LD rats (Figure 2B). In HFD-fed rats, transmission electron

microscopy revealed irregular shapes with flattened foot processes

and some areas of effacement in podocytes, and these changes were

aggravated in HFD-LL rats (Figure 2C). In line, HFD resulted in

higher glomerular injury scores, with even higher glomerular injury

scores in HFD-LL vs.HFD-LD rats (Figure 2D). Main effects of diet

(p<0.001) and light (p<0.01), as well as diet × light interactive effect

(p<0.05) were observed for glomerular injury scores. In addition, a

significant elevation of PAS-positive matrix was also noted in HFD-

fed groups vs. ND-fed groups [p (diet) <0.001] (Figure 2E).

Expression of nephrin, the key structural molecule of the

glomerular filtration barrier (26), was decreased in HFD-fed rats,

with HFD-LL rats displayed even lower expression of nephrin than

HFD-LD rats [p (diet)<0.001; p (light) <0.01] (Figure 2F).
TABLE 1 Characteristics of rats in each group at the end of experiment.

Parameters Group 2-Way ANOVA Statistics

ND-LD ND-LL HFD-LD HFD-LL

n 8 8 8 8

Body weight (g) 600.50 ± 6.85 579.90 ± 16.90 641.96 ± 17.52a,b 695.64 ± 16.02a,b,c p (diet) <0.001 p (diet × light) < 0.05

Lee’s index 295.68 ± 2.59 290.8 ± 2.58 309.48 ± 3.18a,b 319.67 ± 1.90a,b,c p (diet) <0.001 p (diet × light) < 0.05

Visceral fat mass (g) 31.57 ± 4.79 28.46 ± 3.40 50.74 ± 3.25a,b 66.16 ± 2.65a,b,c p (diet) <0.001 p (diet × light) < 0.05

Visceral fat mass/body weight ratio
(×10-2)

5.59 ± 0.48 4.99 ± 0.61 7.73 ± 0.76a,b 9.27 ± 1.07a,b,c p (diet) <0.001

Kidney weight (g) 3.57 ± 0.10 3.45 ± 0.13 3.64 ± 0.10 3.74 ± 0.14 ns

Kidney weight/body weight ratio
(×10-3)

6.05 ± 0.13 6.13 ± 0.24 5.70 ± 0.08a 5.55 ± 0.15a,b p (diet) <0.001

TG (mmol/L) 0.77 ± 0.12 0.60 ± 0.14 0.92 ± 0.09 0.84 ± 0.18 ns

TC (mmol/L) 1.42 ± 0.09 1.59 ± 0.11a 1.85 ± 0.19a,b 2.16 ± 0.19a,b,c p (diet) < 0.001 p (light) <0.05

HDL-C (mmol/L) 0.85 ± 0.06 0.90 ± 0.06 0.63 ± 0.04a,b 0.66 ± 0.05a,b p (diet) < 0.001

LDL-C (mmol/L) 0.49 ± 0.05 0.56 ± 0.04 0.84 ± 0.09a,b 1.05 ± 0.07a,b,c p (diet) <0.001 p (light) <0.05

FFA (mmol/L) 0.46 ± 0.06 0.43 ± 0.08 0.45 ± 0.05 0.48 ± 0.03 ns

TNF-a (pg/mL) 9.40 ± 0.11 9.62 ± 0.07 13.40 ± 0.30a,b 16.67 ± 0.33a,b,c p (diet) <0.001 p (light) <0.001 p (diet × light) <0.001

IL-6 (pg/mL) 26.82 ± 1.65 40.26 ± 2.75a 46.26 ± 2.21a 70.01 ± 2.10a,b,c p (diet) <0.001 p (light) <0.001 p (diet × light) < 0.05
Values are mean ± standard error of the mean (SEM). Differences were determined using a two-way ANOVA followed by a Bonferroni post hoc analysis. ap<0.05, vs. ND-LD group,
bp<0.05, vs. ND-LL group, cp<0.05 vs. HFD-LD group. p (diet), main effect of diet; p (light), main effect of light; p (light × diet), interaction effect of light and diet. Lee’s index, evaluation for
the obese degree of rats; TG, triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; FFA, free fatty acid; TNF-a, tumor
necrosis factor-alpha; IL-6, interleukin-6.
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FIGURE 2

Effects of constant light exposure on urinary albumin exertion and glomerulopathy in rats. (A) 24-h urinary albumin excretion at 8th and 15th

week of experiment in rats. (B) Representative images of HE staining and PAS staining of glomeruli (magnification, 40×) as indicated. Scale
bar=10mm. (C) Representative transmission electron microscopic (TEM) images of glomeruli as indicated. Scale bar = 2mm. (D) Glomerular injury
scores. (E) Densitometric analyses of PAS staining. (F) Renal expression of nephrin by IHC and semi-quantification analysis. Values represent
mean ± SEM (n=8 for A, D–F). Differences were determined using a two-way ANOVA followed by a Bonferroni post hoc analysis. ##p<0.01,
###p<0.001, vs. ND counterpart. *p<0.05, **p<0.01, vs. LD counterpart. p (diet), main effect of diet; p (light), main effect of light; p (light × diet),
interaction effect of light and diet.
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Visceral fat was positively correlated with urinary albumin

concentration (r = 0.812, p<0.001) and glomerular injury score

in HFD-fed rats (r = 0.806, p<0.001). However, there were no

relationships noted between visceral fat mass and urinary

albumin concentration, or glomerular injury scores in ND-fed

rats (p>0.05).
Effects of constant light exposure on
renal inflammation in rats

HFD-fed rats had significantly higher serum TNF-a and IL-6

levels than ND-fed rats. Constant light exposure further increased

serum TNF-a and IL-6 levels in HFD-fed rats, with significant

main effects of diet (p<0.001) and light (p<0.001) noted, as well as

an interactive effect between diet and light (p<0.05) (Table 1).

Renal mRNA expressions of IL-6 and IL-1b were significantly

higher in the HFD-LL vs. HFD-LD group (Figures 3A–C). Main

effects of diet (p<0.001) and light (p<0.05), as well as interactive

effect between diet and light (p<0.01) were observed for mRNA

levels of IL-6 gene (Figure 3B). CD68 is regarded as a marker of

macrophage infiltration (27). A significantly higher number of

CD68-positive macrophages was observed in HFD-fed rats vs.

ND-fed rats. In ND-fed rats, ND-LL group had increased

infiltration of CD68-positive cells than ND-LD group.

Similarly, in comparison to the HFD-LD group, renal CD68-

positive macrophages in the HFD-LL group was significantly

higher [p (diet) <0.001; p (light) <0.001] (Figure 3D).
Effects of constant light exposure on
renal fibrosis in rats

Masson’s trichrome staining illustrated marked fibrotic

lesions in the kidneys of HFD-fed rats. These lesions were

more severe in HFD-LL rats vs. HFD-LD rats (Figure 4A).

Consistent with this, densitometric analyses showed that in the

HFD-LL group, the positive area of Masson’s trichrome staining

was significantly more concentrated than the HFD-LD group [p

(diet) <0.001; p (light) <0.001] (Figure 4B). TGF-b, with its target
gene CTGF plays a key role in the development of renal fibrosis

(28). We found significantly greater expression of TGF-b in

renal tissue of HFD-fed rats, while the HFD-LL group had

higher expression of TGF-b than the HFD-LD group [p (diet)

<0.001; p (light) <0.05] (Figure 4C). These findings were further

verified by western blots [p (diet) <0.001; p (light) <0.05]

(Figure 4D). In addition, HFD feeding induced a marked

increase in CTGF expression, with even higher expresions in

the HFD-LL vs. HFD-LD groups (Figure 4E).

Collectively, these data demonstrated that constant light

exposure exacerbates renal dysfunction, proteinuria,

glomerulopathy, renal inflammation, and fibrosis in HFD-

fed rats.
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Effects of constant light exposure on
renal expression of HIF1a and PHD
proteins in rats

The HIF1a pathway is a key regulator of renal fibrosis (29).

NADPH oxidase 4 (NOX4) is the major NADPH isoform in

kidney (30). Evidence shows that Nox4 interplays with HIF1a
and plays a critical role in various renal diseases (31–33). In ND-

fed rats, HIF1a and NOX4 mRNA expression showed no

significant difference between ND-LL and ND-LD group

(Figures 5A, B). ND-LL group had increased HIF1a than ND-

LD group at protein level (Figures 5C, D). Among HIF1a
hydroxylation enzymes, PHD2 (Egln1) mRNA expression were

significantly lower in ND-LL group vs. ND-LD group.

In comparison to the ND-LD group, we found a significant

increase of HIF1a and NOX4 mRNA expression in HFD-fed

groups. Further, these elevated expressions were exacerbated by

constant light exposure in HFD-fed rats (Figures 5A, B). There were

significant main effects of diet (p <0.001) and light (p<0.05), as well

as diet × light interactive effect (p<0.01) for both HIF1a and NOX4

mRNA expression (Figures 5A, B). The upregulation of HIF1a
protein expression was verified by IHC and WB assays (Figures 5C,

D). Renal mRNA expressions of PHD1 (Egln2) and PHD2 (Egln1)

were significantly decreased in HFD-fed rats, which was also verified

by WB assays. Further, there was a significant decrease in renal

mRNA expression of PHD1 (Egln2) in HFD-LL group vs. HFD-LD

group [p (diet) <0.001; p (light) <0.05] (Figures 5E, F).
Changes of renal circadian clock genes

Renal mRNA expression of clock genes at the time of

sacrifice was assessed by real-time PCR. Increased Rev-erb,

Cry1, Dbp, and decreased Per1 and Ror-a mRNA expressions

were detected in the ND-LL group vs. the ND-LD group.

Compared with ND-LD rats, decreased expression of Clock

mRNA were shown in HFD-LD rats. The expression of Bmal1,

Per1 and Ror-a were decreased, while Rev-erba, Cry1 and Dbp

were elevated in the HFD-LL vs. the HFD-LD group (Figure 6).

The Na(+)/H(+) exchanger 3 (NHE3), which responsible for

a majority of sodium reabsorption in the proximal tubule, is

critical for systemic electrolyte and acid-based homeostasis (11).

Expression of NHE3 mRNA was increasd in the ND-LL vs. ND-

LD group. Increased NHE3 expression was observed in the

HFD-LL vs. HFD-LD group (Figure 6).
ChIP-qPCR assays of BMAL1/CLOCK on
HIF1a and Egln1/2 promoters in
podocytes (MPC5)

To determine whether or not there is a direct transcriptional

regulation of HIF1a and Egln1/2 by circadian clock molecules,
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we looked for potential enhancer boxes (E-boxes) in their

promoters. Human and mouse HIF1a (Figure 7A), Egln1

(Figure 7B) and Egln2 (Figure 7C) promoters contain one to

three E-boxes. To test if BMAL1/CLOCK binds to any of these

boxes, we conducted ChIP-qPCR assays in MPC5 cells. The

ChIP-qPCR results revealed that BMAL1 bound directly to the

promoter of PHD1 (Egln2) (Figure 7D).
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Discussion

With growing adoption of artificial light sources, light pollution

is increasing by approximately 6% per year worldwide (34).

Consequently, light pollution is expected to rise dramatically in

the next several decades through more urban development, such as

street lightening, security lightening, and vehicles lighting (35).
B

C

D

A

FIGURE 3

Constant light exposure promotes renal inflammation in HFD-fed rats. (A–C) Renal mRNA expression of TNF-a, IL-6 and IL-1b in rats. (D) IHC
staining of CD68 and quantification of CD68+ macrophages. Values represent mean ± SEM (n=6 for A–C, n=8 for D). Differences were
determined using a two-way ANOVA followed by a Bonferroni post hoc analysis. #p<0.05, ##p<0.01, ###p<0.001, vs. ND counterpart. *p<0.05,
**p<0.01, vs. LD counterpart. p(diet), main effect of diet; p (light), main effect of light; p (light × diet), interaction effect of light and diet.
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FIGURE 4

Effects of constant light on renal fibrosis in rats. (A) Renal masson’s trichrome staining (40×). Scale bar=10mm. (B) Densitometric analyses of
Masson’s trichrome staining. (C) IHC staining of renal TGF-b and semi-quantification analysis. (D) Western blot assays of TGF-b expression in kidney
tissues. (E) Immunofluorescence staining of CTGF in kidney tissues. Values represent mean ± SEM (n=8 for B, n=6 for C, n=3 for D). Differences
were determined using a two-way ANOVA followed by a Bonferroni post hoc analysis. #p<0.05, ##p<0.01, ###p<0.001, vs. ND counterpart.
*p<0.05, vs. LD counterpart. p (diet), main effect of diet; p (light), main effect of light; p (light × diet), interaction effect of light and diet.
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FIGURE 5

Effects of constant light exposure on renal expression of HIF1a, NOX4 and PHD. (A, B) qPCR analysis of mRNA levels of HIF1a and NOX4 in
renal tissues of rats. (C) IHC staining of renal HIF1a and semi-quantification analysis. (D) Western blot assays of HIF1a expression in renal tissues.
(E) Western blot assays of PHD1 and PHD2 expression in the renal tissues. (F) qPCR analysis of mRNA levels of PHD1 (Egln2), PHD2 (Egln1), and
PHD3 (Egln3) in the kidney. Values represent mean ± SEM (n=6 for A, B and F, n=8 for C). Differences were determined using a two-way
ANOVA followed by a Bonferroni post hoc analysis. #p<0.05, ##p<0.01, ###p<0.001, vs. ND counterpart. *p<0.05, **p<0.01, vs. LD counterpart.
p (diet), main effect of diet; p (light), main effect of light; p (light × diet), interaction effect of light and diet.
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However, consequences of light pollution remain largely unknown.

Obesity is a major risk factor for renal disease progression and can

cause de novo glomerulopathy (4). In the present experiment, we

found that chronic constant light exposure potentiates progression

of HFD-induced obesity and renal injury in rats. Compared with

HFD-LD rats, HFD-LL rats have more severe renal dysfunction,

proteinuria, glomerulomegaly, renal inflammation, and

glomerulosclerosis. It suggests that light pollution is a novel risk

factor for the development of obesity-related renal injury. To the

best of our knowledge, this is the first report that links light

pollution to kidney diseases.

In normal chow fed rats, we did not observe obvious effects

of constant light exposure on proteinuria, glomerulopathy and

renal fibrosis. This coincides with the notion that adverse effects

of light pollution become more apparent if the animal is

challenged with second physiological insult. For example, we

recently showed that HFD-fed rats exposed to constant light

exposure had exacerbated inflammation and steatohepatitis (17).

Similarly, when challenged with constant light exposure, ApoE-/-

mice exhibit exacerbated dyslipidemia and atherosclerosis (36).

However, our study in ND-fed rats found that the ND-LL group

had higher TC levels, blood glucose, serum IL-6 and renal CD68

positive cells infiltrations, which may indicate detrimental effects

of constant light exposure on metabolisms and chronic

inflammation status. Also, glomerular hypertrophy and slightly

higher glomerular injury scores may suggest early kidney injury

in ND-LL rats.

The link between visceral adiposity and renal diseases is

well-established. In a cohort of over 20000 adult participants in

the Reasons for Geographic and Racial Differences in Stroke

(REGARDS) Study, higher waist circumference was significantly

associated with increased risk of developing ESRD, with those in

the highest category of waist circumference demonstrating a

four-fold higher hazard rate after adjusting for body mass index

(BMI). However, after adjusting for waist circumference, no

association between BMI and ESRD incidence was apparent. It

suggested that central adiposity lies in the causal pathway
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between obesity and CKD (37). In the present study, we found

that HFD-LL rats have more severe visceral adiposity. We found

a consistent, significant positive correlation of visceral adipose

mass with proteinuria and glomerular injury score in HFD-fed

rats. Visceral obesity negatively impacts kidney function directly

and indirectly, with the latter resulting from associated

complications, such as hypertension, diabetes, hyperlipidemia.

More importantly, adipose tissue could release a series of

adipokines, such as TNF-a, IL-6, IL-1b, and promote chronic

low-grade inflammation in obese patients (38). Our study found

that constant light exposure significantly upregulated

proinflammatory cytokines including TNF-a, IL-6, and IL-1b
in HFD-fed rats. Renal fibrosis is linked tightly to inflammation.

In this regard, TNF-a drives the activation of profibrotic

cytokine TGF-b and accumulation of extracellular matrix in

diabetic nephropathy (39). Paralleled with renal fibrosis

progression, we showed a concomitant increasing expression

of TGF-b and CTGF in HFD-LL rats as well.

Studies suggest that activation of HIF1a signaling pathways

play a pivotal role in renal fibrosis in various kidney diseases

(40). For example, Kimura and colleagues found that injection of

a pharmacologic HIF1a inhibitor decreased renal fibrosis in

unilateral ureteral obstruction model (41). In rat angiotensin II-

induced renal injury and chronic ischemic renal injury, the

increase of fibrotic proteins (a-smooth muscle actin and

collagen) was blocked by HIF1a shRNA (42). Furthermore,

HIF1a has been demonstrated to drive the expression of the

pro-fibrotic cytokines TGF-b and CTGF during hypoxia (43).

Likewise, we observed accumulation of HIF1a protein

associated with enhanced TGF-b and CTGF expression in

HFD-LL rats which may explain the aggravation of renal

fibrosis as a result.

HIF1a is regulated via both transcriptional and post-

translational mechanisms (44). In ND-fed rats, increased

HIF1a expression in ND-LL rats was found only at protein

level, while in HFD-fed rats, HIF1a expression was increased at

both mRNA and protein levels in HFD-LL rats. It suggests that
FIGURE 6

Changes in expression of clock genes in kidneys of rats. Quantitative PCR analysis of mRNA levels of renal circadian clock genes respectively.
Values represent mean ± SEM (n=6-8). Differences were determined using a one-way ANOVA followed by a Bonferroni post hoc analysis.
a1p<0.05, a2p<0.01, a3p<0.001 vs. ND-LD group; b1p<0.05, b2p<0.01, b3p<0.001 vs. ND-LL group; c1p<0.05, c2p<0.01, c3p<0.001 vs. HFD-LL
group. Bmal1, brain and muscle ARNT-like protein 1; Per1, period circadian regulator 1; Cry1, cryptochrome circadian regulator 1; Ror-a, RAR-
related orphan receptor-a; DBP, D site albumin promoter binding protein; NHE3, Na+/H+ exchanger 3.
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constant light exposure (light pollution) affects HIF1a thought

different mechanisms under ND and HFD, i.e. constant light

exposure increased HIF1a at post-translational level in ND-fed

rats, while in HFD-fed rats, at both transcriptional and post-

translational levels.

At transcriptional levels, HIF1a gene has been reported to be

directly regulated by molecular clocks (45). HIF1a gene has an

E-box at its promoter region and the direct binding of BMAL1/

CLOCK to the HIF1a promoter has been reported by ChIP

assays in U2OS cells (45). However, in Huh7 cells, CLOCK

overexpression had no effect on HIF1a levels (46), indicating
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that the transcriptional effects of molecular clocks on HIF1a
may be cell or tissue-type dependent. In the present study, in a

podocyte cell line (MPC5), the ChIP assays did not demonstrate

a direct binding of BMAL1 to HIF1a, but revealed that BMAL1

bound to the promoter sites of PHD1, one of HIF1a
hydroxylases. It indicates that molecular clocks regulate HIF1a
post-translationally at the level of protein stability in podocytes.

Translational mechanisms of constant light exposure on renal

HIF1a in HFD rats need further study. Constant light exposure

sometimes is inevitable, e.g. shift workers, medical staff, et al.

Thus, HIF1a inhibition, through activation of PHDs, can be
B

C

D

A

FIGURE 7

ChIP-qPCR assays of BMAL1/CLOCK on HIF1a and Egln1/2 promoters in podocytes (MPC5). (A) Human HIF1a and mouse Hif1a promoter both
contain one E-box. (B) Human PHD2 (gene EGLN1) and mouse PHD2 (gene Egln1) promoter both contain one E-box. (C) Human PHD1 (gene
EGLN2) and mouse PHD1 (gene Egln2) promoter both contain three E-boxes. (D) Enrichment of BMAL1 was evaluated by quantitative PCR of
immunoprecipitated DNA compared with input DNA (% of input). Immunoglobulin G (IgG) was used as a negative control. Values represent
mean ± SEM. Differences were determined using two-tailed Student t-test. **p<0.01.
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used as an intervention therapy for ORG progression caused by

circadian disruption.

Although there are important discoveries revealed by our

studies, there are some limitations to note. Firstly, we only used

male SD rats in our experiment. There are sex differences in

prevalence, risk factors, and mechanisms of CKD (47),

highlighting the importance of sex differences in kidney

diseases. Yet, the effects of light pollution on female subjects is

unknown. Secondly, we only detected renal expressions of clock

genes at the time of sacrifice. Our findings suggested circadian

disruptions, but rhythmic changes of renal clock genes, as well as

changes in daily activity rhythms, may be more reliable

assessments for circadian disruptions (48). Thirdly, our

experiments indicated that HIF1a signal pathway was involved

in the detrimental effects of constant light exposure. However,

constant light exposure could promote progression of renal

injuries in multiple mechanisms and pathways. Indeed, it has

been reported that chronic light exposure influences blood

pressure and cause changes of renin-aldosterone system (RAS)

(49), which may also affect kidney functional parameters

profoundly. Also, the involments of HIF1a pathway do not

necessarily imply a direct cause and effect relationship. Further

studies are needed to clarify these issues. Fourthly, the light

intensity used in our study was 200 lux and the illumination

wavelength were 400∼560 nm. Different experimental results

may occur when the light intensity changes. Wavelength

composition varies throughout the day and studies have

shown that spectral variations have very distinct impacts on

different circadian, behavioral and physiological responses (50).

This suggests that illumination with different wavelengths may

have varying effects.
Conclusion

In conclusion, lifestyle factors associated with circadian

disruption and obesity are becoming commonplace in today’s

societies. For the first time, the present study demonstrates that

circadian disruption by constant light exposure promotes

progression of HFD-induced renal injury in SD rats, and

provides a potential mechanism in which HIF1a signaling

pathway is involved. This data may have implications for

devising novel strategies for prevention and treatment of

obesity-related kidney disease in the future.
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