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Follicular helper T (Tfh) cells are the specialized CD4+ T cell subset that supports B cells to 
produce high-affinity antibodies and generate humoral memory. Not only is the function 
of Tfh cells instrumental to mount protect antibodies but also to support autoantibody 
production and promote systemic inflammation in autoimmune diseases. However, 
it remains unclear how the activation of Tfh cells is driven in autoimmune diseases. 
Here, we report that in patients with rheumatoid arthritis (RA), excessive generation of 
CXCR5+PD-1+ memory Tfh cells was observed and the frequency of memory Tfh cells 
correlated with disease activity score calculator for RA (DAS28). The differentiation of 
Tfh cells is dependent on signal transducer and activator of transcription 3 (STAT3), the 
key transcription factor downstream of cytokine signal pathways. A drastic increase of 
phosphorylated STAT3 (pSTAT3) in CD4+ T cells were detected in RA patients who also 
produced larger amounts of STAT3-stimulating cytokines, including IL-6, IL-21, IL-10, 
and leptin than those of healthy controls. Importantly, the phosphorylation status of 
STAT3 in CD4+ T cells positively correlated with the plasma concentration of IL-6 and the 
frequency of memory Tfh cells. This study reveals an IL-6-pSTAT3-Tfh immunoregulatory 
axis in the pathogenesis of RA and reinforces its candidature as biomarkers and targets 
for diagnosis and therapy.

Keywords: rheumatoid arthritis, patient, follicular helper T cells, signal transducer and activator of transcription 3,  
phosphorylation, il-6
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Table 1 | Demographics and clinical data of the study cohorts.

characteristic Value

healthy controls

Female/male, n 22/8

Age, median (range) 55 (18–73)

Patients with rheumatoid arthritis
Female/male, n 25/6
Age, median (range) 60 (22–83)
Disease duration (year), median (range) 1 (0–10)
RF, n (%) 25 (81%)
Anti-CCP, n (%) 26 (84%)
DAS28, median (range) 4.92 (1.27–7.88)

Remission (<2.6), n (%) 4 (13%)
Low activity (2.6–3.2), n (%) 1 (3%)
Medium activity (3.2–5.1), n (%) 11 (35%)
High activity (>5.1), n (%) 15 (48%)

CRP (mg/L), median (range) 4.0 (<0.5–106.2)
ESR (mm/h), median (range) 29 (4–84)
WBC (×109/L) 6.5 (3.5–12.0)
Medication, n (%)

Glucocorticoids 18 (58%)
DMARDs 24 (77%)

RF, rheumatoid factor; Anti-CCP, anti-cyclic citrullinated peptide; DAS28, disease 
activity score 28; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; WBC, 
white blood count; DMARDs, disease-modifying anti-rheumatic drugs.
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inTrODUcTiOn

Rheumatoid arthritis (RA) is a chronic and immune-mediated 
arthritis that affects up to 1% of the population. It is characterized 
by synovial inflammation and hyperplasia as well as cartilage and 
bone destruction (1). Although the name “arthritis” speaks for 
itself that local tissue remodeling and damage represent the major 
pathology of RA, the systemic activation of the immune system 
is instrumental for the disease pathogenesis (1–3). Prior to the 
onset of clinical disease, increased generation of effector CD4+ 
T cells, elevated production of pro-inflammatory cytokines, and 
the presence of anticitrullinated protein antibodies (ACPAs) can 
usually be detected in blood, therefore, being termed as the “pre-
rheumatoid arthritis” phase (4).

Follicular helper T (Tfh) cells are a functional CD4+ T cell 
subset that is specialized to support B cells to generate long-
lived plasma cells and memory B cells and to produce high-
affinity antibodies. By upregulating the chemokine receptor 
CXCR5, Tfh cells selectively migrate into B-cell follicles and 
help B cells through the expression of costimulatory receptors 
including CD40L and OX40 and the secretion of cytokines 
such as IL-21 (5). The critical role of excessive Tfh cells in 
the induction of systemic inflammation and the development 
of autoimmune diseases has been proven by many mouse 
models (5–8). For RA, there is also accumulated evidence to 
support a significant contribution of Tfh cells to the devel-
opment of RA. First, the dependence of Tfh cells has been 
extensively studied in mouse models. In the commonly used 
collagen-induced arthritis model, upon the immunization of 
collagen, CD4+ T  cells differentiate into Tfh cells to initiate 
the pathogenic anti-collagen antibody responses (9, 10). In 
the K/BxN autoimmune arthritis model [KRN T cell receptor 
transgenic mice on the C57BL/6 (B6) background  ×  non-
obese diabetic mice], KRN T  cells recognize self-antigen 
glucose-6-phosphate isomerase (GPI) and differentiate into 
Tfh cells to promote B cells to produce anti-GPI autoantibod-
ies (11–14). Importantly, blocking of Tfh cell generation was 
able to prevent the development of diseases in these mouse 
models. Second, there is a strong involvement of B  cells in 
human RA pathogenesis. The production of high-affinity IgG 
and IgA antibodies against citrullinated, carbamylated, and 
acetylated proteins is likely also dependent on Tfh cells (2). 
Third, several studies including ours have reported excessive 
Tfh differentiation and function in RA patients as compared to 
healthy controls (15–19). The association between increased 
circulating Tfh cells and the presence of high-titer ACPAs and 
disease activity again suggested a pathogenic role of Tfh cells 
in RA. The pressing question that remains to be unanswered is 
the causation of the aberrant Tfh activation in RA.

The development of Tfh cells is driven by signallings via 
T  cell receptors through sustained antigen stimulation and 
co-receptors including CD28 and inducible T-cell costimulator 
(ICOS). The cytokine milieu also shapes the Tfh differentia-
tion. IL-6 and IL-21 induce the activation of signal transducer 
and activator of transcription 3 (STAT3) and promote the 
differentiation of mouse Tfh cells (5). For human Tfh cells, 
additional cytokines including STAT4-stimulating IL-12 and 

SMAD2/3-stimulating TGFβ and Activin A were reported to 
also contribute (5, 20, 21). The activation of STAT3 is essential 
as the capability of Tfh differentiation was greatly impaired in 
STAT3-deficient mice (22) and patients carrying functional 
STAT3 deficiency (23). STAT3 has a strong implication in 
autoimmune diseases. Monogenic activating STAT3 mutations 
were identified in individuals with a spectrum of early-onset 
autoimmune disease including juvenile-onset arthritis (24). 
The involvement of the activation of STAT3 and RA was 
also supported by studies showing enhanced expression of 
phosphorylated STAT3 (pSTAT3) and STAT3-inducible gene 
signature in RA patients (25–28). We, therefore, speculated 
that the hyperactivation of the STAT3 signaling may lead to 
abnormal Tfh differentiation in RA patients.

In this study, we examined and confirmed the excessive Tfh 
function in RA patients, shown by the increased frequency of 
circulating memory Tfh cells and its correlations with disease 
activity. We found a drastic enhancement of STAT3 phospho-
rylation in CD4+ T cells in RA patients and the activation status 
of STAT3 positively correlated with the generation of Tfh cells. 
Major STAT3-stimulating cytokines including IL-6, IL-21, IL-10, 
and leptin were increased in RA patients and thus contributed to 
the STAT3 hyperactivation.

resUlTs

characteristics of the study subjects
The demographic characteristics of healthy individual con-
trols and patients with RA are shown in Table  1. Thirty-one 
RA patients including 25 females and 6 males participated  
the study. Their median age was 60 years. The disease activities 
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FigUre 1 | Increased follicular helper T (Tfh) cell differentiation in patients with rheumatoid arthritis (RA). Peripheral blood mononuclear cells from RA patients and 
healthy control individuals (HC) were analyzed by flow cytometry. (a) FACS plots showing the gating of ZA− TCRab+ CD4+ viable CD4+ T cells for Treg (CD25high) and 
conventional CD4+ T cell subsets: naïve (CD25−CD45RA+CD62L+), Th1 (CD25−CD45RA−CXCR3+CCR6−CCR4−), Th2 (CD25−CD45RA−CXCR3−CCR6−CCR4+), Th17 
(CD25−CD45RA−CXCR3−CCR6+CCR4+), and Tfh (CD25−CD45RA−CXCR5+PD-1+). (b) Statistics showing the percentages of CD4+ T cell subsets in total CD4+ 
T cells. Each dot represents the value of an individual subject with columns showing the mean values of each group. The p-values were obtained using Student’s 
t-tests.
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of the patient cohort ranged from remission (the disease acti-
vity score-28, DAS28 < 2.6) to high (DAS28 > 5.1), with the 
median value of 4.92. Four naïve patients had no treatment 
history. The rest patients were treated with low dose of glu-
cocorticoids and/or disease-modifying anti-rheumatic drugs. 
Those with a treatment history with high-dose glucocorticoids  
(>10  mg/day) or biologics within the past 6  months were 
excluded from the study.

increased Tfh cell Differentiation in ra 
Patients correlated Disease activity
CD4+ T cells play an important role in the pathogenesis of RA  
(1–3, 29) but very few efforts have investigated all major CD4+ T cell  
subsets in a single study. Using multicolor flow cytometry, the  
frequencies of Treg (CD25high) and conventional CD4+ subsets  
including naïve (CD25−CD45RA+CD62L+), Th1 (CD25−CD45RA− 
CXCR3+CCR6−CCR4−), Th2 (CD25−CD45RA−CXCR3−CCR6− 

CCR4+), Th17 (CD25−CD45RA−CXCR3−CCR6+CCR4+), and Tfh  
(CD25−CD45RA−CXCR5+PD-1+) subsets in CD4+ T cells were  
analyzed simultaneously (30) (Figure 1A; Figure S1 in Supplementary 
Material). The comparison between these subsets in healthy 
individuals and RA patients revealed a significantly higher fre-
quency of Tfh cells in RA patients, increasing from an average 
of 1.6% in the controls to 2.6% in RA patients (Figure 1B). On 
the contrary, we did not observe any significant difference for 
other CD4+ T cell subsets between healthy individuals and RA 
patients. We also examined the potential correlations between 

the frequencies of CD4+ T  cell subsets and disease activities 
as measured by DAS28. Again, only Tfh cells’ frequency, but 
not others’ showed a positive correlation with DAS28 values 
(p-value = 0.005) (Figure 2). The increase of the Tfh activation 
and the correlation between the aberrant Tfh differentiation and 
RA disease activity support the notion that Tfh cells participate 
in the pathogenesis of RA.

hyperactivation of sTaT3 in cD4+ T cells 
correlated With Tfh Differentiation in ra 
Patients
The increase of Tfh cells in RA was reported in previous stud-
ies (15–19) and confirmed in our cohort. However, the reason 
that caused such immune dysregulation remained unknown. 
We hypothesized the constitutive activation of STAT3 in RA 
(25–28) could promote the Tfh differentiation since STAT3 is 
pivotal for the generation of Tfh cells (5). We took the advantage 
of Phosflow to quantify the phosphorylation of STAT3 in CD4+ 
T  cells. We could detect substantial expression of pSTAT3 in 
CD4+ T  cells but not in B  cells (Figure  3A). Importantly, the 
expression of pSTAT3 in CD4+ T cells from RA patients (mean 
value: 27.0%) was 2.4-fold higher than that of CD4+ T cells from 
healthy controls (mean value: 11.4%) (p = 0.002) (Figure 3B). 
We did not detect any difference of pSTAT3 expression in B cells 
between the two groups. We further analyzed the expression on 
pSTAT3 in each CD4+ T cell subset as shown in Figure 1A. To 
our surprise, all CD4+ T  cell subsets had significantly higher 
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FigUre 2 | Increased follicular helper T (Tfh) cell differentiation correlates with rheumatoid arthritis (RA) disease activity. The percentages of CD4+ T cell subsets in 
the peripheral blood mononuclear cells from patients with RA were analyzed as Figure 1. The correlation between the frequencies of these subsets and the disease 
activities measured by DAS28 were determined using Spearman’s correlation coefficient.
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level of pSTAT3 in RA patients than those in HC (Figure 3C). 
There was an approximate twofold increase of pSTAT3 in each 
of CD4+ T cell subsets in RA as compared to those in healthy 
controls (Figure 3D).

We then asked whether the phosphorylation of STAT3 
associated with the generation of Tfh cells or other CD4+ 
T cell subsets in RA. By analyzing the relationship between the 
pSTAT3 expression in total CD4+ T cells and the frequencies of 
CD4+ T cell subsets, we could only detect a modest but signifi-
cant correlation between the status of STAT3 phosphorylation 
in CD4+ T  cells and the Tfh generation (p-value  =  0.047) 
(Figure 4A). Intriguingly, we also detected a specific correla-
tion of between STAT3 phosphorylation in CD4+ T cells and 
Tfh frequencies in HC (Figure S2 in Supplementary Material). 
It was possible that the differentiation of each CD4+ T  cells 
might be more specifically affected by the phosphorylation 
of STAT3 in their own. To test this, we performed a similar 
study to examine the relationship between the pSTAT3 expres-
sion in individual CD4+ T  cell subset and their frequencies. 
The STAT3 phosphorylation showed no correlation with the 
frequencies of naïve, Treg, Th1, Th2, or Th17 cells. The cor-
relation with Tfh cells, nevertheless, became more obvious 
(p-value = 0.009) (Figure 4B). The results strongly suggest the 
hyperactivated STAT3 drove the Tfh differentiation in patients 
with RA.

In addition to dissecting a role of the STAT3 pathway in 
regulating CD4+ T cell differentiation, we also tested whether the 
status of STAT3 phosphorylation might affect the disease sever-
ity. We found a clear correlation between patients’ disease activi-
ties and the pSTAT3 expression, not only in total CD4+ T cells 

(Figure 5A) but also in each CD4+ T cell subsets (Figure 5B). 
This indicates the contribution of STAT3 hyperactivation to RA 
is not limited to a specific CD4+ T  cell population, but rather 
broad.

sTaT3-stimulating cytokines Were 
elevated in ra Patients
Cytokines IL-6, IL-10, IL-21, and leptin can activate STAT3 
phosphorylation in CD4+ T cells (31, 32). Could these cytokines 
induce the enhanced STAT3 phosphorylation in RA patients? We 
first measured the production of these cytokines in RA patients’ 
plasma. Results by ELISA demonstrated upregulated production 
of all four cytokines with the most prominent increase for IL-6: a  
7.3-fold upregulation from 6.6 ± 1.1 pg/mL in healthy individuals 
to 48.06 ± 8.9 pg/mL in RA patients (Figure 6A). The increase 
for IL-10, IL-21, and leptin was about twofold (Figures 6B–D). 
To define the contribution of the elevated pro-inflammatory 
cytokines to the hyperactivation of STAT3 and the disease 
activities, we analyzed the relationship between cytokine levels 
and the disease activity DAS28 or the pSTAT3 expression. IL-6 
levels significantly correlated with DAS28 (p-value = 0.006) and 
pSTAT3 (p-value  <  0.001) (Figure  7A). Other cytokines also 
showed general trends for positive correlations but not significant 
(Figures 7B–D). These results spotlight a central role of IL-6 in 
inducing pSTAT3 in CD4+ T cells and for the development of the 
disease. We also test whether there was a relationship between 
the Tfh frequency and any of these STAT3-stimulating cytokines 
but could not identify any substantial link. We thus conclude 
that although the Tfh differentiation in RA patients is critically 
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FigUre 3 | Constitutive phosphorylation of signal transducer and activator of transcription 3 (STAT3) in CD4+ T cells from patients with rheumatoid arthritis (RA). 
The expression of intracellular phosphorylated STAT3 (pSTAT3) was analyzed using Phosflow assays in CD4+ T cells and B cells from RA patients. (a) FACS plots 
showing representative staining patterns for pSTAT3 (empty histograms) and an isotype control antibody (filled histograms) of indicated immune cell types; Numbers 
indicating the percentages of the pSTAT3 positive population. (b) Statistics showing the percentages of pSTAT3 positive population in total ZA−CD3−CD19+ viable 
B cells and ZA−TCRab+CD4+ viable CD4+ T cells from RA or HC groups. (c) FACS plots showing representative staining patterns for pSTAT3 and an isotype control 
antibody of indicated CD4+ T cell subsets; numbers indicating the percentages of the pSTAT3 positive population. (D) Statistics showing the percentages of pSTAT3 
positive population in indicated CD4+ T cell subsets from RA or HC groups. Each dot represents the value of an individual subject with columns showing the mean 
value of each group. The p-values were obtained using Student’s t-tests.
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driven by the STAT3 phosphorylation, it may not depend on a 
single cytokine. A synergistic effect of multiple cytokines or other 
signals are candidate mechanisms.

DiscUssiOn

CD4+ T  cells have long been regarded as a key player in the 
pathogenesis of RA (29). Indeed, genetic variants in the major 
histocompatibility complex (MHC) region, especially MHC class 
II HLA-DRB1 genes contribute to the overall 11–37% genetic risk 
of RA. Non-HLA genes encoding molecules directly involved in 
pathways of T-cell function including PTPN22, IL23R, CTLA4, 
STAT4, and CD40 are also ranked high in the identified RA-risk 
loci (33). Although early studies discovered synovial effector 
CD4+ T  cells predominantly produce Th1 cytokines IFNγ and 

TNFα (34), more recent research has been focusing on later 
discovered CD4+ T cell subsets: Th17 and Tfh cells.

In the cohort of RA patients we examined, there was a sig-
nificant increase of CXCR5+PD-1+ memory Tfh cells in blood, 
as compared to that of healthy controls. The frequency of Tfh 
cells positively correlated with the disease activities, as meas-
ured by DAS28. This observation was largely in agreement with 
several published reports showing the aberrant function of Tfh 
cells in RA patients (15–19). The circulating memory Tfh cells 
can be analyzed in two different ways (35, 36). Studies using 
CXCR5+PD-1+ or CXCR5+ICOS+ to mark Tfh cells indicated 
an active Tfh differentiation in RA (15, 16, 18) while those 
applying CCR6 and CCR3 to stratify Tfh cells demonstrated 
a biased Tfh polarization into CXCR5+CCR6+CXCR3− (Th17-
type Tfh) and/or CXCR5+CCR6−CXCR3− (Th2-type Tfh) 
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FigUre 4 | Signal transducer and activator of transcription 3 (STAT3) hyperactivation correlates with aberrant follicular helper T (Tfh) differentiation in patients with 
rheumatoid arthritis (RA). Statistics showing the relationship between the frequencies of indicated CD4+ T cell subsets with the phosphorylated STAT3 (pSTAT3) 
expression in total CD4+ T cells (a) or in each individual subsets (b) in the peripheral blood mononuclear cells from patients with RA. The correlation was determined 
using Spearman’s correlation coefficient.
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subsets in RA patients (18, 19). Despite different analytic 
methodologies, such evidence strongly supports a significant 
contribution of Tfh cells to systemic inflammation and auto-
immunity that drive the development of RA. To be noted, the 
phenotype of circulating Tfh cells is different from B-helper 
T cells infiltrated in inflammatory synovial tissues in RA. The 
latter CD4+ T cell population, though expressing conventional 
Tfh markers including PD-1, ICOS, CXCL13, and IL-21, do 
not upregulate CXCR5 (37). It remains unclear whether these 
B-helper T cells in joints also participate in systemic immune 
activation in RA.

There is a major question left unanswered by the studies 
that characterized Tfh cells in RA patients—what induces the 
aberrant Tfh differentiation? We set to test the hypothesis that 
the constitutive activation of STAT3 in RA led to enhanced Tfh 
differentiation. By measuring the phosphorylation of STAT3, 
we found a drastic increase of pSTAT3 in CD4+ T cells but not 
in B  cells. The increase of pSTAT3 was detected in all CD4+ 
T  cell subsets with highest phosphorylation status in naïve 
CD4+ T cells. In human CD4+ T cells, naïve CD4+ T cells were 
shown to express a lower level of suppressor of cytokine signal-
ing 3 (SOCS3), which interacts with cytokine receptors and 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigUre 5 | Signal transducer and activator of transcription 3 (STAT3) hyperactivation correlates with rheumatoid arthritis (RA) disease activity. Statistics showing the 
relationship between the disease activities measured by DAS28 with the phosphorylated STAT3 (pSTAT3) expression in total CD4+ T cells (a) or in each individual 
subsets (b) in the peripheral blood mononuclear cells from patients with RA. The correlation was determined using Spearman’s correlation coefficient.
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inhibits receptor-mediated signal transduction (38). As the 
induction of SOCS3 represents the key mechanism to block 
the activation of STAT3 (39), the low expression of SOCS3 
may lead to a high pSTAT3 in naïve CD4+ T cells. For effector 
CD4+ T cell subsets, pSTAT3 was detected lowest in Th1 cells, 
reflecting the fact that STAT3 functions to promote Th2, Th17, 
and Tfh differentiation but inhibit Th1 differentiation (22, 23, 
39–43). Despite the high levels of pSTAT3 in all three subsets, 
the intensity of pSTAT3 in CD4+ T cells only correlated with 
the frequency of Tfh cells but not Th2 or Th17 cells, suggesting 
redundant factors other than STAT3 potently regulate Th2 and 
Th17 differentiation. The key role of pSTAT3 in promoting the 
Tfh generation was further recognized by a strong correlation 
between the frequency of Tfh cells and the pSTAT3 expression 
in Tfh cells.

Since the STAT3 hyperactivation was observed across all CD4+ 
T cells, we believe it was caused a systemic change of the immune 
system that is not specific for certain subsets. We measured the 

serum concentrations of cytokines IL-6, IL-10, IL-21, and leptin, 
all of which have been shown to induce the phosphorylation of 
STAT3 in T cells (31, 32). All of these cytokines were upregu-
lated in RA patients as compared to healthy controls, with a 
prominent increase of IL-6 for more than sevenfold. By analyz-
ing the correlation between the plasma cytokine concentrations 
and the pSTAT3 status in CD4+ T cells, IL-6 appears to play a 
central role in determining the activation of STAT3 in CD4+ 
T cells. Other cytokines may synergistically enhance pSTAT3 as 
there were general trends for positive correlations. It has been 
previously shown that serum IL-21 concentrations modestly 
correlated with the frequencies of Tfh cells in RA patients (44). 
In our cohort, we also observed a similar trend of positive cor-
relation between IL-21 concentration and Tfh activation, but it 
was not statistically significant (p-value = 0.06). There were no 
significant correlation between the frequency of Tfh cells and 
the concentration of any of tested STAT3-activating cytokines. It 
could be well explained by the fact that the Tfh differentiation is 
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FigUre 6 | Increased signal transducer and activator of transcription 
3-stimulating cytokines in the plasma of rheumatoid arthritis (RA) patients. 
Plasma was isolated from blood from RA patients and healthy controls. The 
amount of IL-6 (a), IL-10 (b), IL-21 (c), and leptin (D) was measured by 
ELISA. Each dot represents the value of an individual subject with columns 
showing the mean values of each group. The p-values were obtained using 
Student’ t-tests.
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induced by the combination of multiple cytokines (20). It is also 
possible that cytokines may preferably execute in supporting Tfh 
differentiation in local lymphoid tissue spleen and lymph nodes 
so the plasma concentrations were not always representative of 
its tissue concentrations.

Our study revealed an IL-6-pSTAT3-Tfh axis in regulating 
immune responses in RA patients. As the status of each of three 
components individually correlated with the disease activity 
indicator DAS 28, this immunoregulatory axis is likely to reside 
proximal to the center of RA pathogenesis. Therapeutics have 
been developed to target this axis including monoclonal anti-
bodies to block IL-6 and small molecules to inhibit Janus kinases 
(JAKs) that act upstream of the STAT3 pathway. IL-6 blockers 
such as tocilizumab and JAK inhibitors such as tofacitinib have 
demonstrated profound efficacies and been approved to treat 
RA (45). Intriguingly, tocilizumab therapy was shown not only 
reducing pSTAT3 in CD4+ T cells (46) but also inhibiting the Tfh 
differentiation (47). The evidence gained here and those from 
previous studies justify targeting the IL-6-pSTAT3-Tfh axis for 
biomarker discovery and drug development for RA diagnosis and 
therapy.

MaTerials anD MeThODs

study subjects
Thirty-one patients diagnosed as RA according to the 2010 RA 
classification criteria by American College of Rheumatology/

European League Against Rheumatism (48) were recruited. 
The cohort included both newly diagnosed patients (n  =  4) 
and patients with long-standing disease (n =  27). No patients 
had a history of treatment with biologic agents or high-dose 
corticosteroids (>10  mg/day) 6  months preceding the study. 
Thirty healthy individuals with comparable demographics were 
recruited as controls. All participants consented in writing to 
donate blood for the study. Ethics was approved by human 
ethics committees of Renji Hospital and Ruijin Hospital 
affiliated to Shanghai Jiao Tong University School of Medicine 
(Shanghai, China) and Affiliated Hospital of Hubei University 
for Nationalities (Hubei, China).

isolation of Peripheral blood Mononuclear 
cells (PbMcs) and Plasma
Blood from healthy individuals and patients with RA were col-
lected in BD Vacutainer® Blood Collection Tubes (BD). After 
the centrifugation (300 g, 20°C, 5 min), plasma was collected and 
stored in −80°C for further analysis. Cells were diluted with PBS 
(1:1), and gently loaded to Ficoll-Paque Plus (GE) layer at the 
ratio of 1:1 (PBS + blood cells:Ficoll), followed by density gradi-
ent centrifugation (450 g, 20°C, 20 min, no brake). Mononuclear 
cell layer was transferred to a new tube and washed with cold PBS. 
Cells were suspended in cold FACS buffer (1% BSA, 0.05% NaN3) 
for further analysis.

Flow cytometric analysis
Freshly isolated PBMCs were incubated with following 
fluorochrome-conjugated monoclonal antibodies in FACS 
buffer for surface staining. Antibodies (from BD Biosciences and 
BioLegend) were TCRαβ (clone IP26), CXCR3 (clone G025H7), 
CD45RA (clone HI100), CD3 (clone UCHT1), PD-1 (clone 
EH12.2H7), CD19 (clone SJ25C1), CCR6 (clone 11A9), CD8a 
(clone SK1), CCR4 (clone L291H4), CD62L (clone DREG-56), 
CD25 (clone BC96), CXCR5 (clone RF8B2), CD4 (clone RPA-
T4), and dead cells stained with Zombie Aqua were excluded from 
analysis. After the surface staining, cells were washed with FACS 
buffer and then fixed with pre-warmed Phosflow™ Fix Buffer I 
(BD) in 37°C for 15  min. Cells were washed and resuspended 
in pre-chilled Phosflow Perm Buffer III (BD) in 4°C for 25 min. 
After wash, cells were stained with anti-pSTAT3 (BD, clone 4/
pSTAT3) at 37°C for 30  min to detect pSTAT3 (pY705). The 
same procedure was performed to stain with an isotype control 
antibody (BD, clone G155-178). The expression of surface mark-
ers and intracellular pSTAT3 were analyzed by a FACS analyser 
(LSRFortessa X-20, BD). The results were analyzed with FlowJo 
software (TreeStar).

elisa
Cytokines in plasma samples were measured by ELISA kits 
(Biolegend: IL-6 and IL-21; Invitrogen: IL-10; R&D systems: 
leptin) following the manufacturers’ protocol. Plasma was 
diluted at 1:5 for IL-6, IL-10, and IL-21 and 1:100 for leptin, 
using ELISA diluent (1% BSA in PBS-T). Standards and 
diluted-plasma samples were incubated at room temperature 
for 2  h, followed by incubations with detecting antibodies 
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FigUre 7 | Association between signal transducer and activator of transcription 3 (STAT3)-stimulating cytokines with STAT3 phosphorylation, disease activity or 
follicular helper T (Tfh) differentiation. Statistics showing the relationship between the expression of phosphorylated STAT3 (pSTAT3) in total CD4+ T cells, the disease 
activities measured by DAS28 or the frequency of Tfh cells with the amount of plasma IL-6 (a), IL-10 (b), IL-21 (c), or leptin (D). The correlation was determined 
using Spearman’s correlation coefficient.
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and streptavidin-horseradish peroxidase. The substrate 
3,3′,5,5′-Tetramethylbenzidine was added before the values 
of optical densities were obtained by a microplate reader 
(SpectraMax 190, Molecular Devices).

Quantitative Pcr
Naïve (CD25−CD45RA+CD62L+), Th1 (CD25−CD45RA−CXCR3+ 
CCR6−CCR4−), Th2 (CD25−CD45RA−CXCR3−CCR6−CCR4+), and  
Th17 (CD25−CD45RA−CXCR3−CCR6+CCR4+) cells were sorted  
with a FACS cell sorter (BD Aria III). mRNA samples were extracted  
with Trizol reagents, and cDNA were synthesized with cDNA  
Synthesis Kit (Takara). Following, Tbx21 forward 5′-ATTGCCG 
TGACTGCCTACCAGA-3′ and reverse 5′-GGAATTGACAGT 
TGGGTCCAGG-3′; Gata3 forward 5′-ACCACAACCACACTC 
TGGAGGA-3′ and reverse 5′-TCGGTTTCTGGTCTGGATG 
CCT-3′; Rorc forward 5′-GAGGAAGTGACTGGCTACCAGA-3′ 

and reverse 5′-GCACAATCTGGTCATTCTGGCAG-3′; Ifng  
forward 5′-GAGTGTGGAGACCATCAAGGAAG-3′ and reverse  
5′-TGCTTTGCGTTGGACATTCAAGTC-3′; Il4 forward 5′-CC 
GTAACAGACATCTTTGCTGCC-3′ and reverse 5′-GAGTGTC 
CTTCTCATGGTGGCT-3′; Il17a forward 5′-CGGACTGTGA 
TGGTCAACCTGA-3′ and reverse 5′-GCACTTTGCCTCCCA 
GATCACA-3′; Gapdh forward 5′-GTCTCCTCTGACTTCAAC 
AGCG-3′ and reverse 5′-ACCACCCTGTTGCTGTAGCCAA-3′, 
were used to measure the transcript levels using SYBR (Takara) 
with a Real-Time PCR Systems (QuantStudio 7 Flex, ABI). 
Relative fold change of gene expression was calculated by  
2−(DCT experiment−DCT control). DCT = CTgene of interest − CTGAPDH.

statistical analysis
Data were analyzed with GraphPad Prism (version 7.0, GraphPad 
Software). The correlations of indicated parameters were 
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determined by Spearman’s correlation coefficient. Two-tailed 
t-tests were used to compare parameters between healthy indi-
viduals and RA patients. Results were considered statistically 
significant when p-values < 0.05.
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