
Systems biology

Principal metabolic flux mode analysis

Sahely Bhadra1,2,*, Peter Blomberg3, Sandra Castillo3 and Juho Rousu1

1Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Espoo,

Finland, 2Computer Science and Engineering, Indian Institute of Technology, Palakkad, India and 3VTT Technical

Research Centre of Finland Ltd, Espoo, Finland

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on July 7, 2017; revised on January 10, 2018; editorial decision on January 28, 2018; accepted on February 6, 2018

Abstract

Motivation: In the analysis of metabolism, two distinct and complementary approaches are fre-

quently used: Principal component analysis (PCA) and stoichiometric flux analysis. PCA is able to

capture the main modes of variability in a set of experiments and does not make many prior

assumptions about the data, but does not inherently take into account the flux mode structure of

metabolism. Stoichiometric flux analysis methods, such as Flux Balance Analysis (FBA) and

Elementary Mode Analysis, on the other hand, are able to capture the metabolic flux modes, how-

ever, they are primarily designed for the analysis of single samples at a time, and not best suited

for exploratory analysis on a large sets of samples.

Results: We propose a new methodology for the analysis of metabolism, called Principal Metabolic

Flux Mode Analysis (PMFA), which marries the PCA and stoichiometric flux analysis approaches in

an elegant regularized optimization framework. In short, the method incorporates a variance maxi-

mization objective form PCA coupled with a stoichiometric regularizer, which penalizes projections

that are far from any flux modes of the network. For interpretability, we also introduce a sparse var-

iant of PMFA that favours flux modes that contain a small number of reactions. Our experiments

demonstrate the versatility and capabilities of our methodology. The proposed method can be

applied to genome-scale metabolic network in efficient way as PMFA does not enumerate elemen-

tary modes. In addition, the method is more robust on out-of-steady steady-state experimental

data than competing flux mode analysis approaches.

Availability and implementation: Matlab software for PMFA and SPMFA and dataset used for

experiments are available in https://github.com/aalto-ics-kepaco/PMFA.

Contact: sahely@iitpkd.ac.in

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Principal component analysis (PCA) is one of the most frequently

applied statistical methods in systems biology (Barrett et al., 2009;

Ma and Dai, 2011; Yao et al., 2012). PCA is used to reduce the

dimensionality of the data while retaining most of the variation in

the dataset. This reduction is done by identifying linear combina-

tions of variables, called the principal components, that maximally

explain the variation in the data. By using a few such components,

each sample can be represented by relatively few variables compared

to thousands of features. It also helps us to distinguish between bio-

logically relevant variables and noise.

In the context of transcriptomics and fluxomics, PCA has been

widely applied (Barrett et al., 2009; Yao et al., 2012), where a prin-

cipal component (PC) identifies linear combinations of genes or

enzymatic reactions whose activity changes explain a maximal frac-

tion of variance within the set of samples under analysis. The main

goals of PCA in fluxomic data are (i) to identify which parts of the

metabolism retain the main variability in flux data and (ii) to relate
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them to the samples, i.e. behaviour of the organism for particular

experimental condition.

However, in the context of fluxomics, PCA has a few limitations

(Folch-Fortuny et al., 2016): PCA considers reactions independently

without considering any other structure or relationship among reac-

tions, including stoichiometric relations implied by metabolic path-

ways. PCA simply extracts a set of reactions that are important to

describe sample variance. Moreover, the principal components out-

put by PCA are known to be generally dense, thus including most of

the variables, which precludes their interpretation of pathways of

any kind. It would be more useful for modelling and biological inter-

pretation if the sample variance captured by the model could be

expressed in terms of metabolic pathways or flux modes.

In this paper we propose a novel method to find metabolic flux

modes that explains the variance in gene expression or fluxomic

data collected from heterogeneous environmental conditions with-

out requiring a fixed set of predefined pathways to be given. The

proposed method is called as principal metabolic flux mode analysis

(PMFA). Here each principal component, called principal metabolic

flux mode (PMF), is found by selecting a set of reactions which rep-

resents a metabolic flux mode which is approximately in steady state

and explains most of the data variability. In addition, we propose

a sparse variant, called Sparse Principal Metabolic Flux Mode analy-

sis (SPMFA), to further help the interpretation of the principal

components.

Our method differs from existing methods in the literature such

as Flux Balance Analysis (FBA) (Orth et al., 2010) as well as more

recent proposals as our method aims to explain the sample variabil-

ity, while existing methods aim to extract flux modes that maximize

an objective such as growth as in FBA, or a dominant flux modes

active in a set of samples (Folch-Fortuny et al., 2016; Stosch et al.,

2016). Related to our approach, Folch-Fortuny et al. (2015) has pre-

viously proposed multivariate curve resolution-alternating least

squares to improve the biological interpretation of the principal

components. Their method incorporates a few constraints such as

non-negativity and selectivity when constructing the output. In addi-

tion, their method requires a fixed set of metabolic pathways to be

defined as an initial step. Very recently, the Principal Elementary

Mode Analysis (PEMA) was proposed (Folch-Fortuny et al., 2016;

Stosch et al., 2016) where each component or principal elementary

mode are selected from the complete set of elementary modes (EMs)

(Pey and Planes, 2014) of the metabolic network such that the

selected EMs are responsible for expression levels in a global data.

This method needs to derive all possible elementary flux modes

explicitly which prevents it to be applicable to genome-scale net-

works. Moreover, Folch-Fortuny et al. (2016, 2015) considered that

all fluxes are in steady state, which restricts the applicability of the

method in experiments containing transients, perturbations or high

measurement noise (Baxter et al., 2007).

The structure of this paper is as follows. The methods section

describes the theory and development of a novel method to analysis

fluxomic and gene expression data. The section includes the descrip-

tions of data, means and algorithms by which the new method has

been benchmarked. In the results section, we report a comparative

study on the similarities and differences of PCA, SPCA, FBA,

PMFA, SPMFA and PEMA. The study highlights four experiments.

In the first experiment, we compare PMFA to PEMA in the retrieval

of active elementary flux modes on a dataset for which the ground

truth is known. In the second experiment, we study the effect of stoi-

chiometric regularization on the fraction of test set variance

explained by PMFA and alternative methods (PEMA, PCA) with

Leave-One-Out (LOO) cross-validation. In the third experiment,

SPMFA is used for the recovery of sparse flux modes from whole-

genome Saccharomyces cerevisiae gene expression data where the

performance is measured in terms of normalized variance captured.

In the fourth experiment, elaborates on the biological findings

obtained using SPMFA to analyze the variance in the mitochondrial

subsystem of whole-genome S.cerevisiae metabolic network. We

conclude the paper with discussion.

2 Materials and methods

2.1 Basic methods
Here we shortly review the existing basic methods for the analysis of

fluxomic data.

Principal component analysis: We assume X 2 RN�Nr be the

data matrix of flux of N samples and Nr reactions, with each entry

corresponding to an estimated reaction rate for a particular reaction

in a particular experiment. We assume throughout the paper that all

variables have been centered to have zero empirical mean. The

empirical covariance matrix is then given by R ¼ 1
N XTX. Denoting

R1 ¼ R, the 1st principal component (PC) w1 can be found by

solving

w1 ¼ arg max
w2RNr

wTR1w; s:t: jjwjj2 ¼ 1 (1)

Above, jjwjj2 ¼
ffiffiffiffiffiffiffiffiffiffiffi

wTw
p

is the l2 norm of the vector w. The second

PC can be found by applying Eq. (1) on updated the covariance

matrix using deflation as R2 ¼ ð1�w1wT
1 ÞR1ð1�w1wT

1 Þ (Mackey,

2009).

The weights, also called the loadings, of the principal component

w 2 RNr can be interpreted as the importance of reactions in

explaining the variance in fluxomic data. The principal components

are generally dense, containing most of the reactions of the meta-

bolic network. Sparse PCA (Zou et al., 2006) aims to increase the

interpretabilty of PCA by finding principal components that have a

small number of non-zero weights through solving the following

optimization problem

max
w

wTRw� kjjwjj1; s:t: jjwjj2 ¼ 1 (2)

where k is a user defined hyper-parameter which controls the degree

of sparsity on PC. However, the principal components extracted by

neither method represent metabolic flux modes, and will not in gen-

eral adhere to thermodynamic constraints on reaction directions.

Stoichiometric modelling: The metabolic balance of the meta-

bolic system is described using the exchange stoichiometric matrix

S 2 RNm�Nr (Raman and Chandra, 2009) which contains transport

reactions for inflow of nutrients and output flow of products, but

does not contain any external metabolites (as they cannot be bal-

anced). Rows of this matrix represent the Nm internal metabolites,

columns present the Nr metabolic reactions including transport

reactions and each element Sm;r shows participation of the mth

metabolite in the rth reaction: Sm;r ¼ 1 (or –1) indicates that reaction

r produces (or consumes) the metabolite m. The value Sm;r ¼ 0 indi-

cates metabolite m is not involved in the reaction r. For a flux vector

w; Sw gives the change of metabolic concentration for all metabo-

lites. The metabolic steady-state is assured by imposing a constraint

Sw ¼ 0.

Elementary modes: The concept of an elementary mode (EM)

(Pey and Planes, 2014; Ruppin et al., 2010; Trinh et al., 2009) is key

for the analysis of metabolic networks. An EM is defined as a mini-

mal set of cellular reactions able to operate at the steady-state, with

each reaction weighted by the relative flux that they need to carry
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for the mode to function. An EM also satisfies the reaction direc-

tionality constraints arising from thermodynamics.

Flux balance analysis (FBA): FBA (Orth et al., 2010) finds

steady state flux modes maximizing objective function. Typically,

FBA is done with an objective of maximizing biomass production by

solving following optimization problem

max
w

cTw s:t: Sw ¼ 0 and l � w � u (3)

Here cT indicates the row from the stoichiometric matrix corre-

sponding to biomass production.

2.2 Principal metabolic flux mode analysis (PMFA)
Here we describe our approach, Principal Metabolic Flux Mode

Analysis (PMFA), that combines the PCA and stoichiometric model-

ling views of metabolism.

To obtain meaningful solutions of steady state flux distributions

as PC loading one can impose two additional constraints in PCA

formulation:

1. the weights associated with irreversible reactions should always

be positive, i.e. wir � 0, where ir is an index of an irreversible

reaction.

2. System is in a steady state, where the internal metabolite concen-

trations do not change, i.e. the metabolite producing and con-

suming fluxes cancel each other out: Sw ¼ 0:

Considering (1) and (2) the modified optimization problem for

doing PCA with structural constraint is as following

max
w

wTRw

s:t: Sw¼0 ðstoichiometric steady stateÞ

wir�0 ðirreversible reactions can have only positive fluxÞ

jjwjj2¼1

(4)

The constraint jjwjj2¼1 restricts the spurious scaling up of the

weights in the solution. Here, Sw¼0 is a hard constraint and in

practise imposes too much restriction, due to noise in the data, or

when the data does not actually arise from steady-state conditions,

e.g. given transients or perturbations of the fluxes during the experi-

ment. Numerically one needs to solve a set of linear equation of size

NM�NR which makes the problem also computationally hard to

solve Eq. (4). Hence instead of considering this hard constraint on

the PC loadings we introduce a soft constraint which penalizes

the deviation from the steady state. Our aim is to find a flux which

optimizes a combination of (1) maximal explained sample variance

wTRw and (2) minimal deviation from a steady-state condition,

expressed in the l2 norm: jjSw�0jj22¼jjSwjj22. This entails solving

the following optimization problem:

max
w

wTRw� kjjSwjj22

s:t: wir � 0

jjwjj2 ¼ 1

(5)

Here k imposes the degree of hardness of the steady-state constraint.

For k¼0 the Eq. (5) produces loadings similar to PCA with the

exception of the reaction directionality constraint. The model will

be henceforth denoted as PMFAðl2Þ. If desirable, we can make our

model to disregard reaction directionality simply by dropping the

inequality constraints wir>0. We denote this version of the method

as rev-PMFA.

The l2 norm on Sw in Eq. (5) has the tendency to penalize large

steady state deviations in individual metabolites, at the cost of favor-

ing small deviations in many metabolites. This is probably the

desired behaviour in case the data comes from conditions where

there is no subsystems that is considerably farther from steady state

than other parts of the system. In order to capture the opposite sce-

nario, where a small subset of metabolites have large deviation from

steady state, one can use l1 norm regularizer on Sw. The l1 norm reg-

ularizer jjSwjj1 in Eq. (5) puts the emphasis of pushing most of the

steady-state deviations to zero, whilst allowing a few outliers,

metabolites that markedly deviate from steady state. Using l1 regu-

larizer and a trade-off parameter k we get to solve the following

optimization problem:

max
w

wTRw� kjjSwjj1

s:t: wir � 0

jjwjj2 ¼ 1

(6)

Here k imposes the degree of hardness of the steady-state constraint.

Similarly to Eq. (5) for k¼0 the Eq. (6) also produces loadings simi-

lar to PCA with selective non-negative constraint. The model will be

hence forth denoted as PMFAðl1Þ.

2.3 Sparse principal metabolic flux mode analysis
The above formulation of PCA with stoichiometric constraint still

suffers from the fact that each principal component is typically a lin-

ear combination of all possible reaction activities, thus it is often dif-

ficult to interpret the results. This problem can be avoided by a

variant of PMFA, the sparse principal metabolic flux mode analysis

(SPMFA) using an l1 regularizer on w to produce modified principal

components with sparse loadings.

max
w

wTRw� kjjSwjj�

s:t: wir � 0

jjwjj1 ¼ C

(7)

where jj � jj� can be any of the l2 and l1 norm and C is a used defined

hyper-parameter which controls the degree of sparsity in principal

metabolic flux (PMF) loadings. Similarly to PMFA, Sparse PMFA

can also be made to consider all reaction reversible by dropping the

inequality constraints wir � 0. We call this variant rev-SPMFA.

2.4 Analysis of metabolic subsystems
One can apply our method to focus on variance within a subsystem

of the whole metabolic network (e.g. central carbon metabolism,

redox subsystem, lipid metabolism) by restricting the covariance

matrix in objective function to the fluxes in the subsystem, while

keeping the stoichiometric regularizer the same as before. Similarly,

when some flux measurements are missing, one can change the cova-

riance matrix in the objective function to exclude the measurements

that are missing.

For example, to study the variation within the redox subsystem,

let Xrdx contain the columns of X corresponding to reactions con-

taining redox co-factors, and let wrdx represent the corresponding

part of w. We will consider Rrdx ¼ 1
N XT

rdxXrdx for finding variance

maximizing directions. Hence need to solve

max
w

wT
rdxRrdxwrdx � kjjSwjj�

s:t: wir � 0 and jjwjj2 ¼ 1
(8)
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2.5 Algorithms
The objective function of Eq. (5) can be interpreted as difference of

two differentiable convex functions. This type of optimization prob-

lem is known as Difference of Convex functions (DC) program. We

used the convex-concave procedure (CPP), a local heuristic that uti-

lizes the tools of convex optimization to find local optima of differ-

ence of convex functions (DC) programming problems (Lipp and

Boyd, 2016). Using CCP method we solved Eq. (5) by solving fol-

lowing convex approximation (a Quadratic Program) in each itera-

tion t:

wtþ1 ¼ arg min
w

k
2
jjSwTjjq �wtT

REw

s:t: wir � 0

(9)

followed by projecting wtþ1 on jjwjjp ¼ C. The norms p;q 2 f1;2g
are chosen according to the desired model.

To find a good local optimum, we repeat the above optimization

with different random starting points, and take the best local mini-

mum as the solution. In our experiments we used 100 repetitions.

To obtain a multi-factor PMFA model, i.e. a model containing

several PMFs jointly representing the data, we follow a approach

similar to some PCA algorithms, namely the deflation of the cova-

riance matrix. However, due to additional stoichiometric constraint

here we deal with a sequence of non-orthogonal vectors, ½w1; . . . ;wd�
hence we must take care to distinguish between the variance

explained by a vector and the additional variance explained, given all

previous vectors. We have used orthogonal projections for deflating

the data matrix (Mackey, 2009). This also maintains the positive defi-

niteness of covariance. For every iteration dþ1 we first transfer

already found principal flux modes W 2 RNR�d to a set of orthogonal

vectors, fq1; . . . ;qdg.

qd ¼
ðI �Qd�1QT

d�1Þwd

jjðI �Qd�1QT
d�1Þwdjj

(10)

where q1 ¼ w1, and q1; . . . ;qd form the columns of Qd. q1; . . . ;qd

form an orthonormal basis for the space spanned by w1; . . . ;wd.

Then the Schur complement deflation of covariance matrix is

done by

Rdþ1 ¼ Rd �
RdqdqT

d Rd

qT
d Rdqd

(11)

3 Results

We report a comparative study on following methods.

• PCA: Principal component analysis as given by Eq. (1). PCAdir

denotes the PCA augmented with reaction directionality

constraints.
• SPCA: Sparse PCA corresponding to Eq. (2). SPCAdir is the

SPCA augmented with reaction directionality constraints.
• FBA: Flux balance analysis with an objective of maximizing bio-

mass production given by (3).
• PMFA: Principal Flux Mode Analysis as described in Section 2.2.

PMFAðl2Þ denotes l2 regularization on the stoichiometric con-

straint Eq. (5) while PMFAðl1Þdenotes l1 regularization on stoi-

chiometric constraint Eq. (6).
• SPMFA: Sparse Principal Flux Mode Analysis as given by Eq.

(7). Again, SPMFAðl2Þ denotes l2 regularization on stoichiometric

constraint, while SPMFAðl1Þ denotes l1 regularization on stoichio-

metric constraint.

• Principal Elementary Mode Analysis (PEMA) (Folch-Fortuny

et al., 2016; Stosch et al., 2016): It uses the set of EMs as the can-

didates for the PCs. It models the flux matrix X is as follows:

X ¼ KPT
em þ E: (12)

Above, Pem is the Nr �Nf principal elementary mode matrix,

formed by a subset of Nf EMs from the entire EM matrix; K is the

N �Nf nonnegative weighting matrix; and E is the N �Nr residual

matrix. Pem is found by iteratively selecting important EMs. We

only used PEMA on small metabolic networks since as calculation

of all EMs for genome-scale metabolic networks is impractically

time consuming (Pey and Planes, 2014).

Data centralization. PCA, SPCA, PMFA and SPMFA aim at

explaining the main variability in data using a few PCs. If the origi-

nal variables have strongly different means and/or variances, the

PCs may focus on explaining only the variables with the highest val-

ues and/or variances, disregarding the small variance associated

with the rest of variables. Hence before applying all of them, we

need to centralize the expression and fluxomic data.

Selection of optimal level of regularization. We selected the opti-

mum levels of the regularization parameter k for PMFA and SPMFA

and level of sparsity for SPMFA by cross-validation maximizing the

fraction of sample variance explained on test samples

Fraction of variance ¼ wTRw

TraceðRÞ ;

which is a classic measure used with PCA and related approaches.

Above, w is the PC computed from the training data, and R is the

co-variance matrix of the test sample. Leave-One-Out (LOO) cross-

validation was used on smaller datasets and 5-fold cross-validation

was used on the large whole genome dataset.

3.1 Datasets
Pichia pastoris simulation case study: We have used data generated

by Stosch et al. (2016). It is based on the metabolic network of

Pichia pastoris, which originates from Tortajada et al. (2010). It

describes the central carbon metabolism of P.pastoris during growth

on glucose, glycerol and methanol, comprising the Embden-

Meyerhoff-Parnas pathway, citric acid cycle, penthose phosphate

and fermentation pathways. It contains 45 compounds (36 of which

are internal metabolites, which can be balanced for growth) and 44

reactions, yielding a total number of 98 EMs (Stosch et al., 2016;

Tortajada et al., 2010). Flux data was generated simulating the

growth of P.pastoris for twelve different cultivation conditions

Stosch et al. (2016) by choosing appropriate sets of active EMs.

Each active EM was drawn a random flux, and thus the flux distri-

bution of each sample was a random linear combination of the

fluxes of the active EMs.

Hence we can compare PMF identified by PMFA to the ground

truth ‘active EMs’ that were used for data generation.This case study

also enables the study of the impact of noise on the EMs identifica-

tion and performance. For this study we add random Gaussian noise

to fluxomic data, where noise variances are 2, 5, 10 and 20% of

original values. From the flux data and the deviation reported in

Supplementary Material of Quek et al. (2009) we observed that

most the reported fluxes have deviation associated with it and the

deviations are in range of 2–5% of their reported value along with

few reactions with deviations even more than 12% of their value.

Saccharomyces cerevisiae experimental case study: A metabolic

network for S.cerevisiae proposed by Hayakawa et al. (2015) and
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13C isotopic tracer based fluxome data used in (Frick and

Wittmann, 2005; Hayakawa et al., 2015; Stosch et al., 2016) was

analyzed in this study. The network describes the central cytosolic

and mitochondrial metabolism of S.cerevisiae, comprising glycoly-

sis, the pentose phosphate pathway, anaplerotic carboxylation, fer-

mentative pathways, the TCA cycle, malic enzyme and anabolic

reactions from intermediary metabolites into anabolism (Stosch

et al., 2016). The network contains 42 compounds (30 of which are

internal metabolites, which can be balanced for growth) and 47

reactions of which 39 are intracellular. The objective in this case

study is to evaluate the performance of PMFA Eq. (5) on fluxome

data and compare it with PEMA and PCA. For PEMA we have used

1182 EMs provided by Stosch et al. (2016).

Saccharomyces cerevisiae whole-genome metabolic network case

study: The objective of experiment described in this section is to

evaluate the performance of the proposed PMFA Eq. (5) and

SPMFA Eq. (7) on whole-genome metabolic network in both steady-

state and transient conditions. We used Yeast community model v.

7.5 (YCM 7.5), which contains 3494 reactions among 2220 com-

pound and catalyzed by 909 genes.

The steady state transcriptomic data has been generated by

Rintala et al. (2009) where S.cerevisiae grown in glucose-limited

chemostat culture with 0, 0.5, 1.0, 2.8 or 20.9% oxygen in the inlet

gas (D¼0.10/h, pH 5, 30	C) (Wiebe et al., 2008). The normalized

transcription dataset is available in the Gene Expression Omnibus

(GEO) database (Barrett et al., 2011) with the accession number

GSE12442. It contains four steady state samples for 0, 0.5, 2.8 and

20.9% oxygen and six steady state samples for 1% oxygen. This

dataset is combined with time-series transcriptomic data generated

by Rintala et al. (2011) where time series analysis starting from two

(1 and 20.9%) levels of oxygen provision. Seven time points at 0;

0:2; 3; 8;16;24;72=79 hours from both time series and two biologi-

cal replicates from each time point were analyzed. The microarray

data can be accessed through GEO accession number GSE22832

(Barrett et al., 2011).

We converted gene expression data to a expression level per reac-

tion by with help of gene rules defined in metabolic network

(Herrgård et al., 2006; Jensen et al., 2011). Gene rules are Boolean

rules that determine the effect of the expression of regulatory genes

on the activity of reactions in the metabolic network. Let us denote

XG as gene expression matrix with size N �NG where NG is number

of genes and the Gth column of XG, xG
g is the expression vector cor-

responding to gene g. Then,

• if gene association with reaction r is denoted as ‘g1 or g2’ then

expression value for reaction r, i.e. Er ¼ xG
g1
þ xG

g2
.

• otherwise if gene association with reaction r is denoted as ‘g1 and

g2’ then expression value for reaction r, i.e. Er ¼ minðxG
g1
; xG

g2
Þ.

3.2 Prediction of active EMs using PFMA
In our first experiment we evaluated the predictive performance the

proposed PMFA and PEMA in correctly retrieving underlying active

elementary flux modes. We used the P.pastoris simulation case study

data, where the elementary flux modes that are part of the ground

truth are known. For the evaluation, area under ROC curve (AUC)

and area under precision recall curve (AUPR). The precision/recall

metrics, widely used in information retrieval, is to assess how well

the flux modes computed by PEMA and PMFA correlate with the

ground truth active EMs. The PFM loadings are reported in

Supplementary File PFMloading.ods in PichiaPastorisResultAnd

Analysis.zip

For each PMF, we computed its correlation with respect to all 98

elementary flux modes of the P.pastoris metabolic network. We then

sort the EMs in descending order of correlation and consider first

i ¼ 1; . . . ; 98 EMs as the predicted EMs by the model. Precision and

recall is then computed for each i, by considering ground truth

active EMs within the first i EMs as true positives and other EMs

with the top i as false positives. A precision/recall curve can be then

plotted by taking the precision/recall values for all is, in the order of

the descending correlation in the sorted list. The AUPR is denoted as

area under the precision recall curve and AUC is denoted as area

under receiver operating characteristic curves (Hanley and McNeil,

1983).

In a PMFA model with k principal flux modes, to compute a

precision-recall value for the model we considered the maximum

correlation of an EM with any of the k principal flux modes as a

final correlation of an EMs with the PMFA model. Then, we sorted

all EMs according to descending order of their maximum correla-

tions. With PEMA model we used an analogous approach: for a

PEMA model containing k EMs, for each i we included the top i cor-

related EMs (according to the maximum correlation of EMs with

any of the k EM’s chosen by PEMA) as the models prediction and

used those for computing the precision/recall values for each

i ¼ 1; . . . ; 98.

Figure 1 shows (a–b) Receiver operating characteristic curves

(ROC), (c–d) precision-recall curves and (e) total AUC and (f) total

AUPR achieved by the different models for different amount of addi-

tional noise. It shows that PMFA is robust with respect to noise in

the fluxomic data, with both AUPR and AUC metrics only slowly

decreasing as a function of increasing noise, until noise level of

10%. In this regime, adding more factors to PMFA models also

increases performance monotonically both in AUC and AUPR met-

rics, showing that the additional factors recover EMs that were not

captured by the first factor. In the high noise regime (> 10%) we

observe that the performance of the 3-factor PMFA model drops

suggesting that the last factor likely starts to capture noise.

In the noise free case, PEMA performs comparatively to PMFA,

especially in terms of the AUC metric and when using a high enough

number of factors in the model. However, the performance of

PEMA deteriorates quickly upon increased noise. The decrease of

performance is particularly apparent in the AUPR metric.

3.3 Explaining test set variance with PMFA
In this experiment we focused on the ability of PMFA to explain var-

iance on data in a predictive setting, that is, on new data that has

not been used for model estimation. We focused on the amount of

variance explained in the test set in a Leave-One-Out (LOO) cross-

validation setting.

We studied the effect of stoichiometric regularization (kjjSwjj22)

on the fraction of sample variance captured by PMFA and alterna-

tive models (PEMA, PCA). Figure 2 shows the fraction of sample

variance explained by the first PMFs and PCs as a function of devia-

tion from steady state (jjSwjj22) in test data of two fluxomic datasets

(S.cerevisiae and P.pastoris). The deviation from the steady-state is

controlled by the regularization parameter k � 0: high values of k

give low deviation from steady-state and vice-versa.

In particular on the fluxomic datasets, relatively heavy regulari-

zation can be applied without decrease of variance explained, indi-

cating that the data can be well explained by steady-state flux

modes.

By change of the regularization parameter k, the statistics of

PMFA exhibit a continuous transition from fully steady state flux
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modes (jjSwjj22 ¼ 0) to the PCAdir, i.e. PCA augmented with reaction

directionality constraints (corresponding to k¼0 in PMFA). The

transition for rev-PMFA is not as smooth as PMFA with the direc-

tionality constraint. It is apparent that the directionality constraint

increases the stability of PMFA without reducing much explained

variance on test data.

Compared to PEMA, The fraction of variance explained the first

PMF from rev-PMFA is higher than 1-, 5- and 10-factor PEMA

regardless of the amount of stoichiometric regularization or applica-

tion of the directionality constraints. The amount of variance

explained by the first PMF from PMFA is also much higher than

1-factor PEMA even with high Stoichiometric regularization, while

the 5- and 10-factor PEMA reach the level of PMFA for both

datasets.

Figure 3 shows the explained fraction of variance on test data in

a Leave-One-Out (LOO) cross-validation setting, where both test

and training data is contaminated with various amount of the noise.

The test set variance captured by first component of PMFA only

very slightly decreases upon increasing noise. In contrast, the test set

variance captured by PEMA drops considerably when the noise level

increases. Higher order PEMA models are here somewhat more

resistant than the 1-factor PEMA but still not competitive with

PMFA. In addition, we note that PCA is not able to explain test set

variance as well as PMFA regardless of the noise level. To under-

stand this result, we note that within the training set, by definition

we expect PCA to explain the variance the best. However, when

analyzing new data not seen in the training phase, the stoichiometric

information used by PMFA helps to attain a better predictive

performance.

3.4 Recovery of sparse flux modes from full genome

data by SPMFA
In this experiment, we evaluated the Sparse Principal Metabolic

Flux Mode Analysis, SPMFA, in discovery of sparse flux modes,

i.e. only few reactions with non-zero coefficients. We focus on the

full genome data, i.e. all steady-state and transient samples of

S.cerevisiae containing a total of 3494 reactions for, making

dense principal components and flux modes difficult to interpret.

The SPFM loadings along with the amount of inter-cellular

metabolites produced or consumed by SPFM for various degree

of steady state constraints are reported in Supplementary

File SPFM-geneexpression.ods in SPFMoxygenseriesResultand

Analysis.zip.To quantify the fraction of explained variance nor-

malized by the complexity of the extracted flux mode, we meas-

ure the normalized fraction of variance, calculated as

Normalized variance ¼ Fraction of variance explained

jjwjj0=Nr
:

Above, jjwjj0 denotes the l0 norm, i.e. the cardinality of non-zero

elements of w Figure 4 shows variance (left) and normalized var-

iance (right) as the function of deviation from steady state (jjSwjj22).

At the maximum, PMFA captures slightly more explained var-

iance than SPMFA at (Fig. 4, left). Correspondingly, SPMFA is

vastly more effective in capturing normalized variance, achieving

more than double the rate of PMFA at any level of deviation from

steady state (Fig. 4, right). SPMFA statistics can be seen to smoothly

approach the (directional) sparse PCA statistics when the deviation

from steady-state is let to increase.

Fig. 1. The graph the first 3 components of models and shows (a) ROC for

PMFA, (b) ROC for PEMA,(c) and precision-recall curves for PMFA and (d)

PEMA for different noise levels. (e) and (f) plots respectively AUC and AUPR

values obtained by different models for different noise levels

Fig. 2. Depicted is for two fluxomic datasets the fraction of variance on test

data in LOO setting as a function of deviation from steady state (jjSwjj22) cap-

tured by PCA, directional PCA (PCAdir), 1-, 5- and 10-factor PEMA, as well as

PMFA and rev-PMFA using different amount of Stoicihiometric regularization.

The markers ‘�’ and ‘o’ indicate the optimal level of regularization for PMFA

and rev-PMFA

Fig. 3. Depicted is for the P.pastoris simulated dataset the fraction of variance

on test data in LOO setting as a function of additional noise level captured by

PCA, PCAdir 1-, 5- and 10-factor PEMA, as well as PMFA (with optimum regu-

larization parameter)
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The variant SPMFAðl1Þ which is regularized by the l1 stoichiomet-

ric regularizer (jjSwjj1), also exhibit a smooth transition, but cap-

tures less variance at the maximum, albeit the fraction of

normalized variance captured is similar to SPMFA. PMFAPMFAðl1Þ

exhibits a phase change, following PMFA at high steady state distan-

ces (small k) but switching to SPMFA regime as regularization is

increased. This reflects the fact that with small k the model is not yet

sparse but sparsity quickly emerges once k is increased.

It is notable that on this large heterogeneous dataset, all methods

fail to capture meaningful amounts of normalized sample variance

in the vicinity the steady state (jjSwjj22 ¼ 0). This is also true for

FBA, which we have included as a comparison (maximum biomass

production as the FBA objective). The FBA solution is sparse but the

fraction of variance captured is very small, causing as the normal-

ized variance captured by FBA to be small compared to SPMFA sol-

ution when the stoichiometric regularization is relaxed. This

illustrates the importance of being able to relax the steady-state

assumption when analyzing real-world experiments.

3.5 Analysis of SPMFA on S.cerevisiae oxygen series

gene expression dataset
In this experiment, we analyze the Principal Metabolic Flux Modes

found by SPMFA when analyzing the variance in the subsystem

composed of the reactions in the mitochondrion of the S.cerevisiae

whole-genome network. The availability of oxygen limits the

amount of ATP the cell can generate. Oxidative phosphorylation

occurs in the mitochondrion. The mitochondria are unique organ-

elles that replicate, transcribe enzymes, and possibly adapt to

changes in oxygenation level somewhat independently from the rest

of the organism. Therefore, we elected to study this organelle in

more detail.

We used the method described in Section 2.4 for the analysis,

where the covariance matrix is obtained from the 166 mitochondrial

reactions in the combined data consisting of the time-series and

steady-state samples. For the stoichiometric regularizer the stoichio-

metric matrix of the whole-genome network of a total of 3494 reac-

tions was used. We use regularization level k¼1 as it gave the most

interpretable results. The PFM corresponding to all mitocondrion

reactions and metabolites changes due to this flux are reported in

Supplementary Tables S2–S4 and Table S5 in Supplementary File

PMFAsup.pdf.

Figure 5 depicts the scores of the samples in the first two PMFs.

The two components clustered the initial (0 h) time-series samples

with the steady-state samples with oxygenation, the early time-series

samples (0.2–3 h) together as well as the late time-series samples

(24–79 h) with the steady-state sample without oxygenation.

1st PMF correlated the best with late time-series samples, where

the system approached the new anaerobic steady state, as well as the

anaerobic steady state sample. In addition, the 1st PMF correlates

negatively with the early time-series samples (0.2–3 h) representing a

state shortly after the loss of oxygen. The 2nd PMF discriminates

among samples with different oxygen level in the environment, with

samples correlating with the 2nd PMF the better the less oxygen is

available. This is evident in the monotonic decreasing correlation of

the steady-state samples based on the oxygen level, as well as the

generally increasing correlation of the time-series samples as a func-

tion of time (and decreasing oxygen).

Six metabolic pathways emerged upon closer inspection of the

individual reactions associated with 1st PMF and 2nd PMF. Two

of these pathways were associated with the 1st PMF while

four pathways were associated with the 2nd PMF. The main reac-

tions and their loadings are shown in Table 1. The pathways are

denoted by the following letters: A. Malic pathway, B. Acetaldehyde

pathway, C. Malate shuttle, D. Oxidative phosphorylation, E.

Tetrahydrofolate pathway and F. ATP pathway.

The Malic pathway (A) associated with the 1st PMF consisted of

malate import, dehydrogenation to produce NADPH and/or

NADH, pyruvate export and acetolactate synthesis from pyruvate.

The ATP pathway (F) associated with the 1st PMF included oxoglu-

tarate import, TCA cycle reactions from oxoglutarate to succinyl-

CoA, succinate export and two means to extract the ATP-equivalent

stored in succinyl-CoA. The negative loading of Succinyl-CoA: ace-

tate CoA transferase may indicate a switch from this reaction

to other reactions generating ATP more explicitly. This hypothesis

is supported by the full set of reactions in the Supplementary

PMFAsup.pdf, Supplementary Table S2–S4. However, Succinyl-

CoA: acetate CoA transferase produce a non-negligible amount of

acetyl-CoA, which is subsequently converted to acetoacetyl-CoA by

Acetyl-CoA acetyltransferase. The ATP pathway also included the

direct transport of ATP between the cytosol and the mitochondrion.

The Malic pathway’s capability to provide the mitochondrion with

reducing equivalents in the form of NADPH and NADH, and the

ATP pathway’s capability to provide the mitochondrion with ATP

are apparently captured by the PMF.

The Acetaldehyde pathway (B) associated with the 2nd PMF

represents the conversion of acetaldehyde to acetate with the genera-

tion of NADPH, and the sequestration of the formed acetate to

Fig. 5. The correlation of expression data for corresponding samples with first

two SPMFs at expert chosen k. Here we have considered PMFA with L2 con-

strain on Sw on all samples but only mitochondrion reactions of S.cerevisiae

oxygen series gene expression dataset

Fig. 4. Variance (left) and normalized variance (right) on test data in 5 fold

cross validation setting as a function of steady state deviation (jjSwjj22) on the

whole genome gene expression data (containing both steady-state and tran-

sient samples) for PMFA SPMFA and FBA. The markers ‘�’ indicate the opti-

mal level of regularization
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acetyl-CoA and further to hydroxymethylglutaryl-CoA, an inter-

mediate in the mevalonate and the ketogenesis pathways. The 2nd

PMF contained the Malate shuttle for generating mitochondrial

NADPH. The 2nd PMF also contained the reactions for the electron

transport chain and oxidative phosphorylation (D), possibly for the

removal of residual oxygen. In (E), a pathway catabolizing pyruvate

via Glycine hydroxymethyltransferase, the Glycine cleavage com-

plex, Methylene-THF dehydrogenase and Methenyl-THF cyclohy-

drolase is captured. The Tetrahydrofolate pathway (E) ended with

Methionyl-tRNA formyltransferase, thus producing one NADH and

one NADPH per pyruvate catabolized. The four pathways associ-

ated with the 2nd PMF appear to capture the generation of mito-

chondrial NADPH, a vital cofactor for metabolic adaptation by

biosynthesis.

4 Discussion

In this paper we have proposed a novel method for the analysis of

metabolic networks, called the Principal Metabolic Flux Analysis,

PMFA, through the combination of stoichiometric flux analysis and

principal component analysis, finds flux modes that explain most

of the variation in fluxes in a set of samples. Unlike most

stoichiometric modeling methods, PMFA is not tied to the steady-

state assumption, but can automatically adapt—by the change of a

single regularization parameter—to deviations from the stoichiomet-

ric steady-state, whether they are due to measurement errors, biolog-

ical variation or other causes. Our experiments showed that the

method is more robust to the steady-state violations than competing

approaches, and can compactly capture the variation in the data by

a few factors. For the analysis of whole-genome metabolic networks,

we further proposed Sparse Principal Flux Mode Analysis, SPMFA

that allows us to discover flux modes with a small fraction of reac-

tions activated, thus could be interpreted as pathways. Our experi-

ments showed that our methods are more efficient in capturing the

variance in sets of experiments than methods based on elementary

flux mode analysis or flux balance analysis. The efficient Concave

Convex Procedure optimization allows the method to scale up to

whole-genome models unlike methods based on search in the space

of elementary flux modes.

Analysis of cultivation data on the whole-genome metabolic net-

work of S.cerevisiae showed that PMFA was able to identify six

mitochondrial pathways responsive to changes in oxygen availabil-

ity. In addition, the analysis grouped these pathways in easily inter-

pretable pathways.

The Malic pathway’s capability to provide the mitochondrion

with reducing equivalents in the form of NADPH and NADH, and

the ATP pathway’s capability to provide the mitochondrion with

ATP were apparently captured by the 1st PMF. The four pathways

associated with the 2nd PMF appeared to capture the generation of

mitochondrial NADPH, a vital cofactor for metabolic adaptation by

biosynthesis.
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