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An increasing number of pollutants with endocrine disrupting potential are accumulating in
the environment, increasing the exposure risk for humans. Several of them are known or
suspected to interfere with endocrine signals, impairing reproductive functions. Follicle-
stimulating hormone (FSH) is a glycoprotein playing an essential role in supporting antral
follicle maturation and may be a target of disrupting chemicals (EDs) likely impacting
female fertility. EDs may interfere with FSH-mediated signals at different levels, since they
may modulate the mRNA or protein levels of both the hormone and its receptor (FSHR),
perturb the functioning of partner membrane molecules, modify intracellular signal
transduction pathways and gene expression. In vitro studies and animal models
provided results helpful to understand ED modes of action and suggest that they could
effectively play a role as molecules interfering with the female reproductive system.
However, most of these data are potentially subjected to experimental limitations and
need to be confirmed by long-term observations in human.

Keywords: FSHR, FSH, endocrine disruptors, LHCGR, GPER
INTRODUCTION

An increasing number of organic pollutants are accumulating in wastewater and soil. They may not
necessarily be eliminated by purification treatments and could be potentially damaging for animals,
as well as for human health. This issue has been taken into serious consideration by some Countries,
such as in the European Union (EU), which issued specific directives to monitor and limit the
impact of pollutants (1). The most common of these compounds are known to interfere with
endocrine functions, such as estrogen signaling (2, 3). However, less is known about the potential
impact of pollutants on gonadotropins’ receptor functions. These receptors regulate development
and reproduction, and are potential targets for disrupting chemicals that negatively impact human
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health. In fact, several molecules targeting gonadotropin
receptors possessing agonistic, antagonistic, or inverse agonistic
activities, were tested in vitro and described (4).

Follicle-stimulating hormone (FSH) is a gonadotropin
produced by the pituitary gland which binds its receptor (FSHR)
located in the gonads (5). In men, FSHR is expressed in Sertoli cells,
which provide physical support to spermatogenesis, in concert with
the growth signal delivered by luteinizing hormone (LH) through
the production of testosterone (6). In women, FSHR is co-
expressed with the LH receptor (LHCGR) in ovarian granulosa
cells, which is where androgen conversion to estrogens occurs and
which support follicle selection, growth, and maturation during the
antral stage of the menstrual cycle (7). These effects are
accompanied by extremely dynamic variations of the FSHR
number occurring throughout the follicular antral stage (8). As a
result, the receptor achieves maximal expression levels in the early
antral follicle, while decreasing with the progression of dominant
follicle selection and maturation. In the preovulatory follicle, FSHR
expression is almost entirely replaced by LHCGR, which is required
for ovulation.
OVERVIEW OF FSHR STRUCTURE AND
ANTRAL STAGE-SPECIFIC SIGNALING

FSHR belongs to the subfamily of the rhodopsin-like G-protein
coupled receptors, as the other glycoprotein hormone receptors to
which it is structurally similar (5). The receptor is composed of a
large NH2-terminal extracellular domain (ECD), embedding the
hormone binding site, and is connected to the transmembrane
domain (TMD) through a hinge region. The TMD passes through
the cell membrane with seven a helices connected by alternating
extracellular and intracellular loops (9). The latter, together with
the C-tail in the intracellular side, carries interaction sites for G
proteins and other transducing partners (9, 10). The ligand steric
hindrance induces conformational changes of ECD, hinge region,
and TMD, triggering a complex network of signaling cascades
converging in proliferative, steroidogenic, pro-, and anti-apoptotic
signals (4, 10). Receptor bound to the ligand may itself activate
(cis-activation) these signals, as well as transducing the signal to
activate other non-liganded receptors (trans-activation) (11). The
action of FSH was classically associated with the activation of the
steroidogenic Gas protein/cAMP/protein kinase A (PKA)-
pathway, resulting in the transcription of several genes, such as
those encoding steroidogenic enzymes (4). Together with
steroidogenesis, this classical pathway can induce the activation
of several other events that can lead at the same time to mitogenic
signals, cytoskeletal changes, and apoptosis by stimulating the
activation of other effectors (10). In fact, the FSH-dependent
steroidogenic signalling pathway is counterintuitively linked to
pro-apoptotic cascades which relies on p38 mitogen-activated
protein kinase (MAPK) activation (12). Simultaneously, cAMP
induces the activation of steroidogenic, anti-apoptotic and
proliferative events mediated by extracellularly-regulated kinases
1 and 2 (ERK1/2) (10, 12). Despite these events must be fully
clarified and investigated, they suggest a possible molecular
mechanism underlying follicular growth and selection which
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may depend on the potency and persistence of cAMP at the
intracellular level (10). Gai and Gq/11 proteins were also
demonstrated to be coupled to FSHR, inducing respectively
ERK1/2 phosphorylation, and phospholipase C (PLC) activation
and intracellular calcium ion (Ca2+) increase (10, 13). Additional
pathways and molecular partners of FSHR activation were
described, such as insulin growth factor 1 receptor (IGF-1R),
epidermal growth factor receptor (EGFR) (14, 15), 14-3-3t
protein (16, 17) and forkhead-box transcription factor O
(FOXO1a) (18). Moreover, the molecules b-arrestins (19, 20),
adaptor protein containing pleckstrin homology domain,
phosphotyrosine binding domain, and leucine zipper motif
(APPL1), are involved in the internalization and recycling of the
receptor (21, 22). Recently, several studies demonstrated how the
predominance of steroidogenic and pro-apoptotic, rather than
proliferative signals, could depend on FSHR expression levels on
the cell surface (20). While a relatively low number of FSHR on
the membrane results in the preferential b-arrestins recruitment
and pERK1/2 activation, relatively high FSHR expression levels
lead to persistent intracellular cAMP accumulation linked to
caspase 3 cleavage and apoptosis (20, 23). b-arrestins play a key
role in inducing the FSHR internalization, an event fundamental
for routing the hormone-receptor complex to recycling or
lysosomal degradation pathways through specific endosomes
(24–26). While these mechanisms may provide further examples
of the complexity of FSHR regulation (Figure 1), they may be
relevant to the selection of the dominant follicle, when serum FSH
and other hormone levels change in a follicle and stage-dependent
manner (7, 8, 10).

In women, disruption of FSH signaling is linked to infertility
(27). These data match those from studies in Fshr-deficient mice,
which were sterile due to failure of follicle maturation (28–30).
Interestingly, this phenotype is not completely like that observed
in FSHb knock-out (KO) mice, which instead displayed a higher
number of ovarian pathologies (31). This finding is suggestive of
a dysregulated, but existing basal stimulation of the FSHb KO
mice ovary operated by intact receptors, which are absent in
Fshr-deficient mice. However, these mice were characterized by
relatively high serum LH levels. It is plausible that the chronic
exposure to high concentrations of LH would be linked to the
observed pathology via cross-interaction between FSHR and the
hormone. These data are indicative of the relevance of proper
FSH receptor functioning for ovarian physiology.
MEMBRANE GPCR PARTNERS OF FSHR

The activation of FSHR-mediated intracellular signaling pathways
is further modulated by the presence of partner proteins located in
the cell membrane, which may form heteromeric complexes
perturbing FSH-dependent activity (32, 33). The expression levels
of these molecules may vary during developmental stages of the
follicle (4). FSHR, as many other GPCRs, is demonstrated to form
homo- and heteromeric complexes on the cell surface with other
receptors with similar protein structure (32–34). For instance, the
presence of FSHR/LHCGR complexes was reported when
overexpressed in transiently transfected cells (11, 33, 34) and
December 2021 | Volume 12 | Article 791763
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genetically modified mice (35). After binding LH, LHCGR
independently activates two G protein-dependent signaling
pathways, adenylyl cyclase, activating cAMP and the downstream
cAMP-response element binding protein (CREB), ERK1/2 mainly
via Gai protein and b-arrestins, and PLC for Ca2+ mobilization
from intracellular stores (36, 37). Gq- or bg-dependent
phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)-
pathway activation occurs simultaneously, promoting cell
survival and growth. LHCGR target genes, such as the
steroidogenic acute regulatory protein (STARD1), mediate
steroidogenic and anti-apoptotic/proliferative events in granulosa
cells (38). At the intracellular level, the interaction between the two
receptors would result in the modulation of the LH-induced
signaling, occurring in the presence of FSH, which results in the
potentiation of anti-apoptotic signals (39) and receptor-receptor
interactions (40). Finally, the interaction between FSHR and
LHCGR is linked to abolition of Ca2+ responses, due to
rearrangements of the receptor structure impairing Gq protein
associations (32). Therefore, LHCGR is a known membrane FSHR
partner, in granulosa cells, impacting the FSH-specific signals.

More recently, FSHR was demonstrated to interact with the G
protein-coupled estrogen receptor (GPER). FSHR/GPER
complexes would be present on the surface of primary granulosa
cells, where they inhibit the intracellular cAMP accumulation and
stimulate proliferative signals activating the AKT pathway upon
FSH binding (4, 41). The balance between cAMP- and AKT-
dependent events would play a key role in determining the fate of
the ovarian follicle, which could be addressed to dominance or
atresia, and is linked to the responsiveness to controlled ovarian
stimulation treatments (41). Taken together, those findings add
new insights in the understanding of the crosstalk between
signalling cascades and suggest that FSHR signaling may be
modulated by disrupting compounds targeting membrane
partners co-expressed during the antral stage.
Frontiers in Endocrinology | www.frontiersin.org 3
MAIN FACTORS DISRUPTING
REPRODUCTIVE FUNCTIONS

Over the years, certain chemicals or compounds, either natural or
synthetic, present in the environment have been identified to
disrupt the endocrine function of the reproductive system. Such
compounds are termed endocrine disruptors (EDs) and may
disrupt normal homeostatic endocrine function. Additionally,
certain compounds bind to a site distinct from the ligand
binding site and impacts receptor signalling, acting as allosteric
modulators. These molecules can bias, positively or negatively the
signal transduction pathways linked to ovarian receptors. The
mode of action of most of the EDs or allosteric modulators has not
been clearly determined, and more studies are still required to
fathom their effect on female reproductive health. According to a
recent consensus statement (42), an EDmay have the following ten
characteristics: 1) interacts with or activates hormone receptors, 2)
antagonizes hormone receptors, 3) alters hormone receptor
expression, 4) alters signal transduction in hormone-responsive
cells, 5) induces epigenetic modifications in hormone-producing
or hormone-responsive cells, 6) alters hormone synthesis, 7)
alters hormone transport across cell membranes, 8) alters
hormone distribution or circulating levels of hormones, 9) alters
hormone metabolism or clearance and 10) alters the fate
of hormone-producing or hormone-responsive cells. EDs include
natural compounds such as phytoestrogens (e,g., genistein and
coumestrol), polycyclic aromatic hydrocarbons [benzo(a)pyrene]
and synthetic chemicals used as industrial solvents/lubricants and
their byproducts [polychlorinated biphenyls (PCBs),
polybrominated biphenyls (PBBs), dioxins], plastics [bisphenol A
(BPA)], plasticizers (phthalates), pesticides [methoxychlor,
dichlorodiphenyltrichloroethane (DDT)], fungicides
(vinclozolin), and pharmaceutical agents [diethylstilbestrol
(DES)]. EDs such as pesticides and insecticides, factory smoke
FIGURE 1 | Complexity of the FSHR signaling regulation. Molecules with disrupting activity might potentially interfere with the FSH-induced signaling, impacting
FSHR expression levels, receptor conformational assembly and cis/trans-activation, the compartmentalization of ligand-receptor complexes, and biased signaling,
acting as allosteric modulators. Finally, disrupting molecules may modulate serum FSH levels or hormone binding to the receptor.
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and household dust (43), access human through air by means of
aerosol spray, contaminated water and through food by means of
leaching of these chemicals from packaging. Moreover, EDs may
come from consumption of animals, fish or plants exposed to these
chemicals (44–47). Despite different route of exposure, EDs affect
both men and women of different age leading to detrimental
reproductive outcomes including infertility, endometriosis, and
polycystic ovarian syndrome (PCOS) (48, 49). Although some
chemicals are banned because of recognized ED effect, they still
persist in the environment and have different effects on
reproductive health, depending if the exposure occurs at the
prenatal, perinatal, or postnatal age (50). They are known to
affect steroidogenesis and folliculogenesis (51), thereby causing
infertility, poor implantation and interference with placental
functions (52–54). The exact mechanism of their mode of action
is often unknown, however, the regulation of ovarian antral
follicles by gonadotropins could be a site not to be overlooked.
Due to the scarcity of available literature on the mechanism of
binding of the ED, it is imperative to discuss this in the light of
allosteric modulators. Allosteric modulators are thought to bind to
the TMD of the receptor. Very recently, a study unravelled the
cryo-electron microscopy structure of full-length LHCGR,
revealing a ‘push-and-pull’ mechanism for the LHCGR
activation, i.e., the ECD is pushed by the bound hCG and pulled
by the hinge loop next to TMD (55). When Org43553, an allosteric
agonist was used, it bound to a pocket of the TMD and interacted
with a highly conserved 10-residue fragment (P10), thereby
stabilizing the active conformation (55). While, LUF5771, an
allosteric LHCGR inhibitor, interacted directly with hydrophobic
aminoacids in the minor pocket formed between transmembrane
helices 1-2 and 7, which restricted the receptor to a more inactive
conformation (56). Perhaps, these studies could be used as a
common model for understanding the structure-function
relationship of FSHR with their agonist or antagonists. In fact,
the crystal structure of FSH bound to FSHR ECD revealed that the
FSH binding to the inner concave surface of leucine-rich repeats
Frontiers in Endocrinology | www.frontiersin.org 4
(LRR), present in ECD, exposes the sTyr-binding pocket in the
FSH ligand. Following this, the FSHR inserts its sTyr into the FSH
nascent pocket, thereby activating the receptor (57). ADX68692,
an allosteric inhibitor of FSHR, was proposed to act by disturbing
TMD and thereby to open up the FSHR trimer to allow binding of
two additional FSH as they suggested that FSHR trimer could bind
to only one FSH to engage G protein and subsequent activation of
adenylate cyclase (58). Since the allosteric site is highly conserved
in the other glycoprotein hormone receptors like LHR and TSHR,
the final effects on the FSH-dependent follicular growth could be
indirectly mediated through these other receptors as well. Possibly,
these mechanisms could throw some light on the mechanism of
interaction of ED with FSHR.
IMPACT OF EDS ON FSHR EXPRESSION,
FUNCTIONING, AND SIGNALING

It was suggested that some EDs act through a direct effect on
FSHR transcription, protein-mediated intracellular signaling
(Figure 2). An example is provided by 1-chloro-4-[2,2,2-
trichloro-1-(4-chlorophenyl)ethyl]benzene (p,p’-DDT), which
interacts with a specific amino acid portion of FSHR, thereby
modifying the physiochemical environment of TMD of the
receptor and acting as a positive allosteric modulator. Also, the
binding of p,p’-DDT released the inhibitory interaction of
ectodomain to TMD of the receptor to increase the sensitivity
of the receptor to human chorionic gonadotropin (hCG), which
it is not its canonical ligand (59). This study also confirms the
idea that the main target of ED is receptor itself and thereby
mediating its effect. In another study, DDT exerted its inhibitory
effect on cAMP accumulation in thyroid-stimulating hormone
receptor (TSHR)-expressing Chinese hamnster ovary (CHO)
cells by inhibiting the constitutive activity of TSHR and not
due to any other downstream effectors like Gas protein (60).
However, other molecular mechanisms of endocrine disruption
FIGURE 2 | Action of EDs in disrupting FSH-dependent endocrine signals in the ovary. Depending on the type of EDs, the FSH signal may be modulated due to
changes of FSH levels, FSHR expression and attenuation of active conformation, perturbation of interaction with membrane GPCR partners, intracellular signaling
cascades and target gene expression, synthesis of steroids and granulosa cell viability.
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were found. For instance, exposure to benzene, a major product
from tobacco smoking, automobile service stations, exhaust from
motor vehicles and industrial emissions, has been shown to
negatively impact the ovarian function in in vitro fertilization
(IVF) settings (61). It adversely affected ovarian response to
exogeneous gonadotropins, reducing follicular reserve via
modulation of the transduction efficiency of FSHR (61).
Another example is provided by the in vitro effect of carbon-
black nanoparticles, where these inhibited FSH-induced
aromatase expression and activity in the KGN human
granulosa cell line (62). A different mechanism of action seems
to involve the endocrine disruption caused by mono(2-
ethylhexyl) phthalate (MEHP), the active metabolite of di(2-
ethylhexyl) phthalate (DEHP). It decreased FSH-induced cAMP
accumulation in rat granulosa cells (63), suggesting that this ED
impacts directly FSHR functions or, at least, the early signaling of
the receptor. These effects have repercussions on FSH-induced
progesterone production, which is inhibited by MEHP likely via
a protein kinase-C independent mechanism (64). In contrast, a
study in rat ovarian granulosa cells in vitro showed that MEHP
(25-100 µM) inhibited granulosa cell proliferation, upregulated
expression of sex steroid receptors and key enzymes in
progesterone production, finally resulting in increased
progesterone and estradiol synthesis (65). Therefore, MEHP
seems to modulate “species-specific” effects which might rely
on differences of receptor structure, as well as on other ovarian
molecular targets and hormonal milieu. In any case, given that
MEHP impacts the role of sex steroids fundamental to support
follicular maturation, we may speculate that accumulation of this
compound in the environment requires attention to preserve
human health. Moreover, monitoring of the MEHP precursor
DEHP is worth attention as well. Prolonged exposures to a lower
dose (0.05mg/kg/day) of DEHP resulted in reduced expression of
Cyp17a1, Cyp19a1, progesterone receptor (Pgr), Lhcgr and Fshr in
the adult ovary (PND41) of CD-1 mice, affecting ovarian
steroidogenesis (66). Interestingly, short-term exposure to
DEHP increased FSH at multiple doses until 6 months post-
dosing, likely consisting in the compensatory feedback
mechanism due to low Fshr expression and subsequent
insufficient follicular response to physiological FSH levels (67).
Similar results were obtained upon treatment of female mice with
chlorothalonil, a fungicide used in horticulture (68). In any case,
the DEHP mechanism of action seems to be opposite, or anyway
different to that of the dimethyl phthalate (DMP). Indeed, long
term exposure to DMP is linked to decreased secretion of FSH
and increased secretion of estradiol and LH in C57 female mice.
DMP also interferes with the pituitary-ovary axis and increased
the apoptosis rate of ovarian granulosa cells (69). The treatment
with dibutyl phthalate (DBP) (0.1 mg/kg/day) increased FSH
production even in CD-1 mice, reducing the antral follicle
number and increasing mRNA level of pro-apoptotic genes,
such as Bax, Bad and Bid (70). In vitro studies attempted to
elucidate the DBP mechanism of action. For instance, in the
tumour cell line KGN, 24-h treatment with 0.1 µM DBP
upregulated FSHR mRNA, as well as CYP19A1 mRNA and
protein, and increased estradiol production (71). In rat
Frontiers in Endocrinology | www.frontiersin.org 5
granulosa cells and preantral follicles treated by DBP in vitro,
FSH failed to induce KIT ligand mRNA and protein expression,
and steroidogenesis, due to FSHR downregulation (72). Thus,
experiments using DBP strengthened the hypothesis that EDs
modulate species-specific effects.

Interestingly, some studies tested the effects of a mixture of
different EDs. For instance, a combination of three phthalates
[bis (2-ethylhexyl), dibutyl, and benzyl butyl] and two
alkylphenols (4-nonylphenol and 4-tert-octylphenol) decreased
both mRNA and protein expression of Fshr, Lhr, and Cyp19a1 in
female mice, at 10 mg/kg/d. These changes resulted in altered
steroidogenesis and loss of antral follicles (73), suggesting that
the exposure to multiple EDs may be linked to cumulative,
disruptive actions with effects even more deleterious than those
of one single compound.

One of the most studied ED is the BPA, which is known to
interfere with the estrogen signaling and to suppress ovarian
function in aquatic animals, such as the zebrafish (74). In this
case, the endocrine disruptive effect is suggested to rely on
interference with estrogens and LH receptor-controlled gene
expression (75). However, exposure to environmental-relevant
levels of BPA has been shown to alter steroidogenesis and
downregulated the expression of Gs protein suggesting the
suppression of the FSHR/Gas protein/adenylyl cyclase signaling
pathway, in human granulosa cell lines (76). BPA was also shown
to downregulate FSH-stimulated insulin-like growth factor 1
(IGF-1), steroidogenic factor-1 (SF-1), GATA4, aromatase, and
estradiol in human granulosa cells by upregulating the expression
of peroxisome proliferator-activated receptor-gamma (PPARg)
(77). In vivo data from pregnant female rats also revealed the
potential impact of BPA on the foetus (78). Offspring born from
mothers perinatally exposed to this molecule had impaired
ovarian response to gonadotropins. Offspring treated with
gonadotropins, i.e. pregnant mare serum gonadotropins (PMSG)
and human choriogonadotropin (hCG) developed persistent, high
Fshr mRNA expression. As a result, the ovarian follicles of these
mice had a decreased number of follicles, during the antral stage,
and they were characterized by relatively high expression of the
progesterone receptor. After ovulation, there was an increase in
antral atretic follicles, reduced Lhr mRNA expression and high
serum levels of estradiol (78). Taken together, these studies
suggested that BPA may directly impact FSHR-mediated signals.
However, recent data revealing the molecular basis by which BPA
may bind GPER (79) are suggestive of modulatory effects of FSH
signals via targeting of FSHR membrane partners. In fact, BPA
induced KGN granulosa cell death via GPER-mediated activation
of reactive oxygen species (ROS) and intracellular calcium Ca2+

increase, in vitro (80). Given that GPER and FSHR may cooperate
to support follicle selection and maturation during the antral stage
(41), these data suggest that FSHR-mediated intracellular signaling
might be perturbed upon disruption of GPER action. Similarly, in
chickens, it was demonstrated that 4-Nonylphenol (4-NP)
downregulated the ovarian expression of both FSHR and LHR,
while it upregulated the levels of steroidogenic enzymes and of the
estrogen receptor alpha (era) (81). Again, these data may lead to
the hypothesis that the disruptive effect of some EDs could be due
December 2021 | Volume 12 | Article 791763
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to the action on FSHR membrane partners, although physical
interactions between gonadotropin receptors were never
demonstrated in chicken ovaries.

Although some ED mechanisms of action are well-defined,
there are experimental limitations preventing conclusive
assumptions. First, long treatment time is required to provide
useful information, but it is not necessarily possible to set properly
long in vitro experiment. Moreover, in a large part of cases,
specimens used for in vivo experiments do not provide results
translatable to human. Finally, real control groups unexposed to
EDs were not possible due to the presence of interfering molecules
in laboratory plastics and in the environment (82).
ED’S EFFECTS INDIRECTLY
RELATED TO FSHR

Antral folliculogenesis is regulated by various endocrine and
paracrine factors, including gonadotropins (83). Therefore,
disruption of antral folliculogenesis (Figure 3) is suggestive of
a possible link with infertility. It is known that different EDs can
affect antral folliculogenesis (84). BPA, a well-studied ED whose
primary source is diet (85, 86), has been shown to affect antral
folliculogenesis. In a study conducted on adult female rats
exposed to BPA (25 ng/kg/d or 5 mg/kg/d) for 15 days, a
reversible decrease in antral follicles and corpora lutea was
noted, likely inducing delay and decrease of the LH surge
amplitude (87). BPA exposure of 28-week old rats for 42 days
resulted in large, antral-like follicles and atretic, cystic-like
follicles that did not reach ovulation stage (88). Using an in-
vitro follicle culture system, it was found that BPA inhibited
follicle growth and steroidogenesis in mouse ovarian antral
Frontiers in Endocrinology | www.frontiersin.org 6
follicles (89). In a later study, the same authors demonstrated
that BPA likely reversibly targets genes coding steroidogenic
enzymes, inhibiting steroid hormone production (90). At low
concentration, BPA could induce epigenetic changes during
follicle culture and oocyte growth that may affect health of the
offspring (91). Moreover, exposure to BPA during the early
postnatal period is linked to decreased methylation of IGF2R
and PEG3 imprinted genes and suppresses the expression of
DNA methylation transferases, which were closely related to
oocyte growth. In human, a link between BPA exposure and
PCOS was found. In women with PCOS, an inverse association
between urinary BPA concentration and antral follicle count was
demonstrated, suggesting that BPA affects ovarian follicle and
thereby will reduce ovarian reserve (92). BPA was found to be
associated with women undergoing medically assisted
reproduction as well. In such women, high urinary BPA levels
were associated with low antral follicle count which could result
in accelerated follicle loss (93). Finally, it was demonstrated that
BPA may lead to kidney alterations (94, 95). These data support
the concept by which BPA could extend the gonadotropins’ half-
life by decreasing the renal glomerular filtration (96), thus
exposing the organism to persisting FSH-mediated effects.

Other highly investigated EDs are phthalates. DEHP and
MEHP are the most commonly used phthalate ester present in
consumer products. Several studies have shown that both DEHP
and MEHP affects female fertility by affecting antral follicle
functionality. An in vitro study has demonstrated that DEHP
and MEHP directly inhibit antral follicle growth via a mechanism
that partially includes reduction in levels of estradiol production
and decreased expression of cell cycle regulators (97). DEHP
inhibits follicle growth possibly through dysregulation of the cell
cycle, induces atresia likely via dysregulation of apoptosis, and
FIGURE 3 | Point of action of EDs in the antral stage of folliculogenesis. Variations of hormone and receptor expression levels are shown together with follicle
growth. EDs are located within coloured squares indicating the endpoint that they may modulate directly (green) or indirectly (orange). MEHP, mono(2-ethylhexyl)
phthalate; DEHP, di(2-ethylhexyl) phthalate; DBP, dibutyl phthalate; DMP, dimethyl phthalate; MXC, Methoxychlor; TCDD, 2,3,7,8-Tetrachlorodibenzo-p-Dioxin; BPA,
bisphenol A; 4-NP, 4-Nonylphenol; p’p-DDT, methoxychlor, dichlorodiphenyltrichloroethane; MOH, 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl) ethane;
HPTE, 1,1,1-trichloro-2,2-bis(4-hydroxyphenyl).
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inhibits steroidogenesis possibly due to lack of upstream sex
steroid hormones and disruption of the steroidogenic enzymes
(98). Exposure of female mice to DEHP has been shown to disrupt
steriodogenic enzymes in F2 and F3 generations and altered DNA
methylation in the ovaries (99, 100). In fact, it is known that EDs
may alter the epigenetic profile (101), as a disrupting event that
was described to occur at the level of non coding RNAs, such as the
transfer RNA (tRNA) possibly impacting protein expression levels
(102). Certain studies have used a mixture of chemical compounds
to evaluate their conjoint effect on female reproductive health. In a
study employing a mixture of phthalates (DEHP, dibutyl, and
benzyl butyl) and alkyl phenols (4-nonylphenol and 4-tert-
octylphenol) at an environmentally relevant dose, the authors
demonstrated reproductive alterations in chronically exposed
female mice. At the lowest dose (1-mg/kg BW/d), the mixture
delayed the onset of puberty and the transition from preantral to
antral follicles, whereas the highest dose used (10-mg/kg BW/d)
decreased the number of antral follicles and gonadotropin receptor
expression (73). Methoxychlor (MXC) is an organochlorine
pesticide that affect female reproductive health and gains access
to humans primarily through contaminated food and water (103).
Adult female mice exposed to MXC showed ovarian atrophy due
to inhibition of folliculogenesis leading to atretic follicles and
reduced ovulation (104). Further studies have shown that MXC
promotes antral follicle atresia in female mice (105, 106) and
inhibits steroidogenesis (106, 107). MXC mainly acts through its
metabolites, 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-
methoxyphenyl) ethane (MOH) and the bisphenolic compound
1,1,1-trichloro-2,2-bis(4-hydroxyphenyl) ethane (HPTE). MOH
inhibits steroidogenesis both by reducing the availability of
pregnenolone (108) and by inhibiting the expression levels of
key steroidogenic enzymes, Cyp11a1, Cyp17a1, and Cyp19a1
mRNA in mouse antral follicles in vitro (109). Similarly, HPTE
(1–10 mM) reduces FSH-stimulated synthesis of progesterone and
estrogen by lowering the Cyp11a1 and Cyp19a1mRNA in cultured
rat granulosa cells (109). 2,3,7,8-Tetrachlorodibenzo-p-Dioxin
(TCDD) belongs to a class of dioxins that disrupts
folliculogenesis, steriodogenesis and ovulation. TCDD has an
antiproliferative effect on the rat ovary as suggested by decreased
number of antral follicles without increasing atresia on TCDD
exposure (110). TCDD blocks ovulation in gonadotropin-primed
immature rats by reducing the number of granulosa cells in S
phase and inhibiting the levels of cyclin dependent kinase 2 (Cdk2)
and Ccnd2 (111). Another study in rat granulosa cells showed that
TCDD (10pM) suppresses the expression and mRNA stability of
FSH-induced LH receptors, suggesting that TCDD disrupts the
signaling pathway that responds to LH-induced ovulation (112).
TCDD exposure also decreases ovarian steroidogenesis by
inhibiting key steroidogenic enzymes (Hsd17b1and Cyp19a1),
leading to reduced steroidogenic capacity of antral follicles (113).

Finally, several EDs target the ovary and affect folliculogenesis,
ovulation and steroidogenesis, via effects indirectly targeting
gonadotropin-dependent functions. These compounds impact
folliculogenesis, ovulation and steroidogenesis, and may induce a
long-lasting effect on reproductive, but also on non-reproductive
health as these processes are important for the cardiovascular,
Frontiers in Endocrinology | www.frontiersin.org 7
skeletal and brain health. In vitro studies provided evidence,
partially confirmed in animal models (114, 115), suggesting a
possible disruptive effect of environmental pollutants on the antral
stage. However, the impact on human folliculogenesis is still
poorly known and could be elucidated by long-term
epidemiological observations on large datasets. These data shed
lights on EDs’ new modes of action. These compounds were
classically described as molecules targeting the orthosteric site of
nuclear hormone receptors, while recent studies suggested that
theymight bind a structurally similar allosteric site of other GPCRs
(116). Therefore, screening methods based on molecular docking
could be used for predicting potential, new EDs binding to FSHR.
CONCLUSIONS

Environmental pollutants which cause endocrine disruption may
impact FSHR signals at different levels. They may target direcly
receptors expressed in the surface of ovarian cells, acting as
allosteric modulators and binding promiscuity. Other
compounds up- or downregulate receptor expression or are
suggestive of FSH signal disruption altering signaling to FSHR
membrane partner receptors, modulating their physical
interaction or the crosstalk between intrracellular signaling
pathways. These actions may negatively impact oocyte
maturation, which occurs during the antral follicular stage
accompanied by FSHR expression. Although evidence is
accumulating over the last years, there are experimental
limitations, such as the presence of EDs in laboratory plastics,
to overcome before achieving a full dissection of molecular
mechanisms at the basis of FSHR signal disruption. Further
EDs could be discovered by docking studies evaluating potential
interactions between these molecules and FSHR allosteric sites.
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