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The Flavivirus genus is made up of viruses that are either mosquito-borne or

tick-borne and other viruses transmitted by unknown vectors. Flaviviruses

present a significant threat to global health and infect up to 400 million of

people annually. As the climate continues to change throughout the world,

these viruses have become prominent infections, with increasing number of

infections being detected beyond tropical borders. These include dengue virus

(DENV), West Nile virus (WNV), Japanese encephalitis virus (JEV), and Zika virus

(ZIKV). Several highly conserved epitopes of flaviviruses had been identified and

reported to interact with antibodies, which lead to cross-reactivity results. The

major interest of this review paper is mainly focused on the serological cross-

reactivity between DENV serotypes, ZIKV, WNV, and JEV. Direct and molecular

techniques are required in the diagnosis of Flavivirus-associated human

disease. In this review, the serological assays such as neutralization tests,

enzyme-linked immunosorbent assay, hemagglutination-inhibition test,

Western blot test, and immunofluorescence test will be discussed.

Serological assays that have been developed are able to detect different

immunoglobulin isotypes (IgM, IgG, and IgA); however, it is challenging when

interpreting the serological results due to the broad antigenic cross-reactivity

of antibodies to these viruses. However, the neutralization tests are still

considered as the gold standard to differentiate these flaviviruses.

KEYWORDS

serological cross reactivity, flaviviruses, cross-protection, antibody assays, antibodies
Introduction to Flavivirus

Characteristically, flaviviruses are RNA viruses that are enveloped and encode a

positive single-stranded genome. These 11-kb viruses of the genus Flavivirus belong to

the family Flaviviridae (Huang et al., 2014). Out of the 53 recognized Flavivirus spp., 40
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are known to cause human diseases (Gubler et al., 2007).

Flaviviruses are transmitted to vertebrates through the bites of

infected mosquitoes and ticks, producing disease in animals and

human (Gould & Solomon, 2008; Chong et al., 2019). The bite of

an infected vector spreads the virus through the blood stream

and lymphatics, and replication is seen in many organs.

Flaviviruses that are pathogenic for humans include West Nile

virus (WNV), yellow fever virus (YFV), Japanese encephalitis

virus (JEV), dengue virus (DENV), Zika virus (ZIKV), and tick-

borne encephalitis virus (TBEV) (Simmonds et al., 2017).

Classification of the virus is complicated due to its extensive

geographical distribution and transmission of the vectors.

As of 2015, DENV, JEV, and WNV are the most common

Flavivirus infections (Daep et al., 2014). These pathogens

represent a significant burden of disease, causing about 400

million cases with 100 million symptomatic cases each year with

dengue alone (Bhatt et al., 2013). These viruses mainly cause

hemorrhagic disease and encephalitis. For instance, the secondary

infection with DENV can cause hemorrhagic fever, while

infections with neurotropic Flavivirus such as JEV, TBEV, and

WNV are responsible for viral encephalitis worldwide

(Mathengtheng & Burt, 2014; Johnson, 2016). The clinical

manifestations of Flavivirus infections can range from

undifferentiated fever and mild symptoms to more severe

conditions that can be fatal. Forty percent of the world’s

population is affected by dengue. In the past 50 years, a 30-fold

increase in dengue cases have been reported (Kyle &Harris, 2008).

It has been reported that DENV infection can lead to dengue

shock syndrome (DSS) or dengue hemorrhagic fever (DHF) with

20,000 fatalities every year (Webster et al., 2009). Another

Flavivirus, JEV, is endemic in the Western Pacific and Southeast

Asia, and it is estimated that at least 68,000 cases are reported

every year in these regions and the infection may be symptomatic

or asymptomatic with a 20%–30% fatality rate (Solomon, 2004).
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In tropical and subtropical countries, Flavivirus infections

represent a global public health problem. This has major

economic, social, and individual consequences to those in

these regions (Musso & Desprès, 2020). Rapid climate change,

improper controlled urbanization, traveling within endemic

areas, migration of populations, and extensive deforestation is

associated with flaviviruses adapting to new habitats and host

species. These are the main factors that contribute to the rising

trend of Flavivirus infections and transmission of viruses into

previously non-endemic areas (Pandit et al., 2018; Argondizzo

et al., 2020). These are exemplified by ZIKV emergence in South

America in 2015 and Europe in 2019 (Khawar et al., 2017; Giron

et al., 2019), outbreaks of WNV in Europe and North America

from the 2000s (Tsai et al., 1998; Nash et al., 2001), and YFV

outbreaks in Brazil and Africa (Kraemer et al., 2017; Hamer

et al., 2018).
Flavivirus genomic organization

Among flaviviruses, genome organization is similar.

Basically, the genome encodes three structural proteins (capsid

[C], pre-membrane [prM], and envelope [E]) and seven non-

structural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B,

and NS5) as shown in Figure 1. The structural and non-

structural proteins are essential in the formation of virus

particles, viral replication, viral polyprotein processing, and

cell receptor binding and entry (Mazeaud et al., 2018; Chong

et al., 2019).

Cross-reactive epitopes of Flavivirus E protein
Flaviviruses enter target cells through the interaction of viral

E protein with the host surface receptors. Thus, the main

antigenic target for antibody responses to DENV is the E
A

B

FIGURE 1

Flavivirus genomic organization. (A) A schematic representation of Flavivirus genomic organization. (B) Primary structure of Flavivirus E protein
ectodomain showing EDI (pink), EDII (light blue), and EDIII (orange). The stem region and the transmembrane (TM) domain represented in black
and blue, respectively.
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protein, which is the most exposed protein on the virus and

considered as the main antigenic target for antibody responses in

patients (Pierson et al., 2008; Beltramello et al., 2010; Xu et al.,

2012). The E protein is made up of three domains (EDI, EDII,

and EDIII), and it is EDIII that interacts with attachment factors

and receptors (Pierson & Kielian, 2013). Potent neutralizing

antibodies are induced by EDIII due to the presence of

important antigenic epitopes with strong antigenicity. EDIII is

also a common antigen used in serological diagnosis (Chávez

et al., 2010; Matsui et al., 2010). On the other hand, anti-EDI and

anti-EDII antibodies are less potent but show a broader cross-

reactivity among different strains of flaviviruses than those

against EDIII (Sun et al., 2017).

Venkatachalam and Subramaniyan (2014) performed multiple

sequence alignment of E protein of the four DENV serotypes to

study the conservation and homology of amino acids. Their results

indicated a close relationship between DENV1 and DENV3, which

showed the highest percentage of homology of up to 78.4%.

DENV1 with DENV2 and DENV2 with DENV3 showed 66.1%

and 66.3% amino acid identity, respectively, while DENV1 with

DENV4, DENV2 with DENV4, and DENV3 with DENV4 showed

63.3%, 62.8%, and 63.4% homology, respectively, indicating that

DENV4 showed a distant relationship with the three serotypes.

Other similar studies using multiple sequence alignment of E

protein among flaviviruses showed that the similarity between

YFV and TBEV are highly related but distant from the four

DENV, WNV, JEV, and ZIKV (Chakraborty, 2016). Other than

that, it has been reported that the E protein of ZIKV and DENV2

share ~54% amino acid sequence identity (Priyamvada et al., 2016;

Stettler et al., 2016). ZIKV also shares 57% amino acid sequence

identity with WNV, 56.1% with JEV, 55.6% with DENV, and 46%

with YFV (Chang et al., 2017). A phylogenetic study by Kuno et al.

(1998) indicated that non-vector and vector-borne virus clusters

emerged from a putative ancestor, and it is from the vector-borne

cluster that tick- and mosquito-borne virus clusters emerged. Their

observations suggested that the viruses of this genus evolved from

non-vector group to tick-borne and then to mosquito-borne group.
Frontiers in Cellular and Infection Microbiology 03
It had been reported by Li et al. (2016) that the monoclonal

antibody (mAb) 3B6 binds to the EXE/DPPFG epitope in E

protein domain III, which is highly conserved (approximately

85%) in DENV, WNV, ZIKV, JEV, Murray Valley encephalitis

virus (MVEV), and Saint Louis encephalitis (SLEV), indicating

that the function of the epitope is similar in these viruses. The

cross-reactivity of DENV-, YFV-, ZIKV-, and WNV-positive

sera suggested that the EXE/DPPFG epitope is an

immunodominant epitope among flaviviruses. The sequences

of the E protein of DENV serotypes, WNV, JEV, MVEV, and

SLEV were obtained from National Center for Biotechnology

Information (NCBI), and the multiple sequences alignment are

shown in Table 1. The dashes indicate identical amino acids,

while the EXE/DPPFG epitope region is indicated by gray

shading. Figure 2 shows the molecular structure of DENV1 E

protein and the EXE/DPPFG epitope located at EDIII.

Other than that, Deng et al. (2011) reported that the mAb

2A10G6, which potently neutralizes DENV serotypes, TBEV,

JEV, WNV, and YFV, showed a board cross-reactivity to the
98DRXW101 motif, which is the highly conserved Flavivirus

fusion loop peptide. The comparison of 2A10G6 epitope of

these flaviviruses is shown in Table 2, and the epitope region is

indicated by gray shading. Figure 3 shows the structure of

2A10G6 epitope in DENV1, which is located at EDII.

There are several cross-reactivity epitopes on the surface of

flaviviruses E protein that determine antibody binding and

neutralization properties. Table 3 below summarizes some

epitopes and residues that were located at different domains of

E protein that show cross-reactivity among flaviviruses.
Diagnosis of Flavivirus-associated
human disease

In the diagnosis of Flavivirus-associated human disease,

laboratory testing is required. The tests used either directly

detected the infecting agent or through the detection of
TABLE 1 Sequence alignment of highly conserved flaviviruses E protein EXE/DPPFG epitope.

Epitope Accession No. Sequence

DENV1 NP_722460.2 361 KEKPVNIEAE―PPFGESYIVVGAGEKALKLS 390

DENV2 NP_739583.2 360 EKDSPVNIEAE―PPFGDSYIIIGVEPGQLKLN 390

DENV3 YP_001531168.2 358 KKEEPVNIEAE―PPFGESNIVIGIGDNALKIN 388

DENV4 NP_740317.1 360 NTNSVTNIELE―PPFGDSYIVIGVGNSALTLH 390

WNV YP_001527880.1 366 TANAKVLIELE―PPFGDSYIVVGRGEQQINH 395

WNV AEB66112.1 366 TANAKVLIELE―PPFGDSYIVVGRGEQQINH 395

JEV NP_059434.1 366 ANSKVLVEME―PPFGDSYIVVGRGDKQINH 394

JEV AAA67173.1 366 ANSKVLVEME―PPFGDSYIVVGRGDKQINH 394

YFV NP_740305.1 358 TNDDEVLIEVN―PPFGDSYIIVGRGDSRLTYQ 388

YFV QHB50138.1 358 TNDDEVLIEVN―PPFGDSYIIVGTGDSRLTYQ 388

MVEV NP_722531.1 367 ANAKVLVEIE―PPFGDSYIVVGRGDKQINHH 396

SLEV YP_009329949.1 367 ANNKVMIEVE―PPFGDSYIVVGRGTTQINYH 396
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antibodies targeting the infecting virus. The advantages and

limitations of several laboratory techniques used for the

diagnosis of Flavivirus are shown in Table 4.

Cross-reactivity among flaviviruses was first shown with

complement fixation tests (Casals, 1957) followed by the

hemagglutination-inhibition assay (Casals & Brown, 1954).

Virus-neutralizing tests have strengthened this concept of

cross-reactivity and enabled segregation of flaviviruses into the

different arthropod-borne viruses and those with unknown

arthropod vectors (Calisher et al., 1989). The antigenic

similarities between flaviviruses indicate one aspect of the

similarities observed among flaviviruses. Both species-specific

and Flavivirus cross-reactive antibodies are produced when

infection with one Flavivirus occurs. The majority of

flaviviruses that are relevant to human disease were organized
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into eight serocomplexes that cause cross-reactive immune

responses (Rathore & St. John, 2020) consistent for multiple

mammalian species (Saron et al., 2018). This cross-reactivity is

said to be not durable and hence not retained (Collins et al.,

2017). Multiple exposures to various flaviviruses make it

extremely difficult to determine the latest infection (Mansfield

et al., 2011). This high degree of cross-reactivity further

emphasizes the need for virological confirmation.

The detection of the viral genome using PCR-based

techniques are highly specific but require clinical laboratories

with advanced technology. Despite the broad antigenic cross-

reactivity of anti-Flavivirus antibodies, serological assays are still

widely used to detect different immunoglobulin isotypes (IgM,

IgG, and IgA) (Allwinn et al., 2002; Mansfield et al., 2011; Papa

et al., 2011). However, the interpretation of these serological
FIGURE 2

The protein-dimer structure of DENV1 E protein and EAEPPFG epitope located at domain III. The brown, black, and blue circle represent the
domain I, domain II, and domain III, respectively, in one E protein monomer. Another monomer is colored gray. The red spheres located in EDIII
represent the EAEPPEG epitope.
TABLE 2 Comparison of flaviviruses E protein sequence on the 2A10G6 epitope.

Epitope Accession No. Sequence

DENV1 NP_722460.2 90 FVCRRTFVDRGWGNGCGLFGKGSLITC 116

DENV2 NP_739583.2 90 FVCKHSMVDRGWGNGCGLFGKGGIVT 115

DENV3 YP_001531168.2 90 YVCKHTYVDRGWGNGCGLFGKGSLVT 115

DENV4 NP_740317.1 90 YICRRDVVDRGWGNGCGLFGKGGVVT 115

WNV YP_001527880.1 90 FVCRQGVVDRGWGNGCGLFGKGSIDT 115

WNV AEB66112.1 90 FVCRQGVVDRGWGNGCGLFGKGSIDT 115

JEV NP_059434.1 90 YVCKQGFTDRGWGNGCGLFGKGSIDT 115

JEV AAA67173.1 90 YVCKQGFTDRGWGNGCGFFGKGSDT 115

YFV NP_740305.1 90 NACKRTYSDRGWGNGCGLFGKGSIVA 115

YFV QHB50138.1 90 NACKRTYSDRGWGNGCGLFGKGSIVA 115

MVEV NP_722531.1 90 YLCKRGVTDRGWGNGCGLFGKGSIDT 115

SLEV YP_009329949.1 90 FVCKRDVVDRGWGNGCGLFGKGSIDT 115
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results is challenging. The likelihood of experiencing multiple

Flavivirus infections has resulted in a need to understand the

effects of pre-existing immunity during a lifetime and its impact

on subsequent exposures. Animal models have been used, and

here, however, prior exposures were shown to be protective

(Tesh et al., 2002) within the same serocomplex (Williams et al.,

2001). However, for DENV, protection is seen only with the

homologous serotype (Sabin, 1952). Recent studies (Saron et al.,

2018) using JEV showed cross-protection against dengue viruses

with increased neutralizing antibodies. With ZIKV, both cross-

protection and immune-mediated pathology were noted

(Rathore et al., 2019). Therefore, the major interest of this
Frontiers in Cellular and Infection Microbiology 05
review paper is in characterizing the serological cross-reactivity

of DENV serotypes, ZIKV, WNV, and JEV.
Flavivirus serological assays

Currently, there are several serological assays that are able to

determine antibody levels to flaviviruses such as the Western

blott ing assay, dot-blot assay, neutral ization tests ,

hemagglutination-inhibition tests, IgM/IgG antibody-capture

ELISAs, immunofluorescent tests, microsphere immunoassays,

high-throughput and rapid microneutralization assays, lateral
FIGURE 3

Structure of 2A10G6 epitope of DENV1 E protein. The 98DRXW101 motif is labeled and colored as blue, purple, yellow, and orange, respectively,
according to the residue sequence.
TABLE 3 Flavivirus cross-reactive epitopes and residues located in E protein.

Epitopes Location References

A1 EDII, contains at least two independent and overlapping group-reactive epitopes, incorporating two or three of highly conserved fusion
peptide residues Gly104, Gly106, and Leu107.

(Crill and Chang,
2004)

A5 EDII, centers on conserved Trp231 and structurally related with neighbors Glu126 and Thr226.

E111 EDIII AB loop, EDIII residues 314–319. (Sukupolvi-Petty
et al., 2007)E114 EDIII

4E11 EDIII, residue 307, 308, 309, 310, 311, 312, 387, 389, and 391. (Lisova et al.,
2007)

EDIII, residue 306, 308, 381, 387, and 389. (Matsui et al.,
2009)

4G2-1 EDII, residue 101, 104, 106 and 107. (Chiou et al.,
2012)4G2-2 EDIII, residue 312, 315, 331, 332, and 389.

6B3B-3,
6B6C-1

EDIII, residue 312, 315, 329, 331, 332, and 332.

23-1, 23-2 EDII, residue 101 and 107

5-2 EDI, residue 138.
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flow tests, biosensors and microfluidic systems, and autologous

red blood cell agglutination tests (Hobson-Peters, 2012; Chong

et al., 2019).
Neutralization tests

Neutralizing anti-Flavivirus antibodies usually target highly

accessible epitopes, and the detection of neutralizing anti-

Flavivirus antibodies is correlated with the presence of the

specific IgG in blood specimens (Roehrig et al., 2008).

Neutralization tests are the most reliable serological assay and

are capable of providing high specificity among flaviviruses

(Russell & Nisalak, 1967). The plaque reduction neutralization

test (PRNT), micro-neutralization test (MNT), and virus

neutralization test (VNT) are considered as the gold standard

in quantifying and detecting the levels of neutralizing antibodies

against flaviviruses (Thomas et al., 2009; Guy et al., 2010;

Plotkin, 2010). MNT and VNT are the alternative methods of

PRNT, using 96-well microplates in the combination with

enzyme-linked immunoassays, which are cost effective and

widely automated (Li et al., 2017; Nurtop et al., 2018).

Calisher et al. (1989) stated that the PRNT test is the most

specific serological test to differentiate the infections caused by

flaviviruses in convalescent sera samples. The PRNT test can be

carried out in a test tube or microtiter plate. A serial dilution of

the serum sample is mixed with a standardized amount of virus.

The mixture is then tested for unbound virus by testing for viral

infectivity on virus-susceptible cells. Each virus that initiates a

productive infection can then be measured by first restricting the

spread of progeny virus by overlaying cells with a semi-solid

media. This results in the formation of a localized area of

infection (a plaque) that can be detected through a variety of

ways. The number of plaques is calculated and compared to the

initial concentration of virus to determine the percent reduction
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in total virus infectivity (Zannoli et al., 2018). The PRNT titer is

the titer that results in a reduction of 50%–90% plaques.

However, since PRNT is a labor-intensive, time-consuming,

and largely manual assay, it is challenging during the diagnosis

and is expensive especially when conducting large clinical trials

that might involve the testing of hundreds to thousands of

samples under good clinical laboratory practice conditions

(WHO, 2007; Maeda & Maeda, 2013). In addition,

neutralization tests require live virus, as the assay antigen, to

detect neutralizing antibodies. This has high variability between

assays and between laboratories due to the differences in cell

lines used, the maturation state of virus, the strain, and other

variations (WHO, 2007; Thomas et al., 2009). Moreover, the

laboratories that do not have access to live infectious viruses or

do not meet appropriate biosafety standards are unable to

perform neutralization tests.

For DENV, PRNT is the most widely accepted method in

measuring the virus-neutralizing antibodies (Roehrig et al.,

2008). Thomas et al. (2009) conducted a series of assays with

different cell lines, virus preparation, and the presence or

absence of complement to determine the variability in anti-

dengue virus PRNT assays and found that modification of these

conditions caused significant effects on PRNT titers, which can

be impacted not only by changing a single condition but also by

interaction between two or more conditions. Other than that,

Rainwater-Lovett et al. (2012) had carried out a systematic

review of human PRNT titers to DENV and concluded some

additional factors that may influence the PRNT titers. First, the

geographical areas of study population affect not only the strains

that a person is exposed to but also strains against which their

serum was tested. Second, based on the laboratory methods and

inclusion criteria on each study, there is likely a link between the

testing strains and primary or secondary DENV exposure.

Lastly, the quality, duration, and magnitude of antibodies

response induced by different infecting strains may differ,
TABLE 4 Methods for the diagnosis of human Flavivirus infections.

Methods Advantages Limitations References

Virus isolation • Direct pathogen detection
• Most specific and conclusive diagnosis

• Time consuming
• Laborious
• Requirement of acute sample
• Biosafety Laboratory considerations of level 2–4

• (Goncalves et al.,
2017)

• (Musso and
Desprès, 2020)

• (Samuel Sulca
Herencia, 2019)

RT-PCR • Detection of viral nuclei acids
• High sensitivity and specificity
• Rapidity

• Require careful handling to prevent cross-contamination
• Require specialized instrumentation
• Expensive

Viral antigen
capture

• Detection of acute of DENV based on the
capture of soluble NS1

• Easy to perform

• Only available for DENV
• Less accurate than viral isolation
• Requirement of acute sample

Serology • Detection through the capture of IgG/IgM or
virus neutralization assays

• Qualitative and quantitative serological diagnosis
tests

• Limited specificity and sensitivity
• False interpretation of DENV diagnostic might occur during

the secondary DENV infection
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highlighting the differences between strains that call for

further exploration.

The PRNT is useful for epidemiological or diagnostic

purposes as a reduction in plaque counts of ≥80% can ensure

prevention of cross-reactivity among flaviviruses in dengue

endemic areas. However, the PRNT50 titer is the preferred

value during the evaluation of vaccines for human use because

it affords acceptable sensitivity and specificity (WHO, 2007).

Timiryasova et al. (2013) had evaluated several parameters to

produce reliable test performance to support the vaccine

development program and validated assay reagents to ensure

that they are suitable for intended use and consistently

performing within the established limits. Their study showed

that the dengue PRNT50 for each of the serotypes of DENV is

precise, accurate, and specific, and it is suitable for detecting and

measuring specific neutralizing antibodies to each DENV

serotypes in human serum samples with a lower limit of

quantitation of 10. However, for dengue, PRNT remains as the

gold standard neutralization assay and is recommended by

WHO against which any new assay will need to be validated.

Among the flaviviruses, the exposed surfaces show the

highest degree of variation. The most potent neutralizing

epitopes are type specific, while those that promote antibody-

dependent enhancement of infection (ADE) belong to the cross-

reactive group (Rey et al., 2017). Of all the structural domains of

the E protein, the highly variable EDIII has the most potent

neutralizing activity (Stettler et al., 2016; Zhao et al., 2016).

However, these areas make up a small component of the human

response against WVN and DENV (Throsby et al., 2006;

Beltramello et al., 2010) and do not contribute significantly to

the neutralization activity present in serum (Wahala et al., 2009).

Patients infected with ZIKV who have high anti-EDIII titers

have also EDIII-specific neutralizing activity, indicating the

major role of these antibodies in ZIKV immunity. Some cross-

reactivity with DENV from memory cells was noted in

previously DENV-infected patients (Robbiani et al., 2017; Yu

et al., 2017). Other than that, there are also quaternary epitopes

restricted to the E–E dimer interface, and antibodies to these

epitopes have also been described in WNV-, JEV-, and ZIKV-

infected patients (Kaufmann et al., 2010; Hasan et al., 2017; Qiu

et al., 2018). Other regions implicated include the fusion loop

and the prM, but these areas are highly conserved between

DENV and ZIKV (Dejnirattisai et al., 2014; Rouvinski et al.,

2015), and antibody-escape mutations do not readily develop

(Abbink et al., 2018). Recently, cross-reactive antibody responses

were shown to promote ADE during the recent ZIKV outbreak

in areas with high DENV exposure. This may have been due to

the existing anti-DENV immunity and hence may also occur

against a wide variety of other flaviviruses (Halstead et al., 1980;

Fagbami et al., 1987). Evidence for this response was shown by

passive transfer of cross-reactive antibodies isolated from ZIKV-

and DENV-infected patients in AG129 mice (Stettler et al.,

2016). Other studies conducted were in Stat2−/− mice after
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intraperitoneal administration of DENV or WNV immune

sera (Bardina et al., 2017). In other human studies, it was

observed that following JEV vaccination, the cross-reactive

antibodies induced was found to be associated with an

increased risk of symptomatic dengue illness (Anderson et al.,

2011; Saito et al., 2016). However, evidence obtained from many

other studies showed otherwise with no effect in ZIKV-immune

macaques (George et al., 2017), whether exposed to DENV or

YFV (McCracken et al., 2017). Recently, a study of pregnant

women infected with ZIKV indicated that the presence of DENV

antibodies did not have any significant association with

congenital Zika syndrome (Halai et al., 2017).

Cross-reactivity of anti-Powassan virus (POWV) antibodies

against other tick-borne flaviviruses (TBFVs) and mosquito-

borne flaviviruses (MBFVs), which include TBEV, Gadgets

Gully virus (GGYV), Langat virus (LGTV), SLEV, ZIKV,

WNV, YFV, and Usutu virus (USUV), was shown in a study

conducted by VanBlargan et al. (2021). Their results revealed

that the anti-POWV antibodies were cross-reactive with other

flaviviruses and cross-neutralized other TBFVs. Moreover, the

studies stated that the cross-reactivity and cross-neutralization

of some POWN EDIII-specific mAbs occurred because of the

recognition of the lateral ridge/C–C’ loop epitope and thus were

protective against TBEV and LGTV. This was similarly shown

with ZIKV mAbs, which targets the epitopes on the EDIII-LR

and C–C’ loop on ZIKV, which cross-reacted with DENV

(Sapparapu et al., 2016; Robbiani et al., 2017; Zhao et al.,

2019). Therefore, the EDIII-LR/C–C’ loop epitope represents

an antigenic site with multiple TBFV and MBFV areas that can

be targeted.
Enzyme-linked immunosorbent assay

The ELISA is a technique that enables many laboratories to

test numerous samples simultaneously. It is used in quantifying

and detecting a specific protein in a complex mixture. ELISAs

are performed in a 96- or 384-well plate coated with antibodies

and proteins passively bound in the well. There are several

formats used for ELISAs, such as direct, indirect, or sandwich

methods for capture and detection. The most important step is

the attachment of the antigen to the assay microtiter plate, and

this is done by either direct adsorption to the assay plate or

indirectly via a capture antibody that has been attached to the

plate. The antigen is then detected either directly (labeled

primary antibody) or indirectly (such as labeled secondary

antibody). The most widely used ELISA assay format is the

sandwich ELISA assay due to its specificity and sensitivity

(ThermoFisher, 2010). However, ELISA is labor-intensive to

carry out, and the cost for the preparation of the antibody is high

because it is a sophisticated technique that requires cell culture

media to obtain a specific antibody. It is important to note that

errors occur when there is insufficient blocking of the surface of
frontiersin.org

https://doi.org/10.3389/fcimb.2022.975398
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Chan et al. 10.3389/fcimb.2022.975398
microtiter plate immobilized with antigen and this can lead to

high false-negative or false-positive results (Sakamoto

et al., 2017).

IgM antibody capture ELISA (MAC-ELISA) can be used in

the diagnosis of DENV infections by detecting specific IgM

antibodies in serum samples. In the early acute phase of the

disease, there is a negative window period of detection, as the

antibody response has not been mounted. IgM can only be

detected on days 3–5 after the onset of the disease (Shu &

Huang, 2004). Other than that, during the acute phase of DENV

infection or primary Flavivirus infection, IgG is undetectable.

However, IgG can be detected after 3 days of the onset of the

disease during secondary infection (Kit Lam et al., 2000).

Therefore, the IgM : IgG ratio can be used to differentiate

primary from secondary infections of the disease. Fox et al.

(2011) had stated that the IgM : IgG ratio, which is equal or

above 1.8, is defined as primary DENV infection, while the ratio

below 1.8 is defined as secondary DENV infection. It needs to be

stated that it is not advisable to use IgM alone, as it lingers in the

body for more 90 days. Diagnosis based on IgM alone is usually

not confirmatory.

The DENV NS1 detection ELISA was first developed in

2000. NS1 is found both as membrane bound and in soluble

forms and is highly conserved (Young et al., 2000). Importantly,

NS1 protein is detectable earlier during the acute phase of both

primary and secondary DENV infections (Libraty et al., 2002;

Duyen et al., 2011). Alcon et al. (2002) and Shu et al. (2002)

reported that the NS1 protein was detectable from day 1 to 8

after the onset of illness. Therefore, NS1 detection ELISA allows

for the early serological diagnosis of virus infection. The

commercially available NS1 detection ELISA kits such as the

Pan-E Dengue Early ELISA from Panbio (Kit Pan-E) and

Platelia Dengue NS1 Ag from Bio-Rad (Kit Platelia) were

evaluated by several studies (Chuansumrit et al., 2008;

Guzman et al., 2010; Lima et al., 2010; Pal et al., 2014;

Hunsperger et al., 2014). Guzman et al. (2010); Lima et al.

(2010) and Pal et al. (2014) had reported that the overall

diagnostic sensitivity and specificity of Platelia was higher than

that of Pan-E, and the sensitivity was better before day 4 after the

onset of disease. However, the sensitivity for serotype DENV-2

and DENV-4 were lower in both studies. The inclusion of

samples from YFV and JEV infections suggested that there

was no cross-reaction among flaviviruses, while the lower

specificity of kit Pan-E was due to the false-positive results in

patients with JEV, YFV, and acute influenza infections (Guzman

et al., 2010). Several studies had reported that the sensitivity of

Platelia was lower in secondary infections in comparison to

primary infections (Osorio et al., 2010; Duong et al., 2011; Pal

et al., 2014) due to the production of anti-NS1 antibodies, which

was detected more frequently during the DENV secondary

infection (Koraka et al., 2003), and the formation of immune

complexes impeded the detection of free NS1 protein (Young

et al., 2000; Libraty et al., 2002). Duong et al. (2011) reported that
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overall sensitivity increased when the NS1 antigen assay is

coupled with MAC-ELISA, which allows definitive (NS1) or

presumptive (IgM) diagnosis during the acute and convalescent

phase of the disease and can be used as a “point of

care” diagnosis.

DENV and ZIKV share genetic and antigenic determinants

(Breitbach et al., 2019), which cause difficulties in serological

assays. Denis et al. (2019) observed that ZIKV EDIII, which is

specifically recognized by anti-ZIKV IgG, is able to distinguish

ZIKV from DENV in the late phase with high sensitivity, and

thus, they developed and carried out a study on ZEDIII

recognition by IgG with more than 5,000 serum samples. They

found out that the ZEDIII protein sequence shares 46.3% and

47.2% identity and 64.8% homology with the protein sequences

of DENV-2 EDIII and DENV-4 EDIII. Then, they tested the

ability of ZEDIII-immunized mouse sera to detect the

recombinant EDIII to further validate the high specificity of

humoral immune response towards EDIII, and their results

showed that the sera of ZEDIII-positive mice did not

recognize DEN-4EDIII. They found out that the purified

human DEN-2EDIII-IgG or DEN-4EDIII-IgG did not cross-

react with ZEDIII, and the epitopes that are recognized by

ZEDIII-IgG are different. Moreover, Sapparapu et al. (2016)

had reported that the ZIKV EDIII antibodies tested by ELISA

did not bind to WNV-EDIII or DEN-2EDIII. Denis et al. (2019)

compared their ZEDIII-based ELISA with NS1-based ELISA and

found out that the sensitivity and specificity of NS1-based ELISA

was higher. It has been suggested that the ZEDIII could be used a

safe model for the development of vaccines.
Hemagglutination-inhibition test

Hemagglutination inhibition test (HI) has been used in the

diagnosis of DENV for many years since 1950 when Sabin

(1950) discovered that arboviruses are able to agglutinate

certain types of red blood cells. Traditionally, HI test is

used to differentiate between the primary and secondary

DENV infections (WHO, 1997). Some viruses cause

hemagglutination, and this property is used in the HI test. The

absence of hemagglutination indicates the presence of

antibodies, as these would have bound to the virus and

prevented hemagglutination. HI test can be used to detect the

antibodies in the case of a known hemagglutinating virus. On the

other hand, for the case of unknown viruses, a panel of known

antibodies can be used to identify the virus. The HI test has the

advantage of being easy to perform. However, the HI test might

not detect the antibodies that are not cross-reactive to the viral

subtype being tested; thus, all possible subtypes of a virus should

be included during the HI test to effectively detect the antibodies,

which is not always feasible (Bourgeois & Oaks, 2014).

Anantapreecha et al. (2007) had conducted a study in

Thailand to analyze the level of DENV cross-reactivity of HI
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antibodies in primary DENV infections. A total number of 101

confirmed cases of DENV 1–4 were selected, and the plasma

samples were obtained twice, once during the acute phase and

once during the convalescent phase. Their results showed that

the HI antibodies were cross-reactive among four DENV

serotypes during both acute and convalescent phase in the

primary infection, which indicated that the HI test is not the

best method to differentiate different serotypes of DENV due to

their cross-reactivity. Other than that, several studies reported

that the HI test showed a low performance in distinguishing

secondary DENV infection (Graham et al., 1999; Atchareeya

et al., 2006; Lukman et al., 2016). It has been reported that the HI

test is unable to differentiate among the flaviviruses DENV, JEV,

and WNV (Nisalak, 2015). Several studies had compared the HI

test with ELISA assays and stated that the ELISA assay was more

reliable than the HI test for discrimination of primary and

secondary DENV infection (Vaughn et al., 1999; Matheus

et al., 2005; Atchareeya et al., 2006; De Souza et al., 2007). It is

important to note that HI can still be used, but the criteria for

interpretation needs to be carefully considered. Any titer below

<80 should be classified as primary infection, and those between

60 and 640 of both the serum pairs must be used before a

classification is made. Titers above >1,280 is always considered

secondary and agreed upon by many others.
Western blot test

The Western blot (WB) test was first used to identify

ribosomal RNA binding proteins in 1979 (Towbin et al., 1979)

and is a commonly used technique in biomedical research. There

are three major steps in WB test. The proteins are first separated

according to their molecular mass, charge, and structure of

protein using sodium dodecyl sulfate–polyacrylamide gel

electrophoresis (SDS-PAGE) technique. The separated proteins

are then transferred and immobilized on to a solid support for

the reaction with antibodies, which is a process known as

blotting. Finally, the primary and enzyme-conjugated

secondary antibodies are used for the detection of proteins.

Once detected, the target protein will be visualized as a band on a

blotting membrane, X-ray film, or an imaging system (Yang &

Mahmood, 2012; Burrell et al., 2017). In comparison to other

techniques, WB test has advantages in detecting and semi-

quantifying target proteins, allowing the detection of a single

target out of a mixture of thousand proteins, obtaining the

molecular weight information of the target protein, and can be

used as an effective diagnostic tool (Bertoni et al., 2012; Ghosh

et al., 2014). The main disadvantage of WB test is that it can only

be carried out if the primary antibody against the target protein

is available (Gilda et al., 2015).

Hsieh et al. (2021) used the WB test with antigens of ZIKV,

WNV, and DENV 1–4 to investigate the antibody responses.

Their results showed that the anti-NS1 antibodies to WNV
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cross-reacted to one or two DENV serotypes, and the anti-

DENV NS1 antibodies were unable to differentiate the infecting

DENV serotypes in the WB test. Other than that, the anti-E

antibodies cross-reacted among these six flaviviruses, while the

anti-prM antibodies to DENV serotypes did not cross-react to

WNV or ZIKV, which suggested that the anti-DENV prM

antibodies can used to distinguish between primary ZIKV

infection with previous DENV infection. Moreover, they noted

that during the detection of anti-NS1 antibodies, the WB test

was more sensitive but less specific as compared to ELISA. This

is due to the NS1 protein being present as a hexamer in the

solution while NS1 protein is present as a monomer under

detergent treatment in WB test, and it is likely that anti-NS1

antibodies can only recognize linear detergent-treated NS1 in

ELISA but not recombinant NS1 hexamers, which then reduced

the cross-reactivity in ELISA (Ocequera et al., 2007).
Immunofluorescence test

The indirect immunofluorescence assay (IFA) is a standard

virological approach for the detection of antibodies based on

their ability to react specifically with viral antigens produced in

the infected cells, which are fixed to the wells on a glass

microscope slide. Indirect IFA is a two-step assay where the

primary unlabeled antibodies in the diluted serum samples will

attach to the antigens followed by a fluorophore-labeled

secondary anti-human antibody to detect the primary

antibody, which then can be visualized using a fluorescence

microscope (Sandstrom et al., 1985; Hedenskog et al., 1986;

Odell & Cook, 2013). The main advantage of indirect IFA is

because the secondary antibody can be used with different

primary antibodies, and it is not necessary to conjugate each

new antibody individually (Goding, 1996). Furthermore, by

combining multiple primary antibodies with specific secondary

antibodies (which are tagged with different fluorophore), specific

visualization of several antigens can be done simultaneously in

one sample (multicolor immunofluorescence). The limitation of

the immunofluorescence assay is that the fluorescence signals

from the assays are dependent on the concentration and quality

of antibody, the appropriate secondary antibodies during the

detection, and proper handling of the specimen (Odell & Cook,

2013). The disadvantages of indirect IFA include potential cross-

reactivity and the requirement for the primary antibodies that

are not generated in the same species or of distinct isotypes when

performing multiple-labeling assays (Robinson et al., 2009). An

immunofluorescence-based NS1 antigen determination using

fluorescein isothiocyanate (FITC) conjugated to IgG antibody

was developed and showed a coefficient of determination (R2) of

0.92, with a high reproducibility and stability and a low detection

limit (LOD) at 15 ng ml−1 (Darwish et al., 2018). This optical

immunosensor was capable of detecting NS1 analytes in plasma

specimens from patients infected with the dengue virus, with low
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cross-reaction with plasma specimens containing JEV and Zika

virus. The major limitation in this assay is that cross-reactivity

regarding NS1 specificity was not conducted. The main issues

with immunofluorescence assays is with regard to the

degradation of fluorochromes, antigens that are not purified

adequately, its usage on fixed cells, and also the cost and

expertise necessary for this assay.

Currently, indirect IFA is widely used in scientific research

rather than for clinical diagnostic purposes. Despite this, IFA

was utilized for diagnostic purposes in the early days when

ELISA kits were not yet commercially accessible by using patient

serum as the primary antibody (Ryu, 2017). IFA have been used

for the serodiagnosis of WNV infection (Besselaar et al., 1989),

DENV infection (Boopucknavig et al., 1975), and YFV infection

(Monath et al., 1981; Niedrig et al., 1999). Research on the

evaluation of indirect IFA for the serological diagnosis of DENV

in a population with high prevalence of arboviruses was carried

out by Arai et al. (2019). They concluded that although the

performance of indirect IFA was acceptable, however, for clinical

diagnosis of acute infection to detect the IgM antibodies, ELISA

alone is sufficient for serological diagnosis. Replacing ELISA

with indirect IFA would compromise the sensitivity for IgM and

might increase the number of false-negative samples for IgM.
Conclusion

Despite recent the improvements in Flavivirus-specific

vaccines, the global burden of Flavivirus-associated human

diseases is increasing and its area of distribution is expanding.

The need for a rapid serological assay that has high sensitivity

and specificity is emphasized by the fact that cross-reactive

immunity influences the outcome of Flavivirus infections. The

continued spread of flaviviruses worldwide has resulted in

changes in the immune profile, which can change over time,

further emphasizing specific diagnosis. Due to the large overlap

in clinical disease, accompanied by co-circulation of different

flaviviruses, cross-reactivity, and poor access to advance

laboratory diagnosis tools for serological confirmation,

serological diagnosis of Flavivirus infections is a great

challenge. The laboratory diagnosis of flaviviruses infection has

greatly improved during the last decade. However, serum
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samples from flaviviruses-infected patients show varying

degrees of cross-reactivity to each other when conducting

serological diagnosis. Identifying a single antigen with the

immunoassay that provides high sensitivity and specificity is

one of the difficulties during the diagnosis of Flavivirus.

Neutralization test is recommended in this review paper for

the correct diagnosis of Flavivirus of which DENV serotypes

showed the least cross-reactivity by using PRNT, and it remains

the most common assay used and recommended as the gold

standard assay.
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