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Abstract

NM23 is a family of structurally and functionally con-
served proteins known as nucleoside diphosphate 
kinases (NDPK). There is abundant mRNA expression 
of NM23-H1, NM23-H2, or a read through transcript 
(NM23-LV) in the primary sites of hepatocellular carci-
noma (HCC). Although the NM23-H1 protein is im-
plicated as a metastasis suppressor, the role of 
NM23-H2 appears to be less understood. Thus, the aim 
of this study was to examine whether NM23-H2 is asso-
ciated with hepatocarcinogenesis. The level of 
NM23-H2 expression in tumor tissues and the sur-
rounding matrix appeared to be independent of etiol-
ogy and tumor differentiation. Its subcellular local-
ization was confined to mainly the cytoplasm and to a 
lesser extent in the nucleus. Ectopic expression of 
NM23-H2 in NIH3T3 fibroblasts and HLK3 hepatocytes 

showed a transformed morphology, enhanced focus 
formation, and allowed anchorage-independent growth. 
Finally, NIH3T3 fibroblasts and HLK3 hepatocytes sta-
bly expressing NM23-H2 produced tumors in athymic 
mice and showed c-Myc over-expression. In addition, 
NF-κB and cyclin D1 expression were also increased 
by NM23-H2. Lentiviral delivery of NM23-H2 shRNA in-
hibited tumor growth of xenotransplanted tumors pro-
duced from HLK3 cells stably expressing NM23-H2. 
Collectively, these results indicate that NM23-H2 may 
be pro-oncogenic in hepatocarcinogenesis.

Keywords: carcinogenecity tests; carcinoma, hep-
atocellular; cell transformation, neoplastic; NM23 
nucleoside diphosphate kinases; oncogenes; proto- 
oncogene proteins c-myc

Introduction

Hepatocellular carcinoma (HCC) ranks fifth in 
frequency among all malignancies worldwide and 
causes approximately one million deaths annually 
(Schafer and Sorrell, 1999; Okuda, 2000). It has a 
heterogenous geographic distribution, with the 
greatest incidence in Asia and sub-Saharan Africa 
where hepatitis B is endemic (Bosch et al., 1999). 
The incidence of HCC has also been increasing 
steadily in the United States and Western Europe, 
owing to the increasing incidence of chronic 
hepatitis C (El-Serag and Mason, 1999). Cirrhosis, 
regardless of its etiology, is the main risk factor for 
HCC, but exposure to aflatoxin, alcohol, and/or an 
iron overload has also been associated with the 
development of HCC (Bosch et al., 1999). The etiology 
and carcinogenesis of HCC are multifactorial and 
multistage. The multistep process of HCC might 
involve chronic liver inflammation, cell death, cirrhosis 
and regeneration, DNA damage, dysplasia, and 
finally HCC (Tannapfel and Wittekind, 2002). 
Several genetic or epigenetic changes have been 
identified thus far. However, these alterations do 
not always reflect the biological or clinical 
characteristics of all HCCs.
     The human NM23 family, which is characterized 
enzymatically as nucleoside diphosphate kinase 
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Figure 1. Increased NM23-H2
mRNA expression in HCC and hep-
atoma cell lines. (A) NM23-H1 and 
NM23-H2 each consist of five 
exons. NM23-LV contains the first 
four exons of NM23-H1 and last four 
exons of NM23-H2. Short bars in-
dicate primers for real-time PCR. (B) 
The fold induction of NM23-H1, 
NM23-H2, or NM23-LV mRNA in in-
dividual HCCs (n = 38) and corre-
sponding non tumor samples (seven 
normal liver and seven cirrhotic liv-
er) were quantified and divided into 
two groups according to their asso-
ciation with differentiation (GI/II or 
GIII/IV, Edmondson-Steiner grading 
I/II or III/IV) or HBV. Real-time 
RT-PCRs were performed using 
three primer sets for NM23-H1, 
NM23-H2, or NM23-LV mRNA 
expression. Each bar represents the 
mean ± SE of three experiments. 
*P ＜ 0.05; **P ＜ 0.01; ***P ＜
0.0001. (C) NM23-H2 protein ex-
pression was determined in 12 HCC 
samples (T) and corresponding non 
tumor samples (N) according to tu-
mor differentiation. Membranes 
were stripped and re-probed with 
actin antibody to confirm equal 
loading. (D) NM23-H2 protein ex-
pression in HCC, Chang liver, 
THLE3, HepG2, Hep3B, PLC/PRF/5 
(Alexander), Huh7, SK-Hep-1, 
SH-J1, HLK2, and HLK3 cell lines. 
Membranes were stripped and re-
probed with actin antibody to show 
equal loading.

(NDPK), consists of eight related genes that 
encode widely expressed proteins known as 
NM23-H1 through NM23-H8. NDPKs were originally 
identified as essential housekeeping enzymes that 
are required for the synthesis of nucleoside 
triphosphates by catalyzing the transfer of 
γ−phosphoryl groups from nucleoside triphosphates 
to nucleoside diphosphates and play a role in 
maintaining the intracellular nucleotide concentration 
(Lascu and Gonin, 2000). Altered NDPK expression 
has been reported to be involved in many cellular 
processes, including oncogenesis (Hailat et al., 
1991), cellular proliferation (Keim et al., 1993), 

differentiation (Okabe-Kado et al., 1995), motility 
(Kantor et al., 1993), development (Dearolf et al., 
1988), DNA repair (Postel et al., 2000), and 
apoptosis (Venturelli et al., 1995). Human NM23-H1 
and NM23-H2 have 88% homology. Recently, 
NM23-LV, a read-through transcript from NM23-H1 
into the neighboring NM23-H2 gene, has been 
reported (Valentijn et al., 2006). A variety of meta-
stasis model systems have demonstrated that 
expression levels of NM23-H1, and to a lesser extent, 
NM23-H2, inversely correlate with metastatic potential 
(Rosengard et al., 1989; Bevilacqua, 1990; 
Nakayama et al, 1992; Steeg et al., 1993; Boissan et 
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Figure 2. NM23-H2 over-expression in HCC. (A) Specific immunor-
eactivity of NM23-H1 or NM23-H2 in cell lysates. Cells were transiently 
transfected with expression plasmids of NM23-H1 or NM23-H2. PC, pa-
rent cells; VC, vector control. (B) NM23-H2 over-expression in HCCs and 
surrounding matrix tissues according to Edmondson-Steiner grading (GI 
to GIII). (C) NM23-H1 was over-expressed in HCCs but not in surround-
ing matrix tissues. (D) Immunofluorescence assay showing ectopic ex-
pression is mainly localized in the cytoplasm and to a lesser extent in the 
nucleus of HEK293T and HepG2 cells. Hoechst 33258 staining of nuclei 
(blue). Immunoreactivity of NM23-H2 (red) is perfectively merged with 
GFP and NM23-H2 fusion proteins; bar, 20 μm.

al., 2005). NM23-H1 and NM23-H2 are expressed 
abundantly in HCC (Yamaguchi et al., 1994). 
Accordingly, abundant NM23-H1 mRNA expression 
in the primary sites of a HCC is inversely correlated 
with the incidence of intrahepatic metastasis and 
the TNM stage. However, no correlation between 
the abundance of NM23-H2 mRNA and intrahepatic 
metastasis was reported (Yamaguchi et al., 1994). 
     NM23-H2 is a basic protein recently identified 
as the human PuF factor, which is a transcriptional 
activator of the c-Myc proto-oncogene (Postel et 
al., 1993; Dexheimer et al., 2009). Mutational 
analysis has identified residues and domains of 
NM23-H2 that are involved in DNA binding, 
suggesting a role in gene regulation (Postel et al., 
2002). NM23-H2 was identified as a novel potential 
disease locus involved in mouse leukemic 
transformation (Joosten et al., 2002). Furthermore, 
NM23-H2 was reported to be significantly induced 
by 12-O-tetradecanoylphorbol-13-acetate (TPA) 
and UV radiation in both in vivo animal models and 
in vitro cell cultures, and NM23-H2 appears to play 
a key role in mediating the neoplastic transformation 
of epidermal cells in the early stages of skin 
carcinogenesis (Wei et al., 2004). However, the 
biological functions of NM23-H2 in oncogenesis 
are still unclear. Therefore, in order to understand 
the role of this protein in hepatocarcinogenesis, the 
biological properties of NM23-H2 in cellular 
transformation were characterized in vitro and in 
tumorigenicity in vivo. 

Results

NM23-H2 expression in HCCs and hepatoma cell lines

This aim of this study was to determine whether or 
not there is a correlation between NM23-H2 
expression and the etiological cause or differentiation 
of tumor cells in HCC. The HCC samples examined 
in this study tested positive for the HBV serologic 
marker (58%). Using specific primer sets, real-time 
RT-PCR analysis was used to measure NM23-H1, 
NM23-H2, or NM23-LV mRNA levels in primary 
hepatocellular carcinomas as well as in normal and 
cirrhotic liver tissues (Figure 1A and Supplemental 
Figure S1A). NM23 mRNA was mostly over- 
expressed in primary HCCs compared with 
corresponding non tumor tissues (Figure 1B and 
Supplemental Figure S1B). According to 
Edmondson-Steiner´s classification (Edmondson 
and Steiner, 1954), the level of NM23 mRNA 
induction was not significant between the better 
differentiated (n = 18) and the worse differentiated 
HCCs (n = 20). Furthermore, there was no significant 
difference in the level of NM23 mRNA induction 

between HBV-associated and non-HBV-associated 
HCCs. However, in HBV-associated HCCs, tumors 
with worse differentiation (GIII/IV) showed higher 
expression of NM23-H1 and -H2 than those that 
were better differentiated. Alternatively, we performed 
an unsupervised hierarchical clustering of gene 
expression profiles between non-tumors (20 normal 
livers and 20 cirrhotic livers) and HCC samples (40 
from Jeonbuk National University Hospital and 60 
from Seoul National University Hospital) using the 
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Figure 3. Transformation ability of NM23-H2. (A) Transformed morphol-
ogy of transfectants. Control NIH3T3 and HLK3 cells (left panels) and 
NM23-H2 transfectants (NM1, HNM10, and HNM14 cells, right panels) 
grown in culture for three days and observed using optical microscopy 
(original magnification, 200 ×). (B) NM23-H2-expressing NIH3T3 cells 
(NM1, NM5, and NM7) grow as colonies in soft agar, whereas vector 
control lines (VC1 and VC4) do not show any colonies. (C) 
NM23-H2-expressing HLK3 cells (HNM10 and HNM14) grow as colonies 
in soft agar, whereas vector control lines (HVC3 and HVC6) do not show 
any colonies. Colonies shown are 15 days old. The quantitative assay 
was performed in triplicate (lower). Each bar represents the means ± 
SE of threee experiments. **P ＜ 0.01.

Bead Chip DNA microarray method (Supplemental 
Figure S2). NM23-H1/2 mRNA was preferentially 
up-regulated in the HCC group. Next, we checked 
NM23-H2 protein expression and found that it was 
differentially over-expressed in 75% of the HCC 
tissues (9 out of 12) (Figure 1C). NM23-H2 protein 
expression in hepatoma cell lines compared with 
the non tumor cell line (THLE3) was also examined. 
NM23-H2 expression levels were high in HepG2, 
ALX, Huh7, SK-Hep-1, and SH-J1 hepatoma cells 
and weak in Hep3B and HLK2, and HLK3 cells 
(Figure 1D). 

Immunoreactivity of NM23-H2 in HCC

We determined that the NM23-H2 antibody was 
specific for NM23-H2 immunogen in HEK293T 
cells transiently transfected with the NM23-H1 or 
NM23-H2 expression plasmid (Figure 2A). The 
NM23-H2 antibody (ATGP0490) used in this study 
did not show any cross reactivity with NM23-H1 or 
NM23-LV. Immunohistochemical staining for NM23-H2 
revealed its over-expression was detected in various 
differentiations of HCC (Grade I to IV according to 
Edmondson-Steiner grading) and the surrounding 
tissues compared with non-tumor tissues (Figure 
2B). Staining of NM23-H2 in HCC tissues was 
mainly cytoplasmic (Figure 2B, top middle and right 
panels), to a lesser extent nuclear (Figure 2B, 
bottom left panel), and in the surrounding fibrotic 
matrix (Figure 2B, bottom middle and right panels). 
In contrast, NM23-H1 was not observed in the 
surrounding fibrotic matrix (Figure 2C, right panel). 
The subcellular localization of NM23-H2 was 
examined by transiently transfecting cells with GFP 
fused to NM23-H2 and measuring the level of 
immunofluorescence (IF) simultaneously with a 
mouse monoclonal antibody (H2-206) used in 
previous studies (Tokunaga et al., 1993; 
Yamaguchi et al., 1994). IF with a rabbit polyclonal 
antibody (ATGP0490) yielded the same results. 
The expression of GFP fused to the NM23-H2 
protein was confined mainly to the cytoplasm and 
to a lesser extent in the nuclei of HEK293T and 
HepG2 cells (Figure 2D), which corresponds to the 
immunoreactivity for the NM23-H2 protein. These 
results are consistent with a recent report (Bosnar 
et al., 2004). 

Colony formation and cell transformation activities 
by NM23-H2

NM23-H2 transfected cells grown in culture had a 
transformed appearance, becoming irregularly 
elongated and losing their contact inhibition (Figure 
3A). In order to determine if human NM23-H2 has 

oncogenic properties, the GFP-tagged NM23-H2 
expression vector was used to generate cell lines 
to facilitate detection by fluorescence microscopy. 
Exogenous expression of NM23-H2 mRNA and 
expression of green fluorescence were confirmed 
in three independent NIH3T3 clones, NM1, NM5, 
and NM7 (Supplemental Figure S3A). The capacity 
of NH23-H2 to anchor independent cell growth was 
investigated by determining the level of cell growth 
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Figure 4. NM23-H2 expression enhances tumorigenicity. (A) NM23-H2-expressing NIH3T3 cells (NM1, NM5, and NM7) grow as tumors in nude mice, but 
there was no growth of parental (NIH3T3) or vector control (VC1 and VC4) cells. Tumors are shown 42 days post-injection. (B) Growth of tumor masses in 
NM23-H2-expressing (NM1, NM5, and NM7), parental (NIH3T3), and vector control (VC4) cells injected into nude mice. NM23-H2-expressing cell lines 
grew faster than control cells and formed tumor masses. Tumor volume was measured as a function of time (the animal was finally euthanized due to an 
ulceration of the primary tumor). Each value represents the mean ± SE. (C) Histology of NM23-H2-derived tumors stained with hematoxylin and eosin 
(upper panels). Expression of the NM23-H2 protein detected on independent immunohistochemistry experiments (lower panels). Immunoreactivity of 
NM23-H2 is visible in the nucleus and cytoplasm of anaplastic spindle cells (original magnification, top left and middle, and lower left panels, 100 ×; origi-
nal magnification, top right, and bottom middle and right panels, 200 ×). (D) Western blot analysis showing c-Myc over-expression in xenotransplanted 
tumors inoculated with NIH3T3 cells stably expressing GFP-tagged NM23-H2 (NM1, NM5, and NM7). (E) Immunohistochemical staining of c-Myc in xeno-
transplanted tumors (top and bottom left panels) compared with negative staining with mouse IgG antibody (bottom left panel).

as colonies in soft agar (Figures 3B and 3C), which 
was a property not observed in parental or vector 
control cells. Because occasional spontaneous 
transformations are known to occur in NIH3T3 
cells, the capacity of NM23-H2 to enhance cell 
growth and transformation was further examined 
by measuring the ability of NM23-H2 to induce 
focus formation in Rat-1 fibroblasts (Bromberg et 
al., 1999). The ability to form foci in cell culture is a 
marker of cell transformation, which is believed to 
be a general property of an oncogene such as Ras 
(Land et al., 1983). The constitutively active and 
transforming Rasval12 allele was used as the positive 

control. The morphology of NM23-H2-induced foci was 
similar to that of Rasval12-induced foci (Supplemental 
Figure S3B).

Xenotransplant and tumorigenicity 

NIH3T3 cells stably expressing NM23-H2 (NM) 
formed tumor masses in mice (Figure 4A) compared 
with vector control (VC) or parental (NIH3T3) cells. 
Some transfectants (NM1 and NM5) formed bigger 
tumor masses than others (NM7). Tumor growth of 
NM23-H2 transfectants was significantly accelerated, 
but no tumor growth was observed for VC or NIH3T3 



Pro-oncogenic potential of NM23-H2    219

Figure 5. Oncogenic potential of 
NM23-H2 in HLK3 cells. (A) NM23- 
H2-expressing HLK3 cells (HNM10 
and HNM14) but not vector control 
cells (HVC3 and HVC6) grow as tu-
mors in nude mice. Tumors are 
shown 58 days post-injection. (B) 
Growth of the tumor mass in 
NM23-H2 expressing (HNM10 and 
HNM14) and vector control (HVC3 
and HVC6) cells injected into nude 
mice. NM23-H2 expressing cell 
lines grew faster than control cells 
and formed tumor masses. The tu-
mor volume was measured as a 
function of time (the animal was fi-
nally euthanized due to an ulcer-
ation of the primary tumor). Each 
value represents the mean ± SE. 
(C) Histology of NM23-H2-derived 
tumors stained with NM23-H2 (left 
panels) and hepatocyte (right pan-
els) antibodies. HCC tissue staining 
was used as a positive control 
(original magnification, 200 ×). (D) 
Western blot analysis showing 
c-Myc, cyclin D1 (CCND1), and p65 
over-expression in stable cell lines 
(HNM10 and HNM14), xenotrans-
planted tumors (mHNM10 and 
mHNM14), parent cells (HLK3), and 
vector control cells (HVC3 and 
HVC6). (E) Immunofluorescence as-
say showing that ectopic NM23-H2 
expression overlaps with p65 
(NF-κB), CCND1, and c-Myc over- 
expression in HLK3 cells. Hoechst 
33258 staining of nuclei (blue). 
Immunoreactivity of NM23-H2 and 
Flag (FITC) is merged with c-Myc, 
CCND1, and p65 (TRITC); bar, 20 μm.

cells (Figure 4B). NM23-H2 immunoreactivity was 
mainly found in the cytoplasm and to a lesser 
extent in the nuclei of tumor tissues (Figure 4C). 
Stable transfectants expressing NM23-H2 showed 
c-Myc over-expression compared with vector 
control cells (Figure 4D). Immunohistochemistry 
showed that c-Myc over-expression was also 
detected in the nuclei of xenotransplanted tumor 
tissues (Figure 4E). Accordingly, NH23-H2-expressing 
HLK3 cells (HNM) were subcutaneously injected 
into nude mice in order to determine if NH23-H2 
could enhance tumorigenicity. No tumor growth 
was observed in mice injected with vector control 
cells (HVC) (Figure 5A). Tumor growth was 
measured 58 days after inoculation (Figure 5B). 
Expression of NM23-H2 and hepatocyte antigen 

was observed by immunohistochemistry and con-
firmed by immunoblot analysis in xenotransplanted 
masses from HNM10 and HNM14 cells (Figure 5C, 
middle and bottom panels) as shown in human 
HCC samples (Figure 5C, top panels). In addition, 
the level of NM23-H2 appeared to induce in vivo 
tumorigenicity. NM23-H2 activates c-Myc trans-
cription (Postel et al., 1993; Dexheimer et al., 2009). 
Therefore, we examined the level of c-Myc ex-
pression in cells cultured from xenografts and vector 
control cells. The level of c-Myc over-expression 
was at least two times higher in stable trans-
fectants of HLK3 expressing NM23-H2 (HNM) and 
xenotransplanted tumor tissues positive for 
NM23-H2 (mHNM) compared with vector control 
cells (Figure 5D), which was confirmed by 
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Figure 6. Inhibition of tumorigenicity by knockdown of NM23-H2. (A) 
Immunoblot analysis was performed for NM23-H2 knockdown in 
NM23-H2 expressed cells (HNM10 and HNM14). Stable transfectants 
were transduced with lentivirus containing NM23-H2 or non-target (NT) 
shRNA. (B) Inhibition of tumor growth in stable transfectants transduced 
with lentivirus. The left and the right shoulders of mice were inoculated 
with non-targeting (shNT-HNM10 and shNT-HNM14) and targeting trans-
fectants (sh221s-HNM10 and shNM465s-HNM14), respectively. Tumor 
growth was measured after 30 days (n = 6).

immunohistochemical staining of the nuclear or 
cytoplasmic fractions of the tumor tissues (data not 
shown). We also detected NF-κB and cyclin D1 
expression in stable transfectants and xeno-
transplanted tumor tissues (mHNM). Next, an 
immunofluorescence assay revealed that transient 
expression of NM23-H2 co-localized with the 
expression of a subunit of c-Myc, cyclin D1, and 
NF-κB (p65) in HLK3 hepatocytes (Figure 5E). To 
provide support for the role of these factors in 
oncogenic regulation we analyzed the effects of 
NM23-H2 on the up-regulation of c-Myc, cyclin D1, 
and NF-κB in HLK3 cells after infection with 
adenoviral particles expressing NM23-H2. Transient 
expression of NM23-H2 up-regulated c-Myc, cyclin 
D1, and NF-κB in HLK3 cells (Supplemental Figure 
S4). These results suggest that c-Myc is not 
exclusively involved in NM23-H2-mediated hepato-
carcinogenesis.

Knockdown of NM23-H2 led to inhibition of 
tumorigenicity

To further determine the functional role of NM23-H2 
in HCC we generated a knockdown system of 
NM23-H2 by lentiviral delivery of shRNA into stable 
transfectants. We established knockdown cells 
barely expressing NM23-H2 from the stable cell 
lines, HNM10 and HNM14 (Figure 6A). Tumor 
growths were measured 30 days after xenotrans-
plantation and compared with those of stable cells 
transduced with lentivirus containing non-target 
shRNA for NM23-H2. NM23-H2 silencing effectively 
inhibited tumor growth (Figure 6B). These results 
suggest that NM23-H2 silencing suppresses the 
pro-oncogenic function of NM23-H2.

Discussion

The nm23-H1 gene was cloned on the basis of its 
potential as a metastasis suppressor gene (Steeg 
et al., 1988), whereas NM23-H2 was isolated 
based on sequence homology to NM23-H1 (Stahl 
et al., 1991). The earlier study revealed an inverse 
relationship between NM23-H1 expression and 
intrahepatic HCC metastases. However, there was 
no significant correlation between the expression 
of the NM23-H2 protein and clinicopathologic 
findings (Yamaguchi et al., 1994). The study by 
Yamaguchi et al. also showed that NM23-H2 
mRNA is abundantly expressed in HCC tissues 
and established hepatoma cell lines, which 
correlated with neither the etiology nor the extent 
of tumor differentiation. Therefore, this study 
examined other aspects of oncogenic potential, 
such as the neoplastic transformation activity or 
the tumorigenicity of NM23-H2 in in vitro and in 
vivo systems. 
     Recently, the over-expression of mouse Nm23-M2 
was reported to increase the level of foci formation 
and yield anchorage independent growth in mouse 
preneoplastic JB6 Cl 41-5a cells (Wei et al., 2004). 
Our study was also carried out using an 
expression vector containing human NM23-H2, 
and NIH3T3 and HLK3 cells were successfully 
transformed morphologically. The constitutive 
expression of the Ras protein family and other 
oncogenic proteins increases the focus-forming 
capability and decreases the level of growth 
contact inhibition of normal untransformed cells 
(Cox and Der, 1994). The present study revealed 
that ectopic expression of NM23-H2 increased the 
focus-forming capability and decreased the level of 
growth contact inhibition in Rat-1 cells, as shown in 
Rat-1 cells expressing Ras. GFP expression in foci 
and colonies was observed, and this GFP expression 
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perfectively overlapped with the immunoreactivity 
for NM23-H2 in NIH3T3 cells. Furthermore, ectopic 
expression of NM23-H2 was correlated with an 
increased rate of growth in HLK3 and NIH3T3 cells. 
NM23-H2 not only accelerated tumorigenesis, but 
histological data also suggested that NM23-H2 
promotes a characteristic microscopic phenotype. 
Accordingly, immortalized but non-tumorigenic 
breast MCF-10A cells progressing through the cell 
cycle show a low level of NME1 in the early phases 
(G0/G1), but subsequent peaking in the S-phase. In 
contrast, cells in the G0 phase express NME2, which 
peaks immediately following growth stimulation as 
cells enter the G1 phase (Caligo et al., 1995). In 
the case of immortalized fibroblasts transformed 
with SV40 large T antigen, expression of both 
NME1 and NME2 is increased compared to normal 
diploid cells (Ohneda et al., 1994). These 
observations suggest a role of NME members in 
the initial stages of tumorigenesis. Interestingly, 
murine NME2 (NM23-M2) is induced in response 
to chemical and UV radiation damage and has been 
shown to contribute to cancerous transformation of 
skin cells (Wei et al., 2004).
     NM23-H2 has been reported to transactivate 
the c-Myc gene (Postel et al., 1993; Dexheimer et 
al., 2009), one of the most commonly activated 
oncogenes associated with the pathogenesis of 
liver tumors. Animal models have confirmed that 
Myc over-expression can induce HCC (Murakami 
et al., 1993; Wu et al., 2002). On the other hand, 
inhibition of Myc expression results in a loss of the 
neoplastic properties of a carcinoma (Simile et al., 
2004). Recently, inactivation of the Myc oncogene 
has been reported to be sufficient for inducing 
sustained regression of invasive liver cancers 
(Shachaf et al., 2004). Therefore, targeted inactivation 
of the Myc oncogene may be an effective strategy 
for treating some liver cancers. Furthermore, Myc 
reactivation following its inactivation could im-
mediately restore neoplastic properties. In the 
present study, the cells and tissues with NM23-H2 
expression showed overt nuclear c-Myc over-
expression. Therefore, it was found that NM23-H2 
had pro-oncogenic potential both in vitro and in 
vivo. However, overexpression of c-Myc as well as 
other pro-oncogenic molecules such as cyclin D1 
and NF-κB also appeared to be associated with 
hepatocarcinogenesis. Therefore, it will be important 
to further elucidate the molecular mechanism 
whereby NM23-H2 is involved in upstream 
hepatocarcinogenesis through cylcin D1 and NF-κB 
activation.
     Recently, it was shown that NM23-H2 knockout 
mice have a normal phenotype at birth; however, 
these mice are defective for KCa3.1 ion channel 

activity and cytokine production from key immune 
cells (Di et al., 2010). Similarly, NM23-H1 knockout 
mice are also phenotypically normal but have 
reduced birth weight and show delayed mammary 
development (Arnaud-Dabernat et al., 2003). In 
comparison, double knockout of NM23-H1 and 
NM23-H2 results in undersized mice that die 
perinatally and show defects in hematopoiesis 
(Postel et al., 2009). NME2 has also been shown to 
be involved in non-cancerous pathological conditions 
such as immune disorders and atherosclerosis; 
murine models could provide valuable insights into 
the pathogenesis of these diseases (Srivastava et 
al., 2006; Rayner et al., 2007). 
     In conclusion, the tumorigenicity of NM23-H2 
overexpressing cells depends on NM23-H2. 
Therefore, NM23-H2 with pro-oncogenic potential 
may be involved in hepatocarcinogenesis. Further 
understanding of the molecular mechanism under-
lying hepatocarcinogenesis and the targeted de-
regulation of this pro-oncogenic pathway might 
provide a strategy for effectively treating HCCs.

Methods

Tissue acquisition

Thirty-eight patients were selected and tested for either 
hepatitis B virus (HBV) or hepatitis C virus (HCV) markers 
in their sera using a Cobra Core EIA kit (F. Hoffmann-La 
Roche Ltd., Basel, Switzerland). Written informed consent 
was obtained from each patient. All 38 patients had HCC 
and underwent a curative liver resection. Paired samples 
of the tumor and corresponding cirrhotic non-tumor tis-
sues were obtained from the resected liver specimens. 
Pathologists histologically confirmed and classified HCC 
according to Edmondson-Steiner´s classification (Edmondson 
and Steiner, 1954). This protocol conformed to the ethical 
guidelines of the Institutional Review Board (IRB). 

Cell culture and transfection

NIH3T3, HEK293T, Chang liver, Hep3B, PLC/PRF/5, 
HepG2, SK-HEP-1, Huh7, and Rat-1 cells were all ob-
tained from the American Type Culture Collection (ATCC, 
Manassas, VA). Immortalized human hepatocytes (HLK3) 
and human HCC cells (HLK2 and SH-J1) were established 
and cultured in DMEM medium in our laboratory. In order 
to create a GFP/NM23-H2 fusion expression vector, the 
human NM23-H2 gene was PCR amplified using a forward 
primer containing the EcoRI restriction enzyme site 
(5´-CGGAATTCCCGGACC ATGGCCAAC-3´) and a re-
verse primer containing the BamHI restriction enzyme site 
(5´-CGCGGAT CCGTCCACCTCTTATTC-3´). The PCR 
product of the open reading frame was ligated to 
pEGFP-C1 (BD Biosciences Clontech, Palo Alto, CA) at 
the EcoRI/BamHI site in frame. Transfections were per-
formed using Lipofectamine reagent (Gibco-BRL, Grand 
Island, NY) according to the manufacturer’s protocol. 
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Stable transfectants were selected in the presence of 
G418 (600 μg/ml) over a two to three week period. Finally, 
the individual colonies were isolated using cloning rings. 
They were then expanded and assayed by Northern blot 
analysis to determine the expression level of the trans-
fected gene. Cell proliferation was measured by trypan 
blue exclusion of cells plated in triplicate in a six-well plate. 
Rat-1 cells were similarly cultured and transfected with the 
pEJ6.6 plasmid containing activated H-rasVal-12, as de-
scribed elsewhere (Bromberg et al., 1999).

Real-time RT-PCR

RNA was prepared from 100-200 mg of frozen tumor ho-
mogenized in 2 ml Trizol reagent (Invitrogen). Reverse 
transcription (RT) was performed using 2 μg of total RNA, 
50 μM decamer, and 1 μl (200 units) of RT-PCR Superscript 
II (Invitrogen) at 37ºC for 50 min, as previously described. 
Specific primers for each gene were designed using the 
Primerdepot website (http://primerdepot.nci.nih.gov/) and 
are listed in Supplemental Figure 1A. The control 18S ribo-
somal RNA primer was purchased from Applied 
Biosystems (Foster City, CA) and used as the invariant 
control. The real-time RT-PCR reaction mixture consisted 
of 10 ng reverse-transcribed total RNA, 167 nM forward 
and reverses primers, and 2 ×PCR master mix in a final 
volume of 10 μl. PCR was performed in 384-well plates us-
ing the ABI Prism 7900HT Sequence Detection System 
(Applied Biosystems). 

Animals and xenograft into nude mice

Eight-week-old female athymic nude mice (BALB/cByJ- 
Hfh11nu KRIBB, Daejeon, Korea) were used in all 
experiments. The animals were maintained in a specific 
pathogen-free environment. The animal room was kept at 
20-22oC under a 12-h light/dark cycle. Vector control cells 
or NM23-H2 transformed HLK3 and NIH3T3 cell lines (2 ×
106) were resuspended in 0.2 ml of PBS and injected sub-
cutaneously into the backs of the nude mice. Two perpen-
dicular diameters of each tumor were measured using cali-
pers, and the tumor volume was calculated using the meth-
od reported by the National Cancer Institute: length × 
width2 (in millimeters)/2 = volume (in cubic millimeters). 

Soft agar assay 

Trypsinized cells were resuspended in medium containing 
DMEM, 10% fetal bovine serum, antibiotics, and 3 ml of 
0.3% noble agar (Difco, Sparks, MD). Cells (1 ×105 
cells/well) were plated onto a solidified medium containing 
5 ml of 0.7% noble agar in a 60 mm dish in six-well plates. 
The plates were incubated at 37oC in 5% CO2, and fresh 
medium was added every four to five days. After two 
weeks, all colonies equal to or greater than 100 μm in di-
ameter were counted.

Immunofluorescence, immunohistochemistry, and 
immunoblot analysis 

NIH3T3, HepG2, and HEK293T cells grown on glass cov-

erslips were fixed in 4% paraformaldehyde and per-
meabilized with 0.2% Triton X-100 in PBS. The coverslips 
were incubated for 1 h in PBS containing 0.1% BSA and a 
mixture of antibodies. After washing in PBS twice, the cells 
were incubated with tetramethylrhodamine isothiocyanate 
(TRITC) conjugated anti-rabbit antibody (1:100 dilution) 
(DAKO, Glostrup, Denmark) for 1 h. DNA was labeled us-
ing Hoechst dye 33258 (0.05 mg/ml). Laser scanning con-
focal microscopy was carried out using a Zeiss LSM510 
with krypton-argon and helium-neon lasers, and a three-di-
mensional projection was generated using the accompany-
ing software. Two types of antibodies specific for NM23-H2, 
a mouse monoclonal antibody (H2-206, Seikagaku, Tokyo, 
Japan) (Tokunaga et al., 1993; Yamaguchi et al, 1994) and 
a rabbit polyclonal antibody (ATGP0490, ATGen, 
Seongnam, Korea), were used for immunofluorescence, 
immunohistochemistry, and immunoblot analysis. Mouse 
monoclonal antibody to NM23-H1 (sc-465, Santa Cruz 
Biotechnology) or c-Myc (9E10, Santa Cruz Biotechnology) 
and rabbit polyclonal antibody against GFP (sc-8334, 
Santa Cruz Biotechnology) and mouse polyclonal antiboby 
against human IgG (Milipore, Billerica, MA) were used for 
immunoblot analysis.

Quantification and statistical analysis 

Densitometric data was analyzed using the LAS-3000 sys-
tem (Fuji Photo Film, Tokyo, Japan). Expression levels in 
each tumor tissue relative to non-tumor tissue were calcu-
lated by normalizing against the level of 18S ribosomal 
RNA. All data was entered into Microsoft Excel 5.0Ⓡ, and 
GraphPadⓇ Software was used to perform paired t-tests. P  
values ＜ 0.05 were considered significant.

Supplemental data

Supplemental data include four figures and can be found 
with this article online at http://e-emm.or.kr/article/ar-
ticle_files/ SP-44-3-04.pdf.
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