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Abstract: Cancer stem cells (CSCs) are one of the reasons for the relapse of cancer cells and metastasis.
They have drug resistance against most chemotherapeutic agents. CSCs are also responsible for
tumor cell heterogeneity and cause minimal residual disease. In order to achieve complete regression
of tumors, CSCs have to be targeted. Recent advances in immunotherapies have shown promising
outcomes in curing cancer, which are also applicable to target CSCs. CSCs express immune markers
and exhibit specific immune characteristics in various cancers, which can be used in immunotherapies
to target CSCs in the tumor microenvironment. Recently, various strategies have been used to target
CSCs. Adaptive T-cells, dendritic cell (DC)-based vaccines, oncolytic viruses, immune checkpoint
inhibitors, and combination therapies are now being used to target CSCs. Here, we discuss
the feasibility of these immunological approaches and the recent trends in immunotherapies to
target CSCs.
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1. Introduction

According to cancer stem cells (CSCs) theory, CSCs are small numbers of cells that are hidden
in tumors and fuel cancer growth [1]. CSCs have the capacity for self-renewal, differentiation,
and tumorigenicity if relocated into an animal model [2]. The existence of CSCs or cancer-initiating
cells has been reported in various cancers [3–6]. One of the greatest therapeutic struggles with
cancer is to eradicate CSCs [7]. The relapse of cancer cells, heterogeneity of tumor cells, metastasis,
and minimal residual disease are the major consequences of CSCs [8]. CSCs are resistant to conventional
therapies, and escaped CSCs keep inducing tumor formation even after complete eradication of adult
cancer cells [9]. Epithelial mesenchymal transition (EMT), interleukin-4 (IL-4) signaling, drug efflux
proteins, and upregulation of aldehyde dehydrogenase (ALDH) activity are perhaps the reasons for
the resistance of CSCs to conventional therapies [10]. The aberrant expression of Janus-activated
kinase/signal transducer and activator of transcription, Hedgehog, Wnt, Notch, phosphatidylinositol
3-kinase/phosphatase and tensin homolog, and nuclear factor-κB signaling pathways in various
CSCs have been reported [5]. In order to distinguish them from just cancer cells, different markers
have been used. Most of the studies reported that the main CSC markers are CD133, CD44, IL-6R,
and ALDH [11]. The CSC niche of the tumor microenvironment (TME) plays important roles in the
metastasis of cancer cells, which has been reported in various cancer models [12]. Endothelial cells,
myofibroblasts, and pericytes in niche participate angiocrine signals, malignant conversion, and the
protection of metastasis, respectively. Co-inhibitory molecules and immune checkpoint ligands,
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such as programmed death-ligand 1 (PD-L1) and programmed death-ligand 2 (PD-L2), are highly
expressed on CSCs of various cancers. PD-1 is receptor for these ligands, which express on immune
cells. The interaction between PD-L1/PD-L2 and PD-1 aids CSCs in escaping from the killing [13,14].
In order to target these molecules of CSCs, the immune checkpoint blockade of anti-PD-L1 has been
used. Previously published review articles elaborate strategies of targeting CSCs using these markers,
but the major limitation is paucity of immune molecules targeting [11,15,16].

In this review, in order to understand immunotherapy-based targeting of CSCs, we covered topics
related to CSCs and stem cells, surface receptors, immune escaping mechanisms, and recent trends in
CSC-targeted immunotherapy.

2. CSCs and Normal Stem Cells

Normal stem cells and CSCs have similar functional capabilities. Both cells can proliferate
extensively with a self-renewal ability [17]. In order to identify CSC populations in solid tumors,
specific surface markers are used. Despite the fact that normal stem cells and CSCs share most markers
(CD29, CD44, CD133, etc.) [18], the coexpressions of CD176 (Thomsen-Friedenreich antigen) and other
surface markers can be used to characterize CSCs in tumors. Populations of CD44+

, CD133+, CD176+

CSCs were reported in lung, breast, and liver cancers [19]. In prostate cancer, coexpressions of CD44,
α2β1 integrin, CD133, CD49f, and CD176 were characterized as stem cell-like cells [20].

Mutations in stem cells can raise cancer stem-like cells, and some studies reported this
transformation. Genomic instability and abrogated tumor suppression mechanisms are associated with
this transformation [21]. Environmental aberrancy during differentiation of embryonic stem cells leads
to CSCs, which are characterized by spontaneously accumulated DNA lesions with senescence and
apoptosis resistance [22]. Malignant liposarcomas were aroused from induced pluripotent stem cells
under the influence of tumor-derived extracellular vesicles, which were isolated from the conditioned
medium of a mouse lewis lung carcinoma cell line [23]. The oncogenic manipulation of mouse
embryonic stem cells can generate cancer-like stem cells, which was reported in an ovarian teratoma
in vivo model. The insertion of oncogenic elements—SV40 LTg and HrasV12—by using a mouse stem
virus long terminal repeat-based retroviral system induced cancer-like stem cells [24].

The formation of CSCs from nonstem cancer cells (NSCCs) has also been reported. Interleukin-6
mediates the maintenance of tumor heterogeneity through a dynamic equilibrium between CSCs
and NSCCs. The conversion of NSCCs to CSCs was reported in genetically different breast cell lines,
human breast tumors, and a prostate cell line. This transformation is mediated by IL-6 secretion.
Differential expressions of various microRNAs were also reported in this transformation [25]. The role
of hypoxia in CSCs formation from NSCCs was demonstrated in colorectal cell lines. Hypoxia prevents
differentiation of enterocytes and goblet cells by downregulating CDX1 and Notch1 [26].

3. Surface Receptors on CSCs

CSCs express various immune receptors on their surfaces. These receptors play key roles in the
therapeutic resistance and metastasis of cancers. The roles of CSC surface receptors in tumorigenesis
and immune resistance have been reported. The leucine-rich repeat-containing G-protein-coupled
receptor 5 (Lgr5) is identified as colorectal cancer (CRC). CSCs and its cell ablation restricts primary
tumors, but they do not completely suppress tumor formation. Proliferative Lgr5− cells attempt to
replenish the Lgr5+ CSC pool in the TME and promote rapid re-initiation of tumor growth upon
treatment cessation [27]. CD95 expression and CD95 signaling are associated with EMT differentiation
programs in gastrointestinal cancer [28]. It is also demonstrated that stimulation of CD95 maintains
the CSC pool of an increased number of cancer cells with stem cell traits [29]. The constitutive
expression of HLA-E on glioblastoma stem-like cells inhibits NK cell-mediated lysis [30]. CD133+

CSCs in colon cancer are resistant to apoptosis due to production of IL-4. Treatment with an IL-4Rα
antagonist or anti-IL-4 neutralizing antibody enhanced the antitumor efficacy of standard drugs and
confirmed the autocrine mechanism of IL-4 in CSCs in colon cancer [31]. In CRC patients, the higher
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CD133+ CSCs proportion was associated with lower numbers of activated dendritic cells (DCs) [32].
The expression pattern of three surface receptors—CD133, Trop-2, and α2β1 integrin—have been
identified as putative markers in human prostate cancer [33]. Platelet-derived growth factor receptors
α and β (PDGFR-α/β) were upregulated and promoted migration, invasion, and chemotherapy
resistance in sarcoma CSCs. The PDGFR-α/β can be targeted as potential therapeutic candidates
for sarcoma treatment [34]. In ovarian CSCs, receptor tyrosine kinase-like orphan receptor 1 (ROR1)
expression revealed its functional role in promoting migration/invasion. Humanized mAb (specific
for ROR1 (UC-961)) inhibited the capacity of ovarian cancer cells to migrate and form spheroides [35].
Toll-like receptor 4 expression on CSCs of hepatocellular carcinoma (HCC) was reported. It was
associated with tumor invasion, migration, and a poor prognosis of HCC [36]. The high expression
of MHC I in melanoma, colon cancer, and pancreatic cancer is associated with CDK1 upregulation.
Further, the interaction between CDK1 and Sox2 promotes tumor initiation in human melanoma [37].
Inhibition of the MDM2-p53 interaction reduces ALDHhigh and CD44high CSCs in mucoepidermoid
carcinoma. A marked decrease in expression of Bmi-1 and in a fraction of ALDHhigh CD44high was
demonstrated in this model [38]. Rapid tumorigenesis was associated with the surface expression of
PD-L1, E-cadherin, CD24, and VEGFR2 in epithelial CSCs, which was established from the ascites
of a bladder cancer patient. These surface expressions were also closely linked with signatures
of immune evasion, increased stemness, increased calcium signaling, transformation, and novel
E-cadherin–RalBP1 interaction [39]. PD-L1 expression on CSCs of breast cancer promotes the
expression of OCT-4A and Nanog transcription factors. These expressions sustain the stemness
of breast cancer through the activation of the PI3K/AKT pathway [40]. Apart from these roles, some
of the surface receptors have been commonly used to characterize CSCs and projected as biomarkers
in various cancers (Table 1).

Table 1. Cancer stem cells (CSCs) biomarkers in various cancers.

Cancer Biomarkers Reference

Colorectal Cancer CD133, CD24, CD29, CD44, CD166, EpCAM, Lgr5 [41,42]
Gastric Carcinoma CD44, CD133, CD166, EpCAM [43]
Head and Neck Carcinomas CD44, CD133, CD166 [44]
HCC CD133, CD44, CD90, CD13, OVC, EpCAM [45,46]
Prostate cancer Integrins, CD44, CD133, CD166, Trop2, CD117, ABCG2 [47]
Ovarian cancer CD24, CD44, CD117, CD133, ABCG2, EpCAM [48]

Abbreviations: ABCG2, ATP-binding cassette super-family G member 2; EpCAM, Epithelial cell adhesion molecule;
HCC, hepatocellular carcinoma.

4. Immune Escaping of CSCs and TME

CSCs, having a low expression of MHC I molecules, natural killer cells (NK cells) receptors,
and other innate immune receptors, can escape from killing by cancer killer cells such as NK cells
and T-cells. Most of the signaling pathways, which participate in normal stem cell physiological roles,
such as EGF/EGFR, FGF/FGFR, Hedgehog, HER2, JAK/STAT, MAPK, Myc, NF-κB, PTEN/PI3K,
and Wnt, are dysregulated in CSCs as receptors, ligands, oncogenes, or transcription factors, according
to the context and types of cancers. It has also been observed that normal stem cells markers
(Nanog, Sox2, Oct4, and Klf) are over-expressed in CSCs. These aberrant expressions make CSCs
immunoresistant against antitumor immunity [49,50]. In addition, a TME consists of both immune
cells and stromal cells, with cancer cells as well as CSCs; tumor-associated macrophages (TAMs),
tumor-infiltrating lymphocytes (TILs), regulatory T-cells, myeloid derived suppressor cells (MDSCs),
DCs, NK cells, and natural killer T-cells are filtrated from bone marrow. Stromal cells include
blood and lymphatic endothelial cells and cancer-associated fibroblasts [51]. They secrete various
cytokines and chemokines (which are also responsible for their antitumor immunity), metastasis,
and suppression in the anticancer therapeutic efficacy [52,53]. The interactions between CSCs
and cellular components through these cytokines and chemokines severely suppress antitumor
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immunity [54]. The general roles of each type of cells in a TME are shown in Figure 1. For instance,
the markers expressed in CSCs and immune cells affect the prognosis of stage III colon cancer patients.
Patients categorized as SOX2low/FoxP3high expression showed good prognosis, whereas patients
categorized as SOX2high/PD-L1low indicated poor prognosis [55]. Furthermore, other mechanisms
have been reported in various cancers and are summarized in Table 2.

Table 2. Immune resistance of CSCs and their mechanism in various cancers.

CSCs in Cancer Immune
Molecules Immunological Characterization Mechanism of Action Reference

Glioblastoma
multiforme

MHC-I, MHC-II
and NKG2D

Weakly positive for MHC-I, MHC-II,
and negative for NKG2D ligand molecules

Lower immunogenicity and higher
suppressive activity of GBM CSCs [56]

MIC-1 MΦ inhibitory cytokine-1 (MIC-1) Inhibition of MΦ/microglia
phagocytosis and T-cell proliferation [57]

B7-H1 and
soluble galectin-3 B7-H1 and soluble galectin-3 Inhibition of T-cell proliferation and

induction of T regulatory cell activation [58]

MIF and Arg1 CSCs produce higher level of macrophage
migration inhibitory factor (MIF)

CSCs released MIF induces Arg1 from
MDSCs through CXCR mediated
mechanism. Arg1 suppresses T-cell
antitumor activity

[59]

TLR4 Reduced TLR4 Expression TBK1 expression through TLR4 signals
to suppress RBBP5 [60]

Colon cancer
IL-4 Autocrine production of IL-4 Tumor growth and treatment resistant [31]

IL-4 High expression of IL-4 and expression of
CRC-associated Ag COA-1

IL-4 and CIC-mediated suppression of
anti-tumor T-cell responses [61]

Melanoma IL-2
Inhibition of IL-2 dependent T-cell action
and induction of CD4+ CD25+ FoxP3+

regulatory T-cells

Evasion of antitumor immunity and
immunotherapeutic resistance [62]

Breast cancer

MICA, MICB and
NKG2D

Downregulation of ligands, MICA and
MICB for stimulatory NK cell receptor
NKG2D

Autologous/allogeneic NK cells
toxicity resistant [63]

CD47 Over expression of CD47 on CSCs by HIF-1

HIF-1-induced CD47 expression on
CSCs and cancer cells escapes from
phagocytosis by bone marrow-derived
macrophages

[64]

PD-L1 Enriched PD-L1 expression through
EMT/βcatenin/STT3/PD-L1 signaling axis

EMT and MET upregulate PD-L1
through STT3-dependent PD-L1
N-glycosylation

[65]

Pancreatic
adenocarcinoma

CXCR4 CD133+ and CD133+ CXCR4+ CSCs

CD133+ CSCs responsible for
tumorigenic and highly resistant to
standard chemotherapy. CD133+

CXCR4+ CSCs dictate metastatic
phenotype of the individual tumor

[66]

TGF-β1 Interaction between hCAP-18/LL-37
expression of stroma of PDAC and TGF- β1

hCAP-18/LL-37 expression of stroma of
PDAC and TGF- β1 mediated
tumorigenesis

[67]

Ovarian cancer CXCR4 and
CXCL12

CXCR4+CD133+ OVCAR-5 cells were
resistant to cisplatin

Overexpression of ABCG2 drug
transport and migrates towards CXCR4
ligand and CXCL12

[68]

Abbreviations: ABCG2, ATP-binding cassette super-family G member 2; AgCOA-1, antigen COA1; Arg1, arginase
1; B7-H1, B7 homolog 1; CICs, cancer-initiating cells; CSCs, cancer stem cells; CRC, colorectal cancer; CXCR, C-X-C
chemokine receptor; CXCR4, C-X-C chemokine receptor 4; CXCL12, C-X-C motif chemokine 12; EMT, epithelial
mesenchymal transition; GBM, glioblastoma multiforme; hCAP-18/LL-37, human cationic antimicrobial protein18
leucine leucine-37; HIF-1, hypoxia-inducible factor; IL-4, interleukin 4; MET, mesenchymal–epithelial transition;
MHC I; major histocompatibility complex I; MHC II, major histocompatibility complex II; MICA, MHC class I
polypeptide-related sequence A; MICB, MHC class I polypeptide-related sequence B; NK cells, natural killer cells;
NKG2D, natural killer group 2D; PDAC, pancreatic ductal adenocarcinoma; PD-L1, programmed death-ligand
1; RBBP5, retinoblastoma binding protein; STT3,dolichyl-diphosphooligosaccharide-protein glycosyltransferase
subunit STT3; TBK1, tank-binding kinase 1; TGF- β1, transforming growth factor-beta 1; TLR4, toll-like receptor 4.
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Figure 1. General roles of CSCs and other cells in tumor microenvironment (TME) and the
mechanisms of immune escaping, and tumorigenesis. CSCs produces of higher level of migration
inhibitory factor (MIF) and autocrine production of IL-4 in order to escape macrophage killing.
Cancer cells produce IL-10, VEGF, and GM-CSF, which are involved in trafficking of mesenchymal
stem cells. Myeloid derived suppressor cells (MDSCs) secrete Arg1 through MIF1 activation.
CAFs mediate tumorigenesis through TGF-β. M2 macrophage promotes tumorigenesis for TGF-β
response. TGF-β and IL-10 of T-regulatory cells suppress T-effector cells. (Abbreviations: CAFs,
cancer-associated fibroblasts; CSC, cancer stem cells; FAS, fas cell surface death receptor; GM-CSF,
granulocyte-macrophage colony-stimulating factor; IL-10, interleukin-10; MDSCs, myeloid-derived
suppressor cells, TGF-β, tumor growth factor-beta; VEGF, vascular endothelial growth factor).

5. Targeting CSCs by Immunotherapy

Immunotherapy targets CSCs through immune cells such as cytokine-induced killer (CIK) cells,
NK cells, γδ T-cells, and CD8+ T-cells. DC-based vaccines also target CSCs [69]. Besides, oncolytic
virotherapy (OVT) induces antitumor immunity through immunogenic cell death and the activation
of the T-cell [70]. It also targets CSCs in combination with other immunotherapies. Recently, most of
the targeting strategies use combination therapy, which is commonly consisted of DC-based vaccines,
oncolytic viruses, and immune checkpoint blockades. The eradication of CSCs and its therapeutic
efficacy are usually associated with the infiltration of lymphocytes, M1 macrophage polarization,
and the induction of antitumor cytokines in the TME. The targeting strategies against CSCs in various
cancers are listed in Table 3.

5.1. Adoptive T-Cell Therapy

Adoptive T-cell therapy (ACT) is a type of personalized therapy that uses cancer-bearing host
immune cells with direct anticancer activity to treat cancer. TILs from naturally occurring tumors
have intrinsic antitumor activity. ACT involves the isolation of TILs from a patient, cultured in the
presence of IL-2 and evaluation of specific tumor recognition. These processes are followed by the
reinfusion of selected TILs to the same patient [71]. Recently, engineered T-cells with chimeric antigen
T-cell receptors (CAR T-cells) against the antigens of CSCs have also been developed and evaluated in
various cancer models. In prostate cancer, CAR T-cells targeted against EpCAM antigens eradicated
CSCs in PC3M and PC3 tumor models [72]. CAR T-cells engineered with membrane-bound chimeric
IL-15 induce CSC memory T-cells in tumor-specific T-cells in CD19+ leukemia [73]. The selective
killing of CSCs by adoptively transferred CD8+ cytotoxic T-cells, specific for the CSCs antigen ASB4,
was reported colon cancer [74].
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Table 3. Recent advances in targeting CSCs by immunotherapy.

Immuno-Therapy Targeting Approach Cancer Model Reference

Adoptive T-cell
therapy

CAR T-cells against EpCAM antigen. Peripheral blood
lymphocytes expressing EpCAM-specific chimeric antigen
receptors targeted EpCAM+ CSCs

Prostate cancer [72]

CAR T-cells, targeting membrane bound IL-15 Leukemia [73]

CD8+ cytotoxic T-cells, specific for the CSCs antigen ASB4 Colon cancer [74]

CIK cells transduced with CAR T- cells against CD123 Acute myeloid leukemia [75]

Autologous CIK cells Melanoma [76]

CIK cells-NKG2D ligands HCC [77]

CIK cells- NKG2D ligands Nasopharyngeal carcinoma [78]

NK cells from healthy donors High-grade non-muscle
invasive bladder cancer [79]

NK cells Pancreatic cancer [80]

NK cells Oral squamous carcinoma [81]

γδ and CD8+ T-cells Breast cancer [82]

DC-based vaccine

CSCs lysate-pulsed DCs Malignant melanoma [83]

CSCs lysate-pulsed DCs Squamous cell carcinoma [84]

DCs charged with total lysates of Panc-1 CSCs Pancreatic cancer [85]

DCs loaded with NANOG peptide Ovarian cancer [86]

ALDHhigh SCC7 specific CSCs-DCs Squamous cell cancer
[87]

ALDHhigh D5 CSCs-DCs Metastatic melanoma

ALDHhigh CSC-pulsed DCs Metastatic melanoma
[88]

ALDHhigh CSC-pulsed DCs Squamous cell cancer

Oncolytic
virotherapy

Oncolytic herpes simplex virus armed with IL-12 Glioblastoma [89]

Oncolytic adenovirus targeting CD133+ CSCs Glioblastoma [90]

Oncolytic vaccinia virus (GLV-1h68) targeting ALDHhigh stem
cell-like cancer cells

Breast cancer [91]

Oncolytic vaccinia virus targeting ID8-T tumor model that
harbors CD44+ CD117+ cancer-initiating cells Ovarian cancer [92]

Cancer-favoring oncolytic vaccinia virus: stem-cell-like colon
(CD133+ and CD44+) cancer cells Colon cancer [42]

Oncolytic measles viruses: targeting CD133+ tumor-initiating
cells HCC [93]

Cancer-favoring oncolytic vaccinia virus: metastatic
hepatocellular carcinoma (CD44+) HCC [46]

Others
Monoclonal antibody against Lgr5 Colon cancer [94]

IFN-β therapy: targeting type I IFN signaling Triple negative breast cancer [49]

Blockade of the IL-8 receptor Breast cancer [95]

Combination therapy

DC-based vaccine in combination with anti-PD-L1 and
anti-CTLA-4 Melanoma [96]

Oncolytic herpes simplex virus in combination with anti-PD-1
and anti-CTLA-4 Glioblastoma [97]

STDENVANT (a vaccine comprising of GSC lysate, DCs,
and TLR9 agonist CpG motif-containing
oligo-deoxynucleotides) in combination with anti-PD-L1

Glioblastoma [98]

CSCs vaccine (streptavidin-granulocyte-macrophage-colony
stimulating factor surface-modified bladder CSCs) in
combination with anti-PD-1

Bladder cancer [99]

Abbreviations: ALDH, aldehyde dehydrogenase; CAR, chimeric antigen receptor; CCR7, CC-chemokine receptor
7; CIK cells, Cytokine-induced killer cells; CRC, colorectal cancer; CSCs, cancer stem cells; CTLA-4, cytotoxic
T-lymphocyte–associated antigen 4; CXCR1, C-X-C chemokine receptor 1; DC, dendritic cells; HCC, hepatocellular
carcinoma; IFN-β, interferon-beta; IFN-γ, interferon-gamma; IL-8, interleukin 8; IL-12, interleukin 12; NK, natural
killer; NKG2D, natural killer group 2D; PD-1, Programmed cell death-1; PD-L1, programmed death-ligand 1; TLR9,
toll-like receptor 9.

Adoptive immunotherapy also includes the adoptive transfer of cytokine-induced killer (CIK)
cells. CIK cells with CAR T-cells that are transduced against CD123 strongly killed CD123+ cell lines
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and primary acute myeloid leukemia cells [75]. MHC-independent antitumor activity in chemotherapy
and BRAF inhibitor-surviving CSCs was reported in melanoma [76]. A partial NKG2D-ligands
recognition with CSCs and its therapeutic efficacy by CIK cells was shown in HCC and nasopharyngeal
carcinoma [77,78].

The adoptive transfer of NK cells from healthy donors showed the killing of stem-like and
differentiated tumor cells upon activation with IL-2 and IL-15. CSCs that shifted towards being
susceptible to cisplatin therapy were also noted in high-grade non-muscle invasive bladder cancer [79].
In various cancer models, the adoptive transfer of NK cells led to upregulation of NK cells activation
ligands, such as MICA/B, Fas and DR5 on CSCs. NKG2D-dependent mechanisms of killing of CSCs
were also revealed in these models [80]. The adoptive transfer of NK cells in oral squamous carcinoma
showed the expansion and functional activation of super-charged NK cells by osteoclast in both an
IL-12- and an IL-15-dependent manner against CSCs [81].

The adoptive transfers of γδ and CD8+ T-cells upregulated MHC class I and CD54/ICAM-1 on
CSC-like cells and induced antigen specific-killing by CD8+ T-cells in breast cancer. Synergism between
MHC-restricted and non-MHC-restricted T-cells was shown in this model [82].

5.2. DC-Based Vaccines

The therapeutic efficacy of DC-based vaccines against CSCs have been reported in various cancers.
DCs pulsed with cancer cell lines or CSC lysates were used as vaccines to evaluate the therapeutic
efficacy. In the malignant melanoma model, CSCs lysate-pulsed DCs induced IFN-γ and IL-4 secretion
in vaccinated mice. These effects mediated the suppression of tumor growth and prolonged survival
in immunized mice [83]. The downregulation of chemokine (C-C motif) receptors CCR7, CCR10,
and their ligands CCL21, CCL27, and CCL28 were associated with therapeutic efficacy in melanoma
and squamous cell carcinoma [84]. DCs charged with total lysates of Panc-1 CSCs induced INF-γ and
IL-2 secretion, and mediated lymphocytes were reported in pancreatic cancer in an in vitro model [85].
DCs loaded with NANOG peptides induced highly specific anti-tumor T-cell responses against CSCs in
ovarian cancer [86]. An ALDHhigh SCC7-specific CSC-DC vaccine showed the reduction of local tumor
relapse and prolonged host survival in squamous cell cancer. As a metastatic model, in D5 melanoma,
the inhibition of primary tumor growth, reduced spontaneous lung metastases, and increased host
survival were reported. These therapeutic efficacies were associated with the downregulation of
CCR10 on ALDHhigh D5 CSCs and its ligands on lung tissues [87]. Furthermore, the therapeutic
efficacy of DC-based vaccines was successfully shown in immunocompetent murine models. Using
ALDHhigh CSC-pulsed DCs in D5 melanoma and SCC7 squamous cell cancer models, high levels of
IgG bound CSCs and CSCs lysis in presence of complement were reported Cytotoxic T Lymphocytes
(CTLs) harvested from peripheral blood mononuclear cells or splenocytes of vaccinated mice were
also capable of killing CSCs in vitro [88].

5.3. Oncolytic Virotherapy (OVT)

OVT induces antitumor immunity through immunogenic cell death and the activation of T-cells.
Various studies indicated the therapeutic efficacy of OVT against CSCs. Oncolytic herpes simplex
virus armed with IL-12 (G47∆-mIL12) infection and the induction of tumor regression were reported
in syngeneic mice bearing intracerebral 005 tumors. An IFN-γ release, the inhibition of angiogenesis,
and a reduction of the number of regulatory T-cells in the tumor were also noted in glioblastoma [89].
The selective infection of CD133-targeted oncolytic adenovirus in CD133+ CSCs was also reported in
glioblastoma [90]. The oncolytic vaccinia virus, GLV-1h68 strain selectively replication, and killing of
stem cell-like cancer cells (higher ALDH1 activity) were reported in breast cancer model [91]. In ovarian
cancer, the killing of CD44+ CD117+ cancer-initiating cells by CXCR4 antagonist expressed-oncolytic
vaccinia virus infection was reported [92]. The cancer-favoring oncolytic vaccinia virus’ selective
infection and therapeutic efficacy against stem-cell-like colon (CD133+ and CD44+) cancer cells in
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combine with fluorouracil were reported in colon cancer [42]. Oncolytic measles viruses targeted and
lysed CD133+ tumor-initiating cells in HCC [93].

5.4. Other Immunotherapeutic Approaches

Other immunotherapeutic approaches, like blockades against immune receptors and ligands,
were also used target CSCs in bulk tumors. A monoclonal antibody against Lgr5 in colon cancer
showed the suppression of Lgr5, Wnt pathway in CSCs and tumor volume reduction [94]. In triple
negative breast cancer, the IFN-β mediated suppression of E-M/CSC plasticity by re-engaging type I
IFN signaling in CSCs was reported [49]. A blockade of the IL-8 receptor CXCR1 caused the induction
of aggressive apoptosis through FASL/FAS signaling and it was mediated by the FAK/AKT/FOXO3A
pathway in CSCs of breast cancer [95].

5.5. Combination Immunotherapy

To target and complete eradicate of CSCs, combined immunotherapy approaches have been
developed recently. A DC-based vaccine in combination with anti-PD-L1 and anti-CTLA-4 showed the
elimination of ALDHhigh CSCs, enhanced T-cell expansion, suppressed TGF-β secretion, enhanced
IFN-γ secretion, and significantly enhanced host specific CD8+ T-cells against CSCs in mouse
melanoma [96]. An oncolytic herpes simplex virus expressing IL-12 eradicated glioblastoma
stem-like cells in combination with anti-PD-1 and anti-CTLA-4. CD4+, CD8+ T-cells, intratumoral
M1-like macrophages, and an increased ratio of ‘T effector: T regulatory cells’ was responsible
for the therapeutic efficacy of triple combination efficacy in glioblastoma [97]. In another
glioblastoma study, STDENVANT, a vaccine comprising GSC lysate, DCs, and TLR9 agonist
CpG motif-containing oligodeoxynucleotides with anti-PD-L1, showed greater survival advantage
and decreased the Treg cell population in the brain [98]. Combination therapy consisted of
a streptavidin-granulocyte-macrophage-colony stimulating factor surface-modified bladder CSCs
vaccine with anti-PD-1 showed an increase in the population of CD4+, CD8+, and CD8+ IFN-γ+ cells
and a strong induction of a specific antitumor immune response against bladder cancer [99].

6. Conclusions

As a sub population of bulk tumors, CSCs resist conventional cancer therapies, escaping from
antitumor immunity through lower expression of immune recognizing receptors. The TME and
niche also play vital roles in immune escaping. Various cytokines and chemokines of stromal
cells and immune cells in the TME severely suppress antitumor immune activity against CSCs.
Combination immunotherapies would be an ideal approach to restore antitumor immunity against
CSCs. These approaches may help the complete eradication of CSCs. However, a more immunological
characterization of CSCs and interactions between cellular components in the TME must be revealed.
Prospective immunotherapeutic approaches to target CSCS may need to understand CSCs, their niche,
and the TME together with related mechanisms (Figure 2). The TME includes various immune cells,
nonimmune cells, cancer cells, and CSCs. Interaction between cellular components in the TME can
affect other cells’ fates through cytokines and chemokines. These can be considered for CSC-targeted
therapy. Recently, a relapse pathway of glioblastoma has been elucidated through single cell molecular
analysis. Within single cells, it found three mutated genes involved in the RAS/GEF GTP-dependent
signaling pathway in glioblastoma [100]. Single cell molecular analysis can be applied to reveal the
interfaces of immune cells, stromal cells, cancer cells, and CSCs in the TME. This approach could
elucidate the heterogeneity of tumor progression. These approaches may contribute to develop more
smart CSC-targeted therapeutic approaches [101].
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