
Abstract  

Human papillomavirus (HPV) has developed strategies to escape
eradication by innate and adaptive immunity. Immune response eva-
sion has been considered an important aspect of HPV persistence,
which is the main contributing factor leading to HPV-related cancers.
HPV-induced cancers expressing viral oncogenes E6 and E7 are poten-
tially recognized by the immune system. The major histocompatibility
complex (MHC) class I molecules are patrolled by natural killer cells
and CD8+ cytotoxic T lymphocytes, respectively. This system of recog-
nition is a main target for the strategies of immune evasion deployed
by viruses. The viral immune evasion proteins constitute useful tools
to block defined stages of the MHC class I presentation pathway, and
in this way HPV avoids the host immune response. The long latency
period from initial infection to persistence signifies that HPV evolves
mechanisms to escape the immune response. It has now been estab-
lished that there are oncogenic mechanisms by which E7 binds to and
degrades tumor suppressor Rb, while E6 binds to and inactivates
tumor suppressor p53. Therefore, interaction of p53 and pRb proteins

can give rise to an increased immortalization and genomic instability.
Overexpression of NF-kB in cervical and penile cancers suggests that
NF-kB activation is a key modulator in driving chronic inflammation
to cancer. HPV oncogene-mediated suppression of NF-kB activity con-
tributes to HPV escape from the immune system. This review focuses
on the diverse mechanisms of the virus immune evasion with HPV
that leads to chronic inflammation and cancer. 

Introduction

The link between genital human papillomavirus (HPV) infection
and cervical cancer was first reported in the early 1970s by Harold zur
Hausen.1 His laboratory was the first to demonstrate that genital warts
(condyloma) contain HPV genes,2,3 and also discovered the relation-
ship between HPV infection and cervical cancer.4 He was awarded the
Nobel Prize for Medicine in 2008 for the detection and isolation of HPV
types 16 and 18 DNA from cervical cancer.4,5 HPV infection is associat-
ed with a broad spectrum of benign and malignant neoplastic epithe-
lial changes. Epidemiological, clinical and pathological studies have
indicated that the virus causes sexually transmitted infections. HPV
infection is commonly found in the genital organs of both men and
women. More than 40 HPV genotypes are able to infect the genital
organs of females and males, including the vulva, vagina, cervix and
penis.6-8 HPV-DNA has also been identified in head and neck cancers
in the oral cavity, the oropharynx and the larynx in both sexes. The
association of HPV with neoplastic transformation has been investi-
gated most extensively in lesions of the uterine cervix and the role of
HPV in malignant transformation of cervical epithelium has been well
established. HPV can also affect the squamous epithelium of the male
genitalia in a similar way to that of the female genital tract; however,
its association with penile cancer is not clearly understood:9-13

The immune system plays a pivotal role in determining the outcome
of HPV infection. The important role of host cellular and humoral
immune responses protects from established HPV infections. Defense
mechanisms against HPV infections are regulated in concert with
innate and adaptive immunity. The innate immune response in partic-
ular is essential to initiate these antiviral immune activities in both
peripheral and lymphoid tissues. The immune responses to HPV infec-
tions are production of neutralizing antibodies and induction of natu-
ral killer (NK) cells.14-18 Anti-viral CD4+ T-cell responses in healthy
individuals presumed to have had transient HPV 16 infections have
been reported, while no response in some individuals with pre-cancer
or cancerous lesions has been observed.17

The HPV-16 is one of the most common high-risk HPV genotypes
associated with cervical and penile cancers. The HPV-16 E6 and E7
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oncoproteins are constitutively expressed in cancer lesions as putative
targets for the immune response against HPV.19 The expressions of
CD4+ helper T-cell (Th)1 and Th2-type cytokines are present in the
subepithelial cervical tissue.20 Significantly lower percentages of Th1
cells with higher proportions of IL4+ and IL6+ cells were observed in
high-grade squamous intraepithelial lesions compared to normal tis-
sues. Predominant Th2 type cytokines in CD4+ T cells were also found
in high-grade cervical lesions.20 CD4+ T cells are important for launch-
ing an efficient immune response against HPV. For inhibitory signals,
the cytolytic functions of CD8+ T cells are inhibited by the up-regulat-
ed expression of NK cell receptors on tumor infiltrating lymphocytes
(TILs) derived from cervical cancer.21

The immune evasion target is the major histocompatibility complex
(MHC) class I antigen presentation pathway. The cells are under con-
stant control from cytotoxic T lymphocytes (CTLs) that continuously
scan the somatic cell surface for MHC class I molecules presenting
non-self peptides, such as viral antigens. It has been suggested that
HPV and HPV-infected cells have evolved mechanisms to avoid immune
attack. T-cell mediated immune responses against oncogenic HPV are
believed to play a central role in cervical carcinogenesis. HPV-specific
CTLs infiltrating cervical cancer may play an important role in restrict-
ing disease progression. Cell mediated immunity is thought to be
important in the control of HPV infection. High-risk HPV specific CTLs
have been demonstrated in the peripheral blood of cervical cancer
patients. HPV infections initiate and progress to genital cancers after
more than decades without any effective immune response to resolve
the initial HPV infection. The regional immune escape may play an
important role in cancer formation arising from the HPV infected
area.22,23 CD8+ CTLs play an important role in the elimination of HPV
infected cells. CD8+ CTLs detect viral antigen peptides presented by
MHC class I molecule on the cell surface. This pathway is designed to
sample the intracellular milieu and present the information to the CTLs
trafficking the area. DNA viruses with large genome coding capacity
have been proven to be particularly adept at preventing CTL recognition
through the action of dedicated immune evasion proteins. In addition,
viral immune evasion proteins contribute to viral defense and replica-
tion.24-27 The viral immune evasion leads to the development from
chronic inflammation to cancer associated with HPV infection.

HPV must be detected by pattern-recognition receptors (PRRs)
before innate immune responses can be triggered. PRRs specifically
recognize microbe-specific pathogen-associated molecular patterns
(PAMPs). PRRs activate specific signaling cascades to induce the gene
expression of targets, including the activation of type I interferons
(IFNs) and proinflammatory cytokines.28-31 Type I IFNs play a critical
role in anti-viral innate immunity to eradicate viruses and are secret-
ed by macrophages or dendritic cells (DCs). IFNs regulate the activa-
tion of adaptive immunity, such as the maturation of DCs, activation of
NK cells and differentiation of CTLs. Thus, type I IFNs play an impor-
tant role in the overall regulation of anti-viral immune response.32,33

The main players in adaptive immune response are antibodies and T
cells. Antibodies specific for viral surface antigens block binding and/or
fusion of virus to host cells. The coat of the virus particles facilitate
receptor-mediated phagocytosis and/or complemented mediated lysis of
the virus. CTLs are the major component of cell mediated immunity
and play an important role in the defense against viral infections.24,25,34

The causal relationship between chronic inflammation and cancer
has been widely accepted. Specifically, there is a strong association
between tumor viruses and the development of human cancers.
Mechanisms of oncogenesis associated with infection and inflamma-
tion have been proposed. Effective host immune responses are essen-
tial for the control of HPV infection and persistence of HPV. However,
failure to eliminate HPV infected cells increases the risk of developing
chronic inflammation and cancers. Therefore, HPV associated cancers

are the most common outcome of high-risk HPV infection and are pre-
ceded by a phase of persistent HPV infection due to host immune sys-
tem failure to eradicate HPV. Innate and adaptive immune responses
are induced in most individuals infected with HPV but are insufficient
to eradicate the virus. HPV oncoproteins E7 and E6 are essential factors
in HPV oncogenesis. E7 and E6 react with the tumor suppressor gene
products pRb and p53 in host cell proteins, respectively. E7 and E6
induced genetic instability leading to the activation of oncogenesis and
inactivation of tumor suppressor genes.6-8,35

Although many investigators have proposed oncogenesis due to
inflammation to be associated with cancer development, the mecha-
nisms underlying the relationship between chronic inflammation and
cancer still remain undefined. This review focuses on the recent
advances in the understanding of the molecular mechanisms of HPV
immune evasions due to the MHC class I pathway, HPV-encoded pro-
teins and NF-kB activation that may contribute to tumor formation. 

Human papillomavirus genotypes

Approximately 130 HPV genotypes have been identified so far and
these have been classified according to the sequence of the gene
encoding the major capsid protein L1. About 40 genotypes infect the
genital mucosa. A new HPV type is defined as showing less than 90%
homology to any of those known on the basis of the L1 region. HPV is
classified into low-risk and high-risk groups according to the potential
for induction of malignant formation. Low-risk HPV types typically
induce benign tumors and are rarely associated with malignant
tumors. In contrast, high-risk HPV types induce malignancy. Thus, HPV
is classified into low-risk types (ns. 6, 11, 26, 31, 34, 40, 42, 43, 44, 53,
54, 55, 57, 61, 62, 64, 67, 70, 71, 72, 73, 74, 79, 81, 82, 83, and 84) and
high-risk types (ns. 16, 18, 31, 33, 35, 39, 45, 51, 52, 54, 56, 58, 58, 66,
68, and 69). The high-risk types are associated with more than 90% of
cervical cancers. Furthermore, three main groups of HPV have been
classified according to their localization: skin HPV types (ns. 1, 5, 8, 14,
20, 21, 25, and 47), skin and mucosal types (ns. 2 and 57), and mucos-
al types (ns. 6, 11, 13, 16, 31, 33, 35, 39, 42, 44, 45, 49, 51, 52, 56, 58, and
68).36-39 The most important players are HPV-16, found in 50-70% of
cases, and HPV-18, found in 7-20% of cases.9,40-42 Therefore, the high-
risk strains, HPV-16 and HPV-18, are the most closely associated with
cervical and penile cancers (Figure 1A). HPV-6 and HPV-11 are typical-
ly found in genital warts and condyloma acuminata of the genital
organs (Figure 1C).43-48 In cervical cancer, HPV-33, HPV-45 and HPV-31
are the next most frequently detected HPV, except for cases in Asia
where HPV-58, HPV-33 and HPV-52 are the next most prevalent types.49

In penile cancer, HPV-16 (60.23%), HPV-18 (13.35%), HPV-6/11
(8.13%), HPV-31 (1.16%), HPV-45 (1.16%), HPV-33 (0.97%), HPV-52
(0.585%), and other HPV types (2.47%) have been reported.50-52

Human papillomavirus genome

HPV is a member of the Papovaviridae family. HPV is a small non-
enveloped DNA tumor virus, 55 nm in diameter. HPV induces hyperpro-
liferative lesions in cutaneous and mucosal epithelia. The HPV genome
is a long circular double-stranded DNA molecule of approximately 8000
base pairs. The HPV genome is organized into three regions: the late
gene (L1 and L2), the early gene (E1, E2, E3, E4, E5, E6, E7, and E8),
and the long control region (LCR). Viral genes are divided into early
and late categories depending on the time of expression. E1 supports
viral replication and control of gene transcription.53-56 E2 supports viral

Review



transcription and viral DNA replication.57,58 The E4 protein is expressed
in the later stages of infection when complete virions are assembled.
The E4 protein is believed to play an important role in the maturation
and replication of HPV and is, therefore, involved in the induction of
the release of virions from infected cells.59 The E5 protein has weak
activity in maintaining the malignant transformation of the host
cells.60 Proteins E6 and E7 have been shown to induce immortalization
and transformation of the host cells. Therefore, E6 and E7 oncogene
proteins have been shown to be the main contributors to the develop-
ment of HPV-induced cancer and increased expression.61-65 The func-
tions of E3 and E8 proteins are not clear. The late gene regions, L1
(major capsid protein) and L2 (minor capsid protein) encode for viral
capsid proteins during the late stages of virion assembly. The protein
encoded by L1 is highly conserved among different HPV species (Table
1). The minor capsid protein encoded by L2 has more sequence varia-
tions than those of the L1 protein.66 Early viral transcription is regulat-
ed by an element located in the non-encoding region proximal to the
open reading frames called the LCR or the upstream regulatory region.
The LCR has numerous binding sites for many repressors and activa-
tors of transcription. It has been suggested that the LCR plays a part in
determining the characteristics of HPV types.67-70 Eighty-six complete
genomes of HPV have been characterized and approximately 120 have
been partially characterized.71

Human papillomavirus life cycle

The HPV life cycle is tightly adapted to the host tissue, the differen-
tiating epithelial cells of skin or mucosa. The strongest evidence for
oncogenesis is in cervical cancer, where more than 90% of neoplastic
cells contain HPV-DNA. Viral early proteins are produced in undifferen-
tiated keratinocytes in the basal layers of stratified epithelium. Normal
squamous epithelial cells grow as stratified epithelium. Amplifying
stem cells in the basal layer start to differentiate, and one of the daugh-
ter cells migrates upward and begins to undergo terminal differentia-
tion. The other daughter cells remain in the basal layers of the epithe-
lia where HPV binds to and enters into cells through small wounds. The
mechanism by which HPV actively invades cells involves its interaction
with a yet unidentified receptor. HPV virions migrate to the nucleus as
episomes and early HPV promoter is activated. The replication cycle
within the epithelium can be divided into the latent and the lytic infec-

tions. In the latent infection, the viral genome is replicated to low copy
numbers: approximately 10-200 genomes per cell within the initially
infected the basal cells.72 The early HPV genes E1 and E2 are essential
for DNA replication in the basal cells and for its segregation. The
infected basal cells can be maintained in the lesion for a long period of
time. As the viral status persists, the immune system may confine the
infection to these basal cells. In the lytic infection, when infected
daughter cells migrate to the upper layers of the epithelium, viral late
gene products are produced to initiate the vegetative phase of the HPV
life cycle, resulting in high-level amplification of the viral genome. The
HPV virions are synthesized in the upper layers of stratified squamous
epithelia. For multiplication of viral DNA, the early genes E5, E6, and
E7 are thought to coordinate themselves to create a suitable environ-
ment in the host cells. The late promoter activates the late gene prod-
ucts, resulting in the vegetative phase of the HPV life cycle leading to
high-level amplification of the viral genome. The HPV virions replicate
in the superficial layers of the epithelium and, consequently, the prog-
eny HPV virions are released from the cell to re-initiate infection
(Figure 2).72,73

Immune response to human papillomavirus
infection

The immune system plays a central role in determining the outcome
of HPV infection and the immune response essential for the clearance
of HPV. Defense mechanisms include components of both the innate
and adaptive immune systems. The innate immune response has an
important role in anti-viral defense. The components of the innate
immune response are activated complement components destroying
virus infected cells and the virus itself. NK cells recognize and elimi-
nate virus-infected cells. The adaptive immune response is made up of
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Table 1. Human papillomavirus gene functions.

Gene category Gene Function

Eary genes E1 Viral DNA replication and control 
of gene transcription

E2 Modulaion of replication and transcription
E3 Unknown
E4 Viral assembly
E5 Growth stimulation
E6 Oncoprotein due to interaction 

with p53 protein
E7 Oncoprotein due to interaction 

with pRb proein
E8 Unknown

Late genes L1 Major capsid protein
L2 Minor capsid protein

Figure 1. (A) Detection of human papilloma virus (HPV) DNA in
penile cancer. Original magnification 200x. (B) Positive signals
were not observed in uninfected control specimen of penile can-
cer. Original magnification 200x. (C) Detection of HPV DNA in
penile condyloma. Original magnification 200x. (D) Positive sig-
nals were absent in uninfected control specimen of penile condy-
loma. Original magnification 200x.

A B
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antibodies and T cells. IFNs induce an anti-viral state in infected
cells.74-78 Antibodies specific for viral surface antigens block binding
and/or fusion of virus, and coat the viral particles to facilitate receptor
mediated phagocytosis and/or complemented mediated lysis of virus.
Antibody production from the mucosal tissues prevents HPV infection
in the mucosal surface. Cervical anti-HPV immunoglobulin (Ig)A and
IgG are strongly associated with HPV-DNA and cervical diseases.79,80

TILs develop as manifestations of the recognition and defense
against malignant cells by the host immune system. These play an
important role in fulfilling the oncogenic process of HPV infected tis-
sues.81 The majority of HPV infections are cleared before cancer forma-
tion begins. However, if the host immune system fails to eliminate the
virus, persistent HPV infection occurs. Prolonged persistence of HPV
leads to genomic instability resulting in cancer formation. 

Langerhans cells are the principal DC population in the epidermis of
the skin. DCs are local antigen-presenting cells (APCs) found predom-
inantly in the skin and mucosal epithelia with high antigenic exposure.
DCs are key regulatory cells in the immune system that mediate
between the innate and the adaptive immune systems. DCs are clearly
the most potent APCs for stimulating an effective CTL response.82-84

Generally, DCs both capture and process antigens, express lymphocyte
co-stimulatory molecules, migrate to lymphoid organs and secrete
cytokines to initiate immune responses. T and B lymphocytes are the
key mediators of cellular immunity under the control of DCs. DCs are
likely to play an important role in the progression of cervical cancer due
to the activation of HPV-specific T cells. DCs bound to MHC class I or
class II molecules interact with CD8+ T cells and CD4+ T cells, respec-
tively. CD8+ CTLs facilitate the destruction of cells with CD4+ cells pro-
viding cytokines such as interleukin 2.84 Local APCs are probably
recruited and secrete mediators that enhance the inflammatory
response. Relatively strong T-cell proliferate responses against HPV-16
E7 are observed in patients with a persistent HPV-16 infection.85 T-cell
mediated immune responses against oncogenic HPV are believed to
play a central role in HPV-associated cancers. It has been suggested
that HPV-16 E7 specific Th cell responses correlate with viral clearance
or viral persistence in cervical cancer. Differential Th and IgG immune
responses correlate with viral clearance and the development of can-
cer.86-88 Viruses enter permissive cells and leave the infected cells,
resulting in hijack cellular metabolic pathways to generate progeny
viruses. Hosts have developed an adaptive immune system that is
designed to recognize and eliminate these invaders. However, viruses
have also evolved strategies to combat the host defense response. Most
of the DNA viruses alter the host immune response to their life-long
persistent infections. The MHC class I molecules are present on almost
all the nucleated cells and protect against invading HPV. MHC class I
molecules at the cell surface consist of: i) a transmembrane heavy (H)
chain (45,000 MW), ii) the soluble b2-microglobulin (b2m) light (L)
chain (12,000 MW) subunit, and iii) eight or ten residue peptides in
length.89 The assembly of MHC class I molecules is regulated by a
series of interactions with endoplasmic reticulum (ER) resident chap-
erones and accessory molecules. The viral peptides result from protea-
somal degradation of proteins in the cytosol that are translocated by the
transporter associated with antigen processing in the ER. They are
loaded onto newly synthesized MHC I molecules. This stage of assem-
bly is characterized by the formation of the peptide loading complex
(PLC) and the acquisition of optimal peptides.24 The PLC retains MHC
class I molecules within the ER until they are loaded with high affinity
peptides. Once loaded high affinity peptides have been bound, MHC
class I molecules exit the ER and transit through the Golgi apparatus to
the cell surface to present their cargo to CD8+ T cells. This extra level
of quality control on the part of the PLC distinguishes MHC class I mol-
ecules from many other proteins that assemble within the ER. MHC
class I molecules can sample both the intracellular and extracellular
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Figure 2. Latent infection: human papilloma virus initially infects
the nucleus of basal cells. Few viral DNA are synthesized in infect-
ed cells. Latent infection is the ability of a pathogenic virus to lie
dormant within cells (a type of persistent viral infection) but virus
production ceases. Lytic infection: numerous viral DNA are syn-
thesized in the nuclei of cells in the upper layer with virions
released from the superficial cell layer. Lytic infection is virus
beginning to produce large amounts of viral progeny and to
release viral particles to destroy the infected cells. 

Figure 3. There is a strong association between human papilloma
virus (HPV) infection and the development of cancer formation
because of viral immune evasion. The primary mechanism of viral
immune evasion for HPV is avoidance of antigen presentation.
HPV-16, and -18, E6 and E7 interfere with the interferon path-
way; therefore, the amount of major histocompatibility complex
(MHC) class I molecules is reduced on the cell surface. CD8+
cytotoxic T lymphocytes (CTLs) play an important role in the
elimination of viral-infected cells. However, MHC class I is not
expressed on the cell surface of antigen-presenting cells (APCs),
resulting in inactivation of CD8+ CTLs. Continuous viral
immune evasion leads to viral persistence and cancer formation in
the long term. ER, endoplasmic reticulum. 



milieus for defective and foreign proteins by presenting peptide frag-
ments to immune effector cells. The MHC class I peptide complexes are
patrolled by cells of both the innate and the acquired immune systems,
namely NK cells and CD8+ CTL, respectively. Decreased MHC class I
expression on infected cells renders the cells susceptible to NK-cell
mediated killing. Immune evasions selectively target the MHC class I
molecules that preferentially present viral peptides (HLA-A and HLA-B)
and spare the MHC class I alleles that act as dominant ligands of NK-
cell inhibitory receptors (HLA-C and HLA-E).90 The HPV-16 E6 and E7
oncoproteins are expressed constitutively in the majority of pre-cancer
and cancer lesions. HPV specific memory CTLs from cancer patients
recognize HPV-16 E6 and E7 oncoproteins presented by MHC class 1
molecules.91 NK cells clearly respond to the viral infection through
cytolysis and secreting proinflammatory cytokines, as well as the down-
regulation of surface MHC class I molecules in order to avoid recogni-
tion by CD8+ T cells and molecules induced by viral invasion of cells.
Ligands for NK cell receptors are primary for viral immune evasion. NK
cells are important components of the innate immune system directly
involved in the anti-viral immune response. NK cell inhibitory recep-
tors monitor the normal levels of MHC class I molecules, the expression
of which is frequently altered by virus infection. Therefore, cells that
express self-MHC class I molecules are protected from NK cells, but
those that lack this self-marker are eliminated. Furthermore, NK cells
are being considered for cancer treatment in anti-tumor activity
(Figure 3).92-95

Host pathogen interactions are usually initiated via recognition of
PAMPs by host sensors known as PRRs, such as Toll-like receptors
(TLRs), RIG-l-like receptors, NOD-like receptors, and DNA receptors.
PAMPs rapidly trigger host immune responses.96-99 The complex signal-
ing pathways induce inflammatory responses and the eradication of
viruses. NF-kB is a transcription factor composed of homo- or het-
erodomimers of Rel homology domain-containing proteins, including
p65 (RelA), RelB, c-Rel, p105/p50 (NF-kB1) and p100/p52 (NF-kB2).
The intranuclear translocation of activated NF-kB signaling pathway
induces the expression of numerous genes involved in innate and
adaptive immune regulation, inflammatory responses, and anti-apopto-
sis. The intracellular translocation of the activated NF-kB signaling
pathway is regulated by a variety of posttranslational modifications,
including phosphorylation and multiple ubiquitinations.100-105

Activation of the NF-kB and interferon regulatory factor transcription
factor pathways is crucial for the first step for immune response. NF-
kB is activated by a variety of diverse extracellular or intracellular stim-
uli, including microbial pathogens and PAMPs.106,107 Many oncogenic
viruses activate NF-kB to facilitate transformation of infected cells.
Some viruses maintain a delicate balance between activation and sup-
pression of NF-kB in order to maintain long-term persistence.
Impairing NF-kB activation is proposed as a viral strategy to avoid the
innate response of the host. Aberrant NF-kB signaling is implicated in
multiple disorders, such as chronic inflammation and cancer.103,108-111

Functions of E7 and E6 in oncogenesis

HPV oncoproteins E6 and E7 are essential factors for HPV oncogen-
esis. E7 and E6 react with the tumor suppressor gene products pRb and
p53 in host cell proteins, respectively, resulting in induced cellular
immortalization, transformation and carcinogenesis due to their inter-
ference with cell cycle and apoptosis control.35 Genetic instability
induced by E7 and E6 leads to the activation of oncogenes and inactiva-
tion of tumor suppressor genes. 

The HPV oncogenes, E7 and E6, have been shown to be the main con-
tributors to the development of HPV induced cancers, probably due to

integration of the viral genes in the host cell genome. Inactivation of
tumor suppressors p53 and pRb is a common event in the carcinogen-
esis of human cells. In HPV infection, the significant interactions are
with p53 and pRb proteins that are important molecules in the cell cycle
and apoptosis control. Remarkably, p53 and pRb proteins are mutated
in many human cancers. Both E7 and E6 HPV oncogenes interact with
pRb and p53 that inhibit the activities of these tumor suppressors. S
phase progression of the cell cycle would normally lead to apoptosis by
the action of p53. However, in HPV-infected cells, this process is coun-
teracted by the viral E6 protein, which targets p53 for proteolytic degra-
dation. High-risk HPV causes persistent infections that induce the ini-
tiation and progression of malignant tumor formation. As an aberration
of virus infection, the constant activity of the viral proteins E7 and E6
leads to increasing genomic instability and accumulation of oncogene
mutations, resulting in cancer formation. Specifically, those involving
tumor suppressor genes can give rise to immortalization associated
with activation of telomerase. Extensive studies have linked the effi-
ciency of mucosal HPV types in promoting cancer development to the
viral E6 and E7 proteins. The HPV E6 and E7 genes are thought to play
causative roles since E6 promotes the degradation of p53 through its
interaction with E6AP, an E3 ubiquitin ligase, whereas E7 binds to pRb
and disrupts its complex formation with E2F transcription factors.112,113

In addition, E6 and E7 cause degradation of the cellular genes control-
ling G2/M phase transition and progression.45,114

E6 and E7 proteins may immortalize various types of human cells
independently. However, their cooperative interaction leads to substan-
tially enhanced immortalization efficiency. E7 binds to cyclin-kinase
complexes and cyclin-dependent kinase (CDK) inhibitors. E7 directly
binds to cyclin A/CDK2. It also indirectly interacts with the cyclin
E/CDK2 complexes via p107 protein of the pRb family, which acts to
increase cyclins A and E in the epithelial cells. E7 also binds to the CDK
inhibitors, p27 and p21.115-119

E7 is an oncogene that mediates the initiation of DNA synthesis and
stimulates continuous cell growth. It hereby induces genetic abnormal-
ities that enhance the likelihood of malignant progression. The E7 pro-
tein can interact with pRb, an important negative regulator of entry
into S phase of the cell division cycle. It is thought that the high-risk
HPVs have a unique ability to induce the proteolytic degradation of
pRb. In the hypophosphorylated state, combined E7 and pRb activates
the E2F transcription factor, which triggers the expression of proteins
necessary for DNA replication and cell cycle progression.
Phosphorylation of pRb by G1 cyclin-dependent kinases releases E2F
leading to cell cycle progression into S phase. Because E7 is able to
bind to unphosphorylated pRb, it may prematurely induce cells to enter
S phase by disrupting pRb-E2F complexes.120-127

In addition to the inactivation of pRb family members, numerous
functions of E7 have been reported. Histone deacetylases and tran-
scriptional co-repressors have been reported to associate with E7 via
Mi2 to promote cell growth. The interaction of E7 with cyclin E/CDK2
has also been reported. These cyclin-kinase complexes can phosphory-
late the pRb proteins. Furthermore, E7 binds to the CDK-inhibitors, p27
and p21, confirming the abrogation of cell-cycle inhibition. Despite
these multifunctional properties of the E7 protein, however, the expres-
sion of a mutant form of pRb that is selective for binding E7 revealed
that the effects of E7 on epidermal differentiation are indeed due to
pRb inactivation.120,124

The most manifest function of the E6 protein is to promote the
degradation of p53 under E6 protein associated with E6AP protein, an
E3 ubiquitin ligase. The affinity of E6AP for p53 is likely to be modified
by the association with E6. p53 is a tumor suppressor gene involved in
apoptosis after DNA damage, and regulation of both G1/S and G2/M cell
cycles. HPV-infected cells induce inhibition of apoptosis by E6 inactiva-
tion of p53. In addition, E6 interferes with other proapoptotic proteins,
such as Bak, FADD and procaspase 8 (Figure 4).126,127
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Overexpression of NF-kB in human
papillomavirus-related cancer

The relationship between chronic inflammation and cancer progres-
sion has long been known. Numerous investigations have identified
NF-kB as an important modulator in driving chronic inflammation to
cancer. This transcription factor is indispensable for the malignant pro-
gression of transformed cells associated with various inflammatory
cells and a network of signaling molecules. The expression and the
function of numerous cytokines, chemokines, growth factors, and sur-
vival factors are NF-kB-dependent. NF-kB activation has been implicat-
ed in a variety of processes related to transformation and oncogenesis,
including proliferation, migration, angiogenesis, and prevention of
apoptosis. NF-kB activity is involved in the regulation of the angiogen-
esis process for cancer cell growth and invasiveness. Vascular endothe-
lial growth factor is the main member of the group of angiogenic fac-
tors and is under the transcriptional control of NF-kB.128 TLR are pos-
sible signal initiators for NF-kB activation due to inflammation induc-
ing carcinogenesis. In most cancer cells, the activation of NF-kB plays
an important role in cancer initiation, progression and metastasis. TLR
are among the major activators of NF-kB and are the front-line recep-
tors in the response to microbial infection. The activation of NF-kB
through stimulated TLR in local chronic inflammation may serve as an
initiator. NF-kB is constitutively activated during human cervical can-
cer progression13,129-131 and penile cancer progression.10-12

Increased NF-kB activity is associated with many cancers, especial-
ly cancers associated with viral infections. NF-kB dependent prolifera-
tion and protection from apoptosis are likely to have significant effects
on the oncogenesis of HPV associated with cancers; HPV E6 and E7 pos-
itive cells have shown that IL-1b induces NF-kB activation and exhibits
elevated levels of NF-kB components. E6 rather than E7 expression was
found to be associated with the nuclear location of these compo-

nents.132 It is frequently reported that HPV encoded E6 and E7 oncopro-
teins are important regulatory proteins in host cells that are associat-
ed with the transcriptional activity of NF-kB. A fraction of the E7 pro-
tein is found to be associated with the IkB kinase (IKK) complex and
attenuates induced kinase activity of IKKa and IKKb, thus resulting in
impaired IkBa phosphorylation and degradation. While E7 obviates
IKK activation in the cytoplasm, the E6 protein reduces NF-kB p65-
dependent transcriptional activity within the nucleus. It has been sug-
gested that HPV oncogene-mediated suppression of NF-kB activity con-
tributes to HPV escape from the immune system (Figure 5).133-136 HPV
E7 and E6 oncogenes are key regulatory proteins inside host cells and
are associated with the transcriptional activity of NF-kB. Therefore,
overexpression of NF-kB in penile and cervical cancer cases suggested
that NF-kB activation is a key modulator in driving chronic inflamma-
tion to cancer.10-13

PDZ domain-containing proteins have been identified as binding
partners for the oncoprotein E6 of the high-risk type HPV. The PDZ
binding motif of E6 is required for activation of NF-kB and the non-PDZ
domain mutant from E6 is unable to activate NF-kB.137 Tumor necrosis
factor (TNF), other cytokines, and growth factors stimulate the activa-
tion of NF-kB and the transcription of antiapoptotic target genes,
including the inhibitor of apoptosis proteins XIAP, ciap-1, and ciap-2.138

NF-kB and TNF are functionally important molecules in inflammation-
associated cancer.139,140 Prevention of DNA damage or cytokine induced
apoptosis by activation of NF-kB may be a major obstacle in the treat-
ment of HPV-associated cancers. NF-kB activation in HPV-infected
cells likely plays a role in the proliferative capacity of the cells in addi-
tion to protection from apoptosis, which is reflected in the diminished
ability of E6 mutants that are not able to bind PDZ domains or activate
NF-kB to promote oncogenesis. Investigation of the potential role of
NF-kB activation in the pathogenesis of HPV-associated cancers is of
significant importance with regards to the treatment and prevention of
viral cancers.137 NF-kB activity is triggered in response to infective
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Figure 5. (A) Detection of NF-κB in the cytoplasms in penile can-
cer. Original magnification 200x. (B) Negative control section is
not stained by NF-κB. Original magnification 200x. (C)
Detection of NF-κB in the nuclei in penile cancer. Original mag-
nification 200x. (D) Negative control section is not stained by
NF-κB. Original magnification 200x.

Figure 4. High-risk human papilloma virus (HPV) E6 and E7
proteins play a critical role in the development of HPV-associat-
ed cancers. E7 and E6 react with the tumor suppressor gene prod-
ucts pRb and p53 in host cell proteins, respectively, resulting in
induced cellular immortalization, transformation and carcino-
genesis. E7 induces hyperproliferation through inhibition of
retinoblastoma family members and constitutive activation of
E2F responsive genes. E6 inhibits p53-dependent growth arrest
and apoptosis, resulting in the induction of genomic instability
and the accumulation of cellular mutations. Degradation of p53
bypasses the normal growth arrest of the cell cycle from G1 to S
phases.
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agents and proinflammatory cytokines via the IKK complex. TNF, inter-
leukins, chemokines, COX-2, 5-LOX, and MMP-9 are all regulated by the
transcription factor NF-kB. NF-kB activation is induced by a wide vari-
ety of stimuli of inflammation and formation of cancer, because inflam-
matory mediators induce oncogenesis.141,142 Inflammatory biomarkers
can also be exploited to develop new anti-inflammatory drugs that can
be used not only for prevention but also in cancer therapy. Furthermore,
inhibitors of NF-kB activation can block the cancer transformation
response and this is a new approach in cancer treatment.143-146

Conclusions

In conclusion, HPV-induced cancers can evolve different immune
evasion strategies according to the various immunological challenges
they have to face. Viruses have evolved these diverse mechanisms to
target the importance of MHC class I molecules in host defense against
viruses. MHC class I molecules bind to peptides derived from endoge-
nously synthesized proteins and present them at the cell surface for
sampling by CD8+ CTLs. Viral immune evasion proteins interfere with
antigen presentation and interrupt the early MHC class I assembly
presentation pathway. The viral immune evasion molecules attack the
ER PLC and exploit ER-associated degradation pathways. The MHC
class I pathway is spared by viral immune evasion. Therefore, an anti-
body is not produced because no antigen is presented. Although the
immune response is able to overcome the evasion mechanisms and
clear infection in most cases, prolonged persistence of high-risk HPV
sometimes leads to malignancy. The causal relationship between
chronic inflammation and cancer is widely accepted. Therefore, there
is a strong association between tumor viruses and development of can-
cers due to viral immune evasion. 
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