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Abstract

Rationale

Chronic smoke exposure is associated with weight loss in patients with Chronic Obstructive

Pulmonary Disease (COPD). However, the biological contribution of chronic smoking and

sex on the cecal microbiome has not been previously investigated.

Methods

Adult male, female and ovariectomized mice were exposed to air (control group) or smoke

for six months using a standard nose-only smoke exposure system. DNA was extracted

from the cecal content using the QIAGEN QIAamp® DNA Mini Kit. Droplet digital PCR was

used to generate total 16S bacterial counts, followed by Illumina MiSeq® analysis to deter-

mine microbial community composition. The sequencing data were resolved into Amplicon

Sequence Variants and analyzed with the use of QIIME2®. Alpha diversity measures (Rich-

ness, Shannon Index, Evenness and Faith’s Phylogenetic Diversity) and beta diversity

(based on Bray-Curtis distances) were assessed and compared according to smoke expo-

sure and sex.

Results

The microbial community was different between male and female mice, while ovariectomy

made the cecal microbiome similar to that of male mice. Chronic smoke exposure led to sig-

nificant changes in the cecal microbial community in both male and female mice. The organ-

ism, Alistipes, was the most consistent bacteria identified at the genus level in the cecal

content that was reduced with chronic cigarette exposure and its expression was positively

related to the whole-body weight of these mice.

Conclusion

Chronic smoke exposure is associated with changes in the cecal content microbiome; these

changes may play a role in the weight changes that are observed in cigarette smokers.
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Introduction

Cigarette smoking is associated with weight loss but the mechanism for this is not well known

[1–3]. The traditional paradigm is that tobacco contains nicotine, which reduces appetite and

decreases food intake [4, 5], but other factors may also play a role. For instance, chronic smoke

exposure promotes tissue hypoxia and mucosal inflammation in the gastrointestinal tract and

also decreases intestinal barrier function [6]. The deleterious effects of smoking may hamper

gut permeability and perturb the ability to absorb nutrients through the gut lining [7]. Ciga-

rette smoking also predisposes to the development of inflammatory conditions such as ulcers,

inflammatory bowel disease and cancer [6, 8], which further contribute to a dysfunctional gut

environment.

It is widely accepted that a healthy gut microbiome is associated with adequate cellular

metabolism and energy extraction from diet [9–11]. There is also a growing body of evidence

that cigarette smoking may promote shifts in the gut microbial communities, leading to an

imbalance between commensals and pathogenic bacteria (i.e., gut microbial dysbiosis) [12,

13], which may impact on weight. Consistent with this notion, the genera Bifidobacteria and

Lactococcus, which are involved in energy metabolism from short-chain fatty acids, are

decreased in the intestinal flora following smoke exposure [13–15]. In a previous study,

Bäckhed and colleagues reported that germ-free (GF) mice bred in isolation and free from

detectable bacteria, viruses or eukaryotic microbes showed significantly lower body weight

compared with conventionally-raised mice [9]. Interestingly, the GF mice after receiving cecal

contents from conventionally-raised mice had a 61% increase in their epididymal fat weight,

supporting the importance of the gut microbiome in regulating body weight.

Moreover, the effects of sex and sex hormones on the gut microbiome in mice are increas-

ingly being recognized [16–20]. Org and colleagues detected significant sex and hormonal

(ovariectomy and gonadectomy) differences in the gut microbial community in C57BL/6J,

C3H/HeJ and DBA/2J mice [20]. However, the impact of sex hormones on the cecal micro-

biome of mice after chronic smoke exposure has not been previously investigated. As women

are more susceptible to adverse effects from cigarette smoking [21, 22], we sought to determine

the role of sex and female sex hormones on the cecal microbiome in response to chronic ciga-

rette smoke exposure.

Materials and methods

The data reported in the present study were generated from mouse samples collected from a

previous study where we examined the effect of sex-related differences on pulmonary function

from chronic cigarette exposure [23]. In the current study, we report additional data focusing

on the cecal microbiome and its contribution to changes in whole-body weight after chronic

smoke exposure.

Animals

Adult male, female and ovariectomized C57BL/6 female mice (12 weeks old) were obtained

from Charles River (Montreal, PQ, Canada) [23]. In brief, surgical ovariectomy of female mice

was performed at Charles River four weeks prior to cigarette smoke exposure. 1R1 and 2R4F

research grade cigarettes were obtained from the University of Kentucky (Lexington, KY, USA).

Smoke exposure

We studied 6 groups of mice (n = 10 per group): 1) control males (CM), 2) smoke-exposed

males (SM), 3) control females (CF), 4) smoke-exposed females (SF), 5) control
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ovariectomized females (COF), and 6) smoke-exposed ovariectomized females (SOF). The

smoke-exposed groups were consistently exposed to three cigarettes (one 1R1 and two 2R4F

with the filters removed, or two 1R1 and one 2R4F with the filters removed on every other

smoking day) for five days per week for six months. Two mice died in the smoke-exposed

ovariectomized group from acute bronchospasm. All smoke exposures were conducted using

our standard nose-only smoke exposure system [23–26].

Sample processing

Immediately after the last smoke exposure, cecal content was placed into a 1.5 mL microcentri-

fuge tube and immediately frozen in dry ice and stored in -80˚C. DNA extraction was per-

formed using the Qiagen DNeasy & Stool Extraction Kit according to the manufacturer’s

protocol (Qiagen, Hilden, Germany). Nanodrop (Thermo Fisher Scientific, Wilmington,

USA) was performed on each sample to assess the quality and quantity of the DNA.

Microbiome profiling

Details regarding the PCR amplification of the 16S rRNA gene V4 region were previously

reported [27]. The cecal microbiome was determined by polymerase chain reaction (PCR)

amplification of the 16S rRNA gene V4 region using the Illumina MiSeq1 platform (2 x 250

bp) [28]. All samples were sequenced at the University of British Columbia (UBC) Sequencing

and Bioinformatics Consortium. Due to low quality of the reverse reads, only the forward

reads were considered in this analysis. Sequencing reads were de-noised using DADA2 (Divi-

sive Amplicon Denoising Algorithm) [29] and clustered into Amplicon Sequence Variants

(ASV) [30] using QIIME21 (Quantitative Insights into Microbial Ecology) [31]. Six extraction

negative controls (in which no sample DNA was added during the DNA extraction steps) were

used to identify potential contaminants in our study. S1 Fig provides the 16s RNA gene cop-

ies/μL for both cecal and extraction negative samples. ASVs, which were present in at least two

controls and showed higher average relative abundance compared to cecal samples, were con-

sidered potential contaminants and thus removed from downstream analysis. S1 Table in the

Online Data Supplement provides the taxonomic annotations for these ASVs. In addition,

sequencing reads related to ASVs not classified at the phylum level, singletons, and low abun-

dant taxa (total frequency less than ten times across all samples) were also removed from the

final analysis. All cecal samples were rarified to the lowest number of reads observed across all

samples (7,143 reads) during alpha and beta diversity analyses. The SILVA 16s rRNA gene ref-

erence database (v132, set NR99) was applied to assign bacterial taxonomic classifications [32].

Sequences are available via the National Center for Biotechnology Information Sequence Read

Archive (accession number PRJNA589852).

Statistical analysis

16S counts were analyzed using t-tests. The feature table (which contains the frequencies of

each unique ASV in each sample in the dataset) and taxonomic annotations obtained from

QIIME21 were obtained and exported as a BIOM file [33] and analyzed in R (version 3.6.1,

available http://www.R-project.org), using the Vegan (version 2.5–6) [34] and Phyloseq

(version 1.30.0) [35] packages. Alpha diversity measures (Richness, Shannon Index, Pielou’s

Evenness Index and Faith’s Phylogenetic Diversity—PD) [36] were expressed as median

[interquartile range–IQR] and compared according to smoke exposure (control and smoke-

exposed samples), sex (males, females, and ovariectomized females), and after stratification by

smoke exposure and sex. These comparisons were performed using non-parametric methods

(Wilcoxon rank-sum or Kruskal-Wallis tests as appropriate) [37]. Microbial communities
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(beta diversity) were also assessed based on Bray Curtis distances [37] and compared between

groups of interest using principal coordinates analysis (PCoA) plots and Permutational Multi-

variate Analysis of Variance (PERMANOVA) using 1,000 permutations [31, 38]. Relative

abundances (RA) of the most frequent phyla and genera (displayed as median [IQR]), were

also obtained and compared using a similar approach as described for alpha diversity analyses.

We used the Benjamini-Hochberg method to obtain adjusted p-values related to pairwise com-

parisons for all microbiome analyses (alpha diversity metrics, beta diversity and relative taxa

abundances) [39]. To identify taxa features differentially expressed between control and

smoke-exposed samples or across different groups, we also used the linear discriminant analy-

sis (LDA) effect size (LEfSe) method [40]. LEfSe’s algorithm uses non-parametric tests (Krus-

kal–Wallis test followed by multiple Wilcoxon rank-sum tests) to adjust its results for multiple

comparisons. The taxa features identified by LEfSe (LDA score> 3.5) were exported and visu-

alized in R using the Yingtools2 package (version 0.0.0.90, available at https://github.com/

ying14/yingtools2). We also used Prism 8 (GraphPad Software Inc. La Jolla California) for

additional statistical analyses and graph generation. The level of statistical significance was set

at p<0.05 (two-tailed) for all tests.

Study approval

All procedures were previously approved by the University of British Columbia Animal Care

Committee (A11-0149).

Results

Chronic smoke exposure reduced the ability to gain weight

Chronic smoke exposure consistently reduced the ability to gain weight when compared to con-

trols over the entire length of exposure (Fig 1A). Cross-sectional data at week 24 revealed that

smoke exposure significantly lowered body weight compared to their control counterparts (Fig

1B), and the effect from smoking was consistent after stratification by sex in males, females and

ovariectomized mice (Fig 1C). We detected significantly lower body weight in control females

compared to control males. Ovariectomy did not reverse this effect, as control ovariectomized

females also showed lower body weight compared to their male counterparts (Fig 1C).

Sequencing of 16S rRNA V4 region amplicon libraries

To further characterize the contribution of the cecal microbiome on the effects of smoking on

body weight, extensive bacterial sequencing technology was performed. A total of 1,217,769

reads were imported into QIIME21. Following sequence quality control (DADA2), 1,017,016

reads were retained and after additional filtering steps, as outlined in the Methods section,

962,340 reads (872 different ASVs) were considered in the final analysis. Overall, the three

most abundant phyla, expressed as median [interquartile range], were Bacteroidetes (present

in 58 samples, 58.6% [11.2%]), Firmicutes (58 samples, 34.9% [8.8%]), and Epsilonbacteraeota
(51 samples, 2.9% [3.2%]) (S2 Fig and S2 Table). At the genus level, the three most frequent

taxa, observed across all samples, were Prevotellaceae-UGC-001 (17.9% [11.1%]), Lachnospira-
ceae NK4A136 group (13.6% [7.4%]), and Alistipes (3.9% [5.0%]) (S3 Fig and S3 Table).

Microbial community structures were different after chronic smoke

exposure

Similar values of Richness (180 [28] vs. 170 [34], p = 0.23), Shannon Index (5.8 [0.3] vs. 5.7

[0.6], p = 0.34), Evenness (0.78 [0.07] vs. 0.76 [0.06], p = 0.19), and Faith’s Phylogenetic
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Diversity (12.4 [1.0] vs. 12.6 [0.8], p = 0.92) were observed between control (n = 30) and

smoke-exposed (n = 28) samples, respectively (S4A–S4D Fig, S1 Dataset). However, the micro-

bial community structures (beta diversity) between these groups differed significantly (Fig

2A), p<0.001. At the phylum level, relative abundance comparisons did not show significant

taxa differences between control and smoke-exposed groups (Fig 2B and S4 Table). At a lower

taxonomic level (genus), we observed a significantly higher RA of Alistipes (7.4% [4.3%] vs.

2.9% [1.5%], adj. p<0.001) and Uncultured Bacteroidales bacterium (Family Muribaculaceae)
(2.4% [3.1%] vs. 1.1% [2.0%]; adj. p = 0.02) in control samples (Fig 2C, S5 Table). Conversely,

the genera Prevotellaceae NK3B31 group (6.4% [4.5%] vs. 2.7% [4.3%], adj. p = 0.01) and Bac-
teroides (5.1% [2.9%] vs. 2.9% [3.6%], adj. p = 0.03) predominated in the smoke-exposed sam-

ples. LEfse analysis (based on an LDA score� 3.5) reported similar results and identified 12

additional taxa discriminating features (total = 16) across different taxonomic levels (from

phylum to genus) between both groups (Fig 2D). When considering only ovariectomized

females, the effects of smoking on the cecal microbiome becomes evident, with control ovari-

ectomized females showing significantly different microbial communities compared to their

smoke-exposed counterparts (p<0.001, Fig 3).

Fig 1. Chronic smoke exposure reduced the ability to gain body weight in mice. A) Whole-body weight over time is

shown in mice stratified by smoke exposure (control vs. smoke-exposed). Whole-body weights at week 24 are shown

in mice stratified by smoke exposure (B) and by both smoking and sex (C). In panel A, a two-way analysis of variance

(ANOVA) with Bonferroni’s multiple comparisons test was applied, whereas in panels B and C a two-tailed unpaired

t-test and one-way ANOVA with Bonferroni’s multiple comparisons test was used, respectively. C = control;

S = smoke-exposed.

https://doi.org/10.1371/journal.pone.0230932.g001
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Female sex hormones affected cecal microbiome composition

Higher values of the Shannon Index were observed in female mice compared to males and

ovariectomized females (6.0 [0.3] vs. 5.6 [0.4] vs. 5.6 [0.4], respectively; adj. p = 0.002 vs. males;

adj. p = 0.003 vs. ovariectomized females). Similar results were also detected according to

Evenness, with female mice showing significantly higher values (0.80 [0.03]) compared to

males (0.76 [0.07], adj. p = 0.004) and ovariectomized females (0.74 [0.02], adj. p = 0.002) (Fig

4A–4D and S6 Table). Richness and Faith’s PD did not differ between sex groups. Interest-

ingly, male and ovariectomized female groups showed similar values of alpha diversity for any

of the metrics evaluated (adj. p>0.05).

Additional comparisons between samples after stratification by smoking and sex are shown

in Fig 4E–4H and S7 Table. Values of Richness and Faith’s PD were similar across groups. We

detected significantly higher values of the Shannon Index (6.0 [0.1] vs. 5.4 [0.5], adj. p = 0.02)

and Evenness (0.80 [0.01] vs. 0.74 [0.06], adj. p = 0.03) in smoke-exposed female mice when

compared to smoke-exposed males. Similar differences were also identified between smoke-

exposed females and their ovariectomized counterparts, with the latter group showing signifi-

cantly lower values of the Shannon Index (5.5 [0.3], adj. p = 0.03) and Evenness (0.74 [0.03],

Fig 2. Chronic cigarette smoke exposure differentially impacted cecal microbial communities in mice. A) PCoA

plot based on Bray-Curtis distance matrix between control (n = 30) and smoke-exposed (n = 28) samples is shown. P-

value obtained using the PERMANOVA built-in function from QIIME21’s diversity plugin. B and C) Relative

abundance of most frequent taxa in control and smoke-exposed samples at the phylum and genus levels, respectively.

Significant taxa differences (adj. p-value<0.05 based on the Benjamini-Hochberg method) were observed only at the

genus level (�): Alistipes and Uncultured Bacteroidales bacterium (Family Muribaculaceae) showed a higher relative

abundance in control samples, whereas Prevotellaceae NK3B31group and Bacteroides predominated in smoke-exposed

samples. D) Differential taxa features identified by LEfSe (LDA score> 3.5) according to smoke exposure; red and

blue bars represent taxa features with higher expression in the control and smoke-exposed groups, respectively.

PCoA = Principal Component.

https://doi.org/10.1371/journal.pone.0230932.g002
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adj. p = 0.03). Moreover, males and ovariectomized females, regardless of smoke exposure,

showed similar patterns of alpha diversity (adj. p>0.05 for all metrics).

Beta diversity analyses revealed that the cecal microbial community of female mice was sig-

nificantly different from males and ovariectomized females (adj. p = 0.002 for both compari-

sons), with the latter two groups showing similar microbial profiles (adj. p = 0.10) (Fig 5A).

When considering both smoke exposure and sex simultaneously, we identified four different

microbial clusters: control females, control males/control ovariectomized females, smoke-

exposed females, and smoke-exposed males/ smoke-exposed ovariectomized females (Fig 5B).

These analyses revealed that the microbial community structures of control ovariectomized

females were significantly different from control females (adj. p = 0.002) but similar to those of

control males (adj. p = 0.10). However, among smoke-exposed samples, ovariectomized

females showed significantly different microbial profiles compared to females (adj. p = 0.003)

and were marginally different from males (adj. p = 0.01). S8 Table provides additional infor-

mation regarding beta diversity comparisons according to smoke exposure and sex.

These differences in microbial community structures described above were due to several

taxa, especially at the genus level (Fig 6A–6D, and S9–S12 Tables). Moreover, LEfse analysis

(based on an LDA score > 3.5) identified 18 differential features across groups according to

sex (S5 Fig), which increased to 29 taxa differences after stratification by smoking and sex (Fig

7). According to this bioinformatics tool, the most discriminating taxa at the genus level were

Alistipes (enriched in control males), Lachnospiraceae NK4A136 group and Akkermansia
(smoke-exposed males), Helicobacter and Muribaculum (control females), Bacteroides (smoke-

exposed females). Prevotellaceae UCG001 and NK3B31group predominated in the cecal con-

tent of smoke-exposed ovariectomized females.

Fig 3. Comparison of mice cecal microbial communities between control and smoke-exposed ovariectomized

females. PCoA plot based on Bray-Curtis distance matrix between control ovariectomized (COF, n = 10) and smoke-

exposed ovariectomized (SOF, n = 8) female mice is shown. P-value was obtained using the PERMANOVA built-in

function from QIIME21’s diversity plugin. PCoA = Principal Component.

https://doi.org/10.1371/journal.pone.0230932.g003
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Fig 4. Effects of smoke exposure and sex on different alpha diversity metrics in mice cecal content. Comparisons

of different alpha diversity metrics between male (n = 20), female (n = 20) and ovariectomized females (n = 18) mice

(A-D) and after stratification by smoking exposure and sex (E-H) are shown. P-values were obtained using the

Kruskal-Wallis test (�), and the Benjamini-Hochberg method was applied to compute adjusted p-values for multiple

pairwise comparisons. ASV = amplicon sequence variant, Faith’s PD = Faith’s Phylogenetic Diversity, CM = control

male, SM = smoke-exposed male, CF = control female, SF = smoke-exposed female, COF = ovariectomized control

female, and SOF = ovariectomized smoke-exposed female.

https://doi.org/10.1371/journal.pone.0230932.g004
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Whole-body weight correlated positively with the cecal Alistipes expression

We detected a significant decrease in the Alistipes expression in the cecal content of male and

ovariectomized female mice after chronic smoking exposure (adj. p = 0.004 for both compari-

sons). Among females, a similar trend was also observed (adj. p = 0.07). Interestingly, this

effect was positively correlated with body weight in all sex groups (males, females, and ovariec-

tomized females) (Fig 8A–8D, S2 Dataset). Among the ASVs belonging to the genus Alistipes
(n = 16), predicted hits at the species level according to the NCBI sequence BLAST tool [41]

included A. finegoldii (E-value: 2e-107; Identity: 100%) and A. obesi strain ph8 16S ribosomal

RNA (E-value: 9e-105, Identity: 99.1%).

Discussion

We have previously demonstrated that female mice have increased airway wall thickness, lym-

phoid follicle expression, oxidative stress and distal airway resistance after chronic smoke

exposure compared to male mice, and these effects were attenuated with ovariectomy [23, 24,

26]. To extend previous findings that showed chronic cigarette smoke exposure altered the

murine gut microbiome [42], we have systemically investigated specific sex-related effects in

the cecal microbiome of mice in response to chronic smoke exposure. According to our data,

chronic smoke exposure significantly altered the cecal microbial compositions of male, female

and ovariectomized mice compared to their respective controls. However, the most novel

Fig 5. Sex hormones significantly affected the cecal microbial composition. (A) PCoA plot based on Bray-Curtis distance matrix between male

(n = 20), female (n = 20) and ovariectomized females (Ov Female, n = 18) mice is shown. Pairwise comparisons: female vs. ovariectomized female: adj.

p = 0.002; female vs. male: adj. p = 0.002; ovariectomized female vs. male: adj. p = 0.10. (B) PCoA plot using the same samples after stratification by

smoke exposure and sex: smoke-exposed female (SF, n = 10), smoke-exposed male (SM, n = 10), ovariectomized smoke-exposed female (SOF, n = 8),

control female (CF, n = 10), control male (CM, n = 10), and ovariectomized control female (COF, n = 10) is shown. Main pairwise comparisons: control

female and smoked-exposed female: adj. p-value = 0.004; control male and smoked-exposed male: adj. p-value = 0.002; ovariectomized control female

and ovariectomized smoke-exposed female, adj. p-value = 0.002; control female and ovariectomized control female; adj. p-value = 0.002; smoke-exposed

female vs. ovariectomized smoke-exposed female: adj. p = 0.003; control male and ovariectomized control female, adj. p-value = 0.10, and smoked-

exposed male and ovariectomized smoke-exposed female, adj. p-value = 0.01. A list of all multiple pairwise comparisons is described in the S8 Table. All

P-values were obtained using the PERMANOVA built-in function from QIIME21’s diversity plugin with adjustments for multiple pairwise

comparisons according to the Benjamini-Hochberg method. PCoA = Principal Component, Ov Female = ovariectomized female.

https://doi.org/10.1371/journal.pone.0230932.g005
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finding was that ovariectomy can significantly reverse the effect of female sex hormones on the

cecal microbiome as both male and ovariectomized female mice showed similar patterns

according to both alpha (Fig 4A–4D, S6 Table) and beta diversity analyses (Fig 5A). Moreover,

these effects may occur regardless of whether smoke exposure was present, as the microbial

communities of control males and control ovariectomized females were similar (Fig 5B), and

their smoke-exposed counterparts were marginally different from each other. Collectively,

these data support a significant role of sex hormones on the cecal microbial community, which

may have important implications to diseases that have a sex-dependent component.

Fecal and cecal samples from murine models are often used to study the interaction

between the gut microbiome and the host response. In human studies, the fecal microbiome is

mostly investigated because sample collection is relatively easy, as no invasive procedures are

required for sample collection. However, the cecum is an important fermentation chamber

that harbors a rich diversity of microbes [43–45], which may reflect the stability observed in

the microbial environment. In a previous article, Org et al. performed 16S bacterial sequencing

on the cecum of 689 mice from 89 different strains [20]. These authors observed a higher

abundance of Allobaculum and Anaeroplasma in the gut microbiome of males, whereas Lach-
nospiraceae (Dorea, Coprococcus and Ruminococcus) predominated in those of females. How-

ever, most of those differences were due to different genetic backgrounds (i.e., different

strains), possibly hampering the assessment of the true biological effects of sex hormones in

the gut microbiome. For instance, it has been shown that the microbiome composition of

healthy mice may be affected by several factors, such as cage, shipment and vendors [46]. Int-

erestingly, the same authors above performed gonadectomy in a subset of male mice, which

led to significant changes in the gut microbiome, and those effects were mitigated with

Fig 6. Effects of smoke exposure and sex on the phylum and genus level in mice cecal content. Average relative

abundance of most frequent taxa at the phylum (A and B) and genus (C and D) levels in males, females and

ovariectomized females (left) and after stratification by smoke exposure and sex (right). Ov Female = Ovariectomized

Female, CM = control male, SM = smoke-exposed male, CF = control female, SF = smoke-exposed female,

COF = ovariectomized control female, and SOF = ovariectomized smoke-exposed female. Taxa comparisons are

described in detail in S9–S12 Tables.

https://doi.org/10.1371/journal.pone.0230932.g006
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testosterone administration. Here, using controlled experimental conditions (same mice strain

and diet), we provide additional and more robust evidence of the impact of female sex hor-

mones on the cecal microbiome.

The mechanism by which sex hormones modulates the cecal microbiome is not fully under-

stood. It has been shown that female sex hormones upregulate the expression of branched-

chain 2-oxoacid dehydrogenase [47]. Shastri et al. found evidence of sex differences in gut fer-

mentation, as female mice, after being fed on an oligofructose supplemented chow diet,

evolved with increased expression of the Bacteroidetes phylum compared to males [19]. Inter-

estingly, the authors also observed significantly higher weight gain and energy consumption in

males compared to females regardless of the diet used (either chow or chow supplemented

with oligofructose). Similarly, in our study, we observed significantly higher body weight in

control male mice compared to their female counterparts. This suggests that body weight may

Fig 7. Differential taxa features identified by LEfSe after stratification by smoke exposure and sex. CF = control female, CM = control

male, COF = ovariectomized control female, SF = smoke-exposed female, SM = smoke-exposed male, and SOF = ovariectomized smoke-

exposed female.

https://doi.org/10.1371/journal.pone.0230932.g007
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be imprinted and partially controlled by a unique set of microbes that differ in their ability to

extract and deposit nutrients in the body, however, this requires further studies to validate this

hypothesis. Additionally, the exact biological role associated with each bacterial strain in the

mice gut remains unclear, however, increasing evidence supports that the entire gut micro-

biome in conventional mice compared to germ-free has a global overexpression of metabolites

that have been reported to be associated with mucosal integrity [48], energy extraction [49]

and chemical detoxification [50]. Recently, Baars and colleagues observed a crosstalk between

sex-induced changes in the gut microbiome and the regulation of host lipid metabolism [51].

These sex differences in energy metabolism have also been described in humans [52], but

require further studies to elucidate their exact mechanisms.

Consistent with other reports [53], we also showed that chronic smoke exposure signifi-

cantly reduced the ability to gain weight in smoke-exposed mice compared to control mice.

Apart from the neurophysiological effects of smoking, which is associated with decreased

appetite and changes in plasma leptin levels [53], smoking also interferes negatively with the

gut homeostasis by promoting increased mucosal inflammation and decreased intestinal

mucosal barrier integrity. In a previous study, mice exposed to two months of smoke exposure

followed by a 6-day treatment with dextran sodium sulfate (DSS) (induced-colitis model)

showed enhanced gut inflammation via increased neutrophil counts and Th17+ cells in the

lungs, blood and intestinal compartments, supporting the existence of a lung-gut axis [54].

Those findings are in keeping with reports from Allais and colleagues, who observed altered

mucin production and increased expression of inflammatory genes (Cxcl2 and IL-6) in the

murine gut following chronic smoke exposure, and those changes were accompanied by an

increase in the relative abundance of Lachnospiraceae sp. in the colon [42]. In another study

Fig 8. Chronic smoke-induced weight loss is associated with reduced expression of the Alistipes genus in the cecal

content. A) Relative abundance of the bacterial genus Alistipes in mice stratified by smoke exposure and sex at 24

weeks post cigarette smoke exposure; p-value� was obtained using the Kruskal-Wallis test, and the Benjamini-

Hochberg method was applied to compute adjusted p-values for multiple pairwise comparisons. Correlations between

whole-body weight and the cecal relative abundance of Alistipes (%) are shown in male (B), female (C), and

ovariectomized female (D) mice. Linear regression analyses were used in panels B-D. Red dot = control mice, blue

dot = smoke-exposed mice. C = control, S = smoke-exposed, Ov Female = ovariectomized female.

https://doi.org/10.1371/journal.pone.0230932.g008
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that analyzed fecal samples of 758 men, a decrease in Firmicutes/Bacteroidetes ratio in current

smokers compared to never smokers was observed [55]. We extend these observations by

reporting several taxa differences at the genus level between control and smoke-exposed mice

samples. We observed that the genera Bacteroides, Prevotellaceae NK3B31group, Akkermansia,

Oscillibacter and Lachnospiraceae UCG-001 predominated in the gut microbiome of smoke-

exposed mice, whereas Alistipes and Uncultured Bacteroidales bacterium (Family Muribacula-
ceae) were enriched in control mice.

The shifts in the expression of the Alistipes genus related to chronic smoke exposure

detected in our study deserve special considerations. The relative abundance of Alistipes was

consistently decreased in all smoke-exposed mice groups compared to their respective controls,

and its relative abundance was significantly and positively correlated with whole-body mice

weight. Nevertheless, owing to our study design, it remains unclear whether a decreased expres-

sion of this particular genus is causally related to weight loss or merely reflects a perturbed cecal

mucosal environment due to different insults from smoking. Dziarski and colleagues also

detected a reduction in Alistipes finegoldii (identified among the Alistipes species in our study)

in the gut microbiome of mice that harboured DSS-induced colitis [56]. Interestingly, oral deliv-

ery of A. finegoldii has been shown to protect these mice with DDS-induced colitis from excess

body weight loss, as well as from adverse histologic changes in the gut including epithelial

hyperplasia, loss of crypts, immune cell infiltration, ulceration, epithelial and goblet cell loss

[56]. Decreased gut expression of several species belonging to the same Alistipes genus including

A. massiliensis, A. putredinis and A. finegoldii has also been linked to inflammatory bowel dis-

ease (IBD) [57–59]. These data support that the delivery of specific bacterial strains may have

therapeutic effects that are able to reverse or attenuate the inflammatory process associated with

IBD. This has clinical implications, as it has been shown that smokers have an increased risk for

IBD [60], while another study has reported that female smokers are at increased risk of Crohn’s

disease compared to men [61]. Taken together, smoking, aside from its deleterious effects on

the lungs, may also induce significant perturbations on the gastrointestinal tract. Whether these

gut microbiome changes induced by smoking are causally related to different diseases, as in

IBD, or represent possible disease biomarkers (e.g., decreased Alistipes expression) requires fur-

ther studies. Similarly, it remains unknown how these smoking-induced gut microbiome shifts

may reflect on lungs, however, a growing body of evidence supports the existence of a gut lung-

axis [62], as gut metabolites, after reaching the lungs through the blood-stream, can induce

immune and inflammatory responses. Thus, our findings may be beneficial for future studies in

search of novel therapies for smoking-related diseases.

Our study has several limitations. First, although we demonstrated a positive correlation

between Alistipes and body weight in cigarette-exposed mice, we did not establish causality.

Second, the gut microbiome of mice is quantitatively different from that of humans, especially

when it pertains to the relative abundance of specific phyla and species, though they do share

similar qualitative cores [63]. Although the Firmicutes and the Bacteroidetes are the two abun-

dant phyla in both humans and mice, 85% of the sequences in the gut microbiome of mice rep-

resent genera that have not been previously detected in humans [46, 64]. Thirdly, we cannot

completely exclude any cage effects on our cecal microbiome analyses, as mice are generally

housed in groups of 4–5 per cage. In a previous study, Ericsson and colleagues reported that

different types of bedding (aspen vs paper chips) and cage ventilation conditions (static vs ven-

tilated micro-isolator) may have effects on the gut microbiota [65], which, in turn, may inter-

fere with the reproducibility of animal models. However, these potential cage effects were

minimized in our study, as we consistently used the same bedding, diet and housing room in

all our experiments. In keeping with this, we also performed additional beta diversity analyses

(S6 Fig) that showed only minimal cage effects in ovariectomized females.
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In summary, our data indicate that chronic smoke exposure alters the microbial commu-

nity in the cecal content of mice and that these changes are also modulated by female sex hor-

mones. Another important finding was that the relative abundance of Alistipes was positively

associated with whole-body weight. Reduced body weight is an important risk factor for

chronic lung diseases including chronic obstructive pulmonary disease and bronchiectasis.

Further studies are needed to reveal the specific mechanisms, such as metabolic factors, sys-

temic inflammatory status or hormonal milieu that drive weight loss in these conditions and

to what extent these mechanisms are modulated by female sex hormones.
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S1 Fig. Comparison of total bacterial 16S load between all cecal samples (n = 58) and
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S2 Fig. Average relative abundance of most abundant phyla across cecal samples (n = 58).
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2.0% across all cecal samples.

(TIF)
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