

ISSN 2414-3146

Received 7 June 2020 Accepted 10 June 2020

Edited by I. Brito, University of Antofagasta, Chile

Keywords: crystal structure; solvate; absolute structure; Flack parameter; 2*AD* plot.

CCDC reference: 2009153

Structural data: full structural data are available from iucrdata.iucr.org

Ethyl (3*S*)-3-[(3*aR*,5*R*,6*S*,6*aR*)-6-hydroxy-2,2-dimethyltetrahydrofuro[4,5-*d*][1,3]dioxol-5-yl]-3-{(3*S*)-3-[(3*aR*,5*R*,6*S*,6*aR*)-6-hydroxy-2,2-dimethyltetrahydrofuro[4,5-*d*][1,3]dioxol-5-yl]-5-oxoisoxazolidin-2-yl}propanoate chloroform monosolvate

Aldo Guillermo Amaro Hernández,^a Tomasa Rodríguez Tzompantzi,^a Álvaro Dávila García,^a Rosa Luisa Meza-León^a and Sylvain Bernès^b*

^aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur Esq. Av. San Claudio, 72570 Puebla, Pue., Mexico, and ^bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico. *Correspondence e-mail: sylvain_bernes@hotmail.com

The title compound, $C_{22}H_{33}NO_{12}$ ·CHCl₃, was obtained as a product of a double aza-Michael addition of hydroxylamine on a Chiron with a known absolute configuration. The enantiopure compound crystallized as a chloroform solvate, in space group *P*1, and diffraction data were collected at room temperature with Ag $K\alpha$ radiation. The Flack parameter refined to x = -0.01 (16); however, the Flack and Watkin 2*AD* plot clearly shows that differences between Friedel opposites (the *D* component of the plot) do not carry any reliable information about resonant scattering of Cl atoms, and are rather dominated by random and systematic errors. The R_D factor calculated using 1941 acentric Friedel pairs is $R_D = 0.995$. On the other hand, the 2*A* component of the plot, related to average intensities of Friedel pairs, shows that data are of good quality ($R_A = 0.069$). This example illustrates that while using Ag $K\alpha$ radiation ($\lambda = 0.56083$ Å), scatterers heavier than Cl should be present in a chiral crystal in order to determine confidently the absolute structure of the crystal.

Structure description

OPEN OR ACCESS

The Chiron known as 7,3-LXF (7,3-lactone-xylofuranose derivative; Ramírez *et al.*, 2017), derived from D-glucose, is a versatile starting material for the synthesis of natural products, for example the metabolites produced by *Trichoderma* spp and *Penicillium*

data reports

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$\begin{array}{c} O10 {-} H10 {\cdot} {\cdot} {\cdot} O7^{i} \\ O19 {-} H19 {\cdot} {\cdot} {\cdot} O10^{ii} \end{array}$	0.85 (1)	1.94 (2)	2.778 (4)	169 (6)
	0.85 (1)	1.98 (3)	2.798 (5)	162 (7)

Symmetry codes: (i) x + 1, y, z; (ii) x, y + 1, z.

isolates (Pérez-Bautista *et al.*, 2016). In a work aimed at the synthesis of 1-deoxynojirimycin (DNJ), an azasugar alkaloid presenting α -glucosidase inhibitor properties, the title compound was obtained (Amaro Hernández, 2019). The total synthesis of DNJ has been reported, for example starting from D-glucose (Khobare *et al.*, 2016). However, the stereo-chemistry of 7,3-LXF matches the stereochemistry of the target molecule, and 7,3-LXF is thus considered to be an ideal Chiron for the synthesis of DNJ. Moreover, we developed an efficient procedure for the preparation of 7,3-LXF at the gram scale.

The title compound was obtained while attempting an aza-Michael addition of hydroxylamine to 7,3-LXF, at pH 7. Under our experimental conditions, a double aza-Michael addition was observed, followed by a transesterification in ethanol, affording a disubstituted isoxazolidinone, which was characterized by X-ray diffraction. This compound is also closely related to other isoxazolidinone derivatives obtained through an Amadori rearrangement, which were studied for their potential antioxidant properties, and their application as flood flavouring agents (Hodge, 1955; Mills & Hodge, 1976; Mills, 1979).

The enantiopure molecule was crystallized as a chloroform solvate, in space group P1 (Fig. 1). The core isoxazolidinone ring has the expected envelope conformation, with C5 as the flap. The ring is, however, close to being flat, with a puckering parameter $q_2 = 0.190$ (5) Å. The ring is substituted at C5 and N1 by the bicyclic groups provided by the Chiron. The absolute configuration at C5 is imposed as 5S, while the stereo-chemistry at N1 is not imposed by the Michael addition.

Figure 1

Structure of the title compound, with displacement ellipsoids for non-H atoms at the 30% probability level. For the disordered ethyl group in the ester functionality, only one disordered position is retained [A site, with occupancy of 0.58 (5)].

Substituents at C5 and N1 are thus arranged *trans* with respect to the isoxazolidinone plane, avoiding in this way any steric hindrance. In the crystal structure, only weak intermolecular $O-H\cdots O$ hydrogen bonds are formed, involving hydroxy groups O10 and O19 (Table 1). The chloroform lattice molecule does not interact with the organic molecule.

For this Cl-containing crystal, intensities were collected at room temperature using Ag $K\alpha$ radiation. With such an experimental setup, the refined Flack (1983) parameter converges to x = -0.01 (16) for the correct absolute structure, and x = 0.85 (16) for the inverted structure, giving the false impression that chlorine anomalous dispersion allows the reliable determination of the absolute configuration for the molecule. Similar metrics are obtained using the Parsons intensity quotients method (Parsons et al., 2013), or by refining the structure as an inversion twin (Sheldrick, 2015b). However, the 2AD graphs devised by David Watkin and Howard Flack are a valuable tool for estimating whether real information about resonant scattering is present in the measured intensities (Flack et al., 2011; Parsons et al., 2012). The average (A) and difference (D) intensities for Friedel opposites are defined by $A(\mathbf{h}) = \frac{1}{2} [|F(\mathbf{h})|^2 + |F(-\mathbf{h})|^2]$ and $D(\mathbf{h}) = |\mathbf{F}(\mathbf{h})|^2 - |\mathbf{F}(-\mathbf{h})|^2$. In a 2AD graph, D_{obs} against D_{model} of the acentric reflections is plotted, as well as $2A_{obs}$ against $2A_{\text{model}}$ for weak reflections. For the 2A plot, a distribution of points spread around a straight line of slope 1 passing through the origin indicates that diffraction data are of good quality,

2AD plot for 1941 acentric Friedel pairs retrieved from the *SHELXL fcf* file for the last refinement cycle of the title compound (Sheldrick, 2015*b*). The $D_{\rm obs}$ against $D_{\rm model}$ of all Friedel pairs (blue squares) and the $2A_{\rm obs}$ against $2A_{\rm model}$ for weak Friedel pairs (red circles) are displayed. On the left, $D_{\rm obs} - D_{\rm model}$ (green triangles) and $2A_{\rm obs} - 2A_{\rm model}$ (violet triangles) of all Friedel pairs are displayed, at arbitrary fixed abscissa. The style of the 2AD plot follows that used in the articles of Flack *et al.* (see, for example, Fig. 3 in Parsons *et al.*, 2012).

Table 2Experimental details.

Crystal data	
Chemical formula	C22H33NO12·CHCl3
$M_{\rm r}$	622.86
Crystal system, space group	Triclinic, P1
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	5.5734 (4), 9.2537 (9), 14.2547 (12)
α, β, γ (°)	91.995 (7), 99.103 (6), 95.567 (7)
$V(\dot{A}^3)$	721.56 (11)
Z	1
Radiation type	Ag $K\alpha$, $\lambda = 0.56083$ Å
$\mu (\mathrm{mm}^{-1})$	0.20
Crystal size (mm)	$0.37 \times 0.35 \times 0.15$
Data collection	
Diffractometer	Stoe Stadivari
Absorption correction	Multi-scan (X-AREA; Stoe & Cie, 2018)
T_{\min}, T_{\max}	0.435, 1.000
No. of measured, independent and	14451, 4682, 3696
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.038
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.610
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.048, 0.134, 1.01
No. of reflections	4682
No. of parameters	383
No. of restraints	5
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.30, -0.24

Computer programs: X-AREA (Stoe & Cie, 2018), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/1 (Sheldrick, 2015b), XP in SHELXTL-Plus (Sheldrick, 2008), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

and this is indeed the case for the title compound (Fig. 2). The D plot is much more instructive regarding the accuracy of data for measuring anomalous dispersion: the greater the slope of this distribution deviates from 1, the more the effects of anomalous dispersion are overwhelmed by random uncertainty and systematic errors. This is clearly the case for the title compound, despite the presence of three Cl atoms in the asymmetric unit: for the D distribution, all data points are placed close to $D_{\text{model}} = 0$ on the D_{obs} axis, as is the case for any centrosymmetric structure (Fig. 2). Classical R unweighted factors can also be computed for A and D, which reflect the deviation from the unity-slope distribution: $R_A = \Sigma |A_{obs}(\mathbf{h}) - A_{model}(\mathbf{h})| / \Sigma |A_{obs}(\mathbf{h})|$ and $R_D =$ $\Sigma |D_{\text{obs}}(\mathbf{h}) - D_{\text{model}}(\mathbf{h})| / \Sigma |D_{\text{obs}}(\mathbf{h})|$, where the summations are over paired acentric reflections \mathbf{h} and $-\mathbf{h}$ (note that in space group P1, all reflections are acentric, and that R_A is then conceptually close to R_{int}). For the title compound, $R_A = 0.069$ and $R_D = 0.995$. The large R_D factor is obviously in line with the large standard uncertainty of the refined Flack parameter, u(x) = 0.16. In the crystal studied here, undue reliance should not be placed on the Flack parameter, and the absolute configuration of the molecule should instead be assigned by relying on the chemistry.

In conclusion, we have shown that a $CHCl_3$ molecule is certainly not sufficient for determining the absolute structure of a chiral crystal if Ag $K\alpha$ radiation is used for collecting intensities. On a broader front, it is worth reminding that the standard uncertainty in the Flack parameter, u(x), is the key to its correct interpretation (Flack & Bernardinelli, 2000; Thompson & Watkin, 2009). The use of 2AD plots is thus strongly advised for the validation of absolute-structure determinations (Flack, 2012), together with Flack x and Hooft y parameters. Unfortunately, these plots are not yet used on a routine basis in chemical crystallography.

Synthesis and crystallization

A solution of NH₂OH·HCl (85 mg, 0.025 mmol) in water (1 ml) was neutralized with a solution of NaHCO₃ (pH 7). After 10 min., a solution of 7,3-LXF (50 mg, 0.23 mmol) in ethanol (3 ml) was added over 30 s. and the mixture was left under stirring at room temperature. The reaction was complete after one h. The mixture was filtered over celite/Na₂SO₄, and the filtrate was reduced to give yellow solids, which were purified by column chromatography (hexane:ethyl acetate, 1:1), to afford 95 mg of the title compound (yield: 80%). Colourless single crystals were obtained by slow evaporation of a MeOH/CHCl₃ solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The ethyl group C26–C27 is disordered over two positions, C26A/C27A [occupancy: 0.58 (5)] and C26B/C27B [occupancy: 0.42 (5)].

Funding information

Funding for this research was provided by: Benemérita Universidad Autónoma de Puebla (grant No. 100317000-VIEP2018); Consejo Nacional de Ciencia y Tecnología (scholarship No. 304678; scholarship No. 429355; grant No. 268178).

References

- Amaro Hernández, A. G. (2019). Thesis, Benemérita Universidad Autónoma de Puebla, Puebla, México. https://repositorioinstitucional.buap.mx/handle/20.500.12371/4902.
- Flack, H. D. (1983). Acta Cryst. A**39**, 876–881. Flack, H. D. (2012). Acta Cryst. C**68**, e13–e14.
- Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.
- Flack, H. D., Sadki, M., Thompson, A. L. & Watkin, D. J. (2011). Acta Cryst. A67, 21–34.
- Hodge, J. E. (1955). Adv. Carbohydr. Chem. 10, 169-205.
- Khobare, S. R., Gajare, V., Reddy, E. V., Datrika, R., Banda, M., Siddaiah, V., Pachore, S. S., Timanna, U., Dahanukar, V. H. & Kumar, U. K. S. (2016). *Carbohydr. Res.* 435, 1–6.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Mills, F. D. (1979). J. Agric. Food Chem. 27, 1136–1138.
- Mills, F. D. & Hodge, J. E. (1976). Carbohydr. Res. 51, 9-21.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Parsons, S., Pattison, P. & Flack, H. D. (2012). Acta Cryst. A68, 736–749.

Pérez-Bautista, J. A., Meza-León, R. L., Cruz-Gregorio, S., Quintero, L. & Sartillo-Piscil, F. (2016). Tetrahedron Lett. 57, 4560-4562.

Ramírez, E., Meza-León, R. L., Quintero, L., Höpfl, H., Cruz-Gregorio, S. & Sartillo-Piscil, F. (2017). ChemistrySelect, 2, 546–549.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Stoe & Cie (2018). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.
- Thompson, A. L. & Watkin, D. J. (2009). Tetrahedron Asymmetry, 20, 712-717.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2020). **5**, x200788 [https://doi.org/10.1107/S2414314620007889]

Ethyl (3*S*)-3-[(3*aR*,5*R*,6*S*,6*aR*)-6-hydroxy-2,2-dimethyltetrahydrofuro[4,5-*d*] [1,3]dioxol-5-yl]-3-{(3*S*)-3-[(3*aR*,5*R*,6*S*,6*aR*)-6-hydroxy-2,2-dimethyltetrahydrofuro[4,5-*d*][1,3]dioxol-5-yl]-5-oxoisoxazolidin-2-yl}propanoate chloroform monosolvate

Aldo Guillermo Amaro Hernández, Tomasa Rodríguez Tzompantzi, Álvaro Dávila García, Rosa Luisa Meza-León and Sylvain Bernès

F(000) = 326

Ethyl (3*S*)-3-[(3*aR*,5*R*,6*S*,6*aR*)-6-hydroxy-2,2-dimethyltetrahydrofuro[4,5-*d*][1,3]dioxol-5-yl]-3-{(3*S*)-3-[(3*aR*,5*R*,6*S*,6*aR*)-6-hydroxy-2,2-dimethyltetrahydrofuro[4,5-*d*][1,3]dioxol-5-yl]-5-oxoisoxazolidin-2-yl}propanoate chloroform monosolvate

Crystal data

C₂₂H₃₃NO₁₂·CHCl₃ $M_r = 622.86$ Triclinic, P1 a = 5.5734 (4) Å b = 9.2537 (9) Å c = 14.2547 (12) Å a = 91.995 (7)° $\beta = 99.103$ (6)° $\gamma = 95.567$ (7)° V = 721.56 (11) Å³ Z = 1

Data collection

Stoe Stadivari diffractometer Radiation source: Sealed X-ray tube, Axo Astixf Microfocus source Graded multilayer mirror monochromator Detector resolution: 5.81 pixels mm⁻¹ ω scans Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2018)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.134$ S = 1.004682 reflections 383 parameters

 $D_{\rm x} = 1.433 {\rm Mg m^{-3}}$ Melting point: 472 K Ag Ka radiation, $\lambda = 0.56083$ Å Cell parameters from 12914 reflections $\theta = 2.8 - 22.1^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$ T = 296 KPrism, colourless $0.37 \times 0.35 \times 0.15 \text{ mm}$ $T_{\min} = 0.435, T_{\max} = 1.000$ 14451 measured reflections 4682 independent reflections 3696 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.038$ $\theta_{\rm max} = 20.0^\circ, \, \theta_{\rm min} = 2.8^\circ$ $h = -6 \rightarrow 6$ $k = -11 \rightarrow 11$ $l = -17 \rightarrow 17$ 5 restraints

0 constraints Primary atom site location: dual Secondary atom site location: difference Fourier map Hydrogen site location: mixed

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} < 0.001$
and constrained refinement	$\Delta ho_{ m max} = 0.30 \ { m e} \ { m \AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0893P)^2]$	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Refinement. H atoms bonded to C atoms were placed in calculated positions and the hydroxy H atoms H10/H19 were refined with free coordinates and O—H bond lengths restrained to 0.85 (1) Å.

Fractional atomic coordinates and isotropic o	r equivalent isotropic	displacement	parameters ($(Å^2)$	
---	------------------------	--------------	--------------	---------	--

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.4192 (6)	0.3430 (4)	0.5695 (3)	0.0344 (8)	
O2	0.5788 (5)	0.2914 (4)	0.5055 (2)	0.0427 (8)	
C3	0.4543 (9)	0.1909 (6)	0.4400 (3)	0.0439 (11)	
O3	0.5583 (9)	0.1395 (6)	0.3811 (3)	0.0753 (13)	
C4	0.1949 (8)	0.1629 (5)	0.4547 (3)	0.0385 (10)	
H4A	0.146436	0.059472	0.455717	0.046*	
H4B	0.085767	0.203684	0.405008	0.046*	
C5	0.1936 (7)	0.2394 (5)	0.5516 (3)	0.0325 (9)	
H5A	0.049758	0.293233	0.548463	0.039*	
C6	0.2096 (7)	0.1456 (5)	0.6367 (3)	0.0325 (9)	
H6A	0.182642	0.205556	0.691308	0.039*	
O7	0.0169 (5)	0.0254 (3)	0.6205 (2)	0.0383 (7)	
C8	0.0764 (8)	-0.0827 (5)	0.6869 (4)	0.0401 (10)	
H8A	0.051856	-0.180065	0.655473	0.048*	
08	-0.0546 (6)	-0.0761 (5)	0.7624 (3)	0.0591 (11)	
C9	0.3446 (8)	-0.0429 (5)	0.7322 (3)	0.0395 (10)	
H9A	0.438964	-0.127142	0.737062	0.047*	
09	0.3312 (6)	0.0235 (4)	0.8219 (2)	0.0507 (9)	
C10	0.4372 (7)	0.0710 (5)	0.6671 (3)	0.0331 (9)	
H10A	0.570310	0.138973	0.701591	0.040*	
O10	0.5094 (5)	-0.0006 (4)	0.5884 (2)	0.0392 (7)	
H10	0.663 (3)	0.018 (7)	0.595 (4)	0.059*	
C11	0.0999 (10)	-0.0210 (7)	0.8482 (4)	0.0556 (14)	
C12	0.1196 (18)	-0.1414 (13)	0.9156 (7)	0.110 (3)	
H12A	0.153220	-0.227703	0.882906	0.164*	
H12B	-0.031500	-0.159948	0.939536	0.164*	
H12C	0.249583	-0.113622	0.967635	0.164*	
C13	-0.0003 (15)	0.1123 (11)	0.8849 (6)	0.092 (2)	
H13A	-0.003399	0.184682	0.838227	0.138*	
H13B	0.101958	0.150507	0.942771	0.138*	
H13C	-0.163125	0.086339	0.897110	0.138*	
C14	0.3958 (8)	0.4978 (5)	0.5519 (3)	0.0341 (9)	
H14A	0.275126	0.530272	0.588829	0.041*	
C15	0.3155 (8)	0.5318 (5)	0.4486 (3)	0.0358 (10)	
H15A	0.417651	0.485722	0.408769	0.043*	
016	0.0651 (6)	0.4747 (4)	0.4186 (2)	0.0431 (8)	
C17	-0.0249 (9)	0.5423 (6)	0.3350 (3)	0.0431 (11)	

H17A	-0.190930	0.567791	0.336470	0.052*	
O17	-0.0169(7)	0.4560 (4)	0.2531 (3)	0.0559 (10)	
C18	0.1501 (10)	0.6781 (6)	0.3303 (3)	0.0458 (11)	
H18A	0.065765	0.764689	0.315529	0.055*	
O18	0.2886 (7)	0.6389 (4)	0.2598 (3)	0.0537 (9)	
C19	0.3149 (9)	0.6928 (5)	0.4266 (3)	0.0416 (11)	
H19A	0.478703	0.739458	0.423355	0.050*	
O19	0.1960 (8)	0.7677 (4)	0.4926 (3)	0.0553 (9)	
H19	0.285 (12)	0.846 (5)	0.510 (5)	0.083*	
C20	0.1496 (10)	0.5257 (6)	0.1982 (4)	0.0501 (12)	
C21	0.0011 (17)	0.5882 (9)	0.1133 (5)	0.088 (2)	
H21A	-0.096745	0.658066	0.135300	0.132*	
H21B	-0.103333	0.511294	0.076155	0.132*	
H21C	0.109420	0.634776	0.074853	0.132*	
C22	0.3192 (14)	0.4193 (9)	0.1729 (5)	0.0780 (19)	
H22A	0.398296	0.380374	0.229878	0.117*	
H22B	0.440117	0.467836	0.140609	0.117*	
H22C	0.227581	0.341646	0.132050	0.117*	
C23	0.6434 (9)	0.5822 (6)	0.5916 (4)	0.0448 (11)	
H23A	0.758166	0.567412	0.548500	0.054*	
H23B	0.625021	0.685251	0.596046	0.054*	
C24	0.7432 (9)	0.5331 (6)	0.6887 (4)	0.0493 (12)	
O24	0.9310 (8)	0.4794 (7)	0.7079 (3)	0.0849 (15)	
O25	0.5936 (8)	0.5557 (6)	0.7498 (3)	0.0674 (12)	
C26A	0.658 (3)	0.478 (3)	0.8403 (10)	0.057 (6)	0.58 (5)
H26A	0.664087	0.375099	0.825648	0.069*	0.58 (5)
H26B	0.816300	0.517989	0.874147	0.069*	0.58 (5)
C27A	0.462 (4)	0.498 (5)	0.9003 (15)	0.104 (11)	0.58 (5)
H27A	0.481627	0.435909	0.952970	0.156*	0.58 (5)
H27B	0.304371	0.473354	0.862377	0.156*	0.58 (5)
H27C	0.476913	0.597468	0.923689	0.156*	0.58 (5)
C26B	0.640 (7)	0.552 (5)	0.850 (2)	0.086 (9)	0.42 (5)
H26C	0.593631	0.639463	0.879415	0.104*	0.42 (5)
H26D	0.811343	0.544653	0.872685	0.104*	0.42 (5)
C27B	0.492 (7)	0.426 (3)	0.872 (2)	0.079 (9)	0.42 (5)
H27D	0.554422	0.397414	0.934526	0.119*	0.42 (5)
H27E	0.497246	0.348130	0.826281	0.119*	0.42 (5)
H27F	0.326809	0.448081	0.869704	0.119*	0.42 (5)
C28	0.7434 (11)	0.0620 (7)	0.1880 (4)	0.0593 (14)	
H28A	0.720244	0.127719	0.240495	0.071*	
C11	1.0534 (3)	0.0408 (2)	0.19859 (17)	0.0881 (6)	
Cl2	0.6390 (4)	0.1396 (3)	0.08089 (14)	0.0907 (6)	
C13	0.5806 (3)	-0.1062 (2)	0.19867 (17)	0.0876 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
N1	0.0274 (16)	0.038 (2)	0.0385 (19)	0.0029 (14)	0.0079 (14)	0.0036 (15)

02	0.0276 (15)	0.0475 (19)	0.057 (2)	0.0075 (14)	0.0166 (14)	0.0068 (16)
C3	0.042 (2)	0.055 (3)	0.039 (3)	0.013 (2)	0.012 (2)	0.008 (2)
03	0.077 (3)	0.099 (4)	0.060 (3)	0.027 (3)	0.034 (2)	-0.007(2)
C4	0.036 (2)	0.045 (3)	0.034 (2)	0.0087 (19)	0.0007 (18)	-0.0011 (19)
C5	0.0218 (18)	0.035 (2)	0.042 (2)	0.0052 (16)	0.0053 (16)	0.0030 (18)
C6	0.0201 (18)	0.038 (2)	0.038 (2)	0.0008 (16)	0.0049 (16)	-0.0001 (18)
07	0.0206 (14)	0.0443 (18)	0.0483 (18)	-0.0026 (12)	0.0028 (12)	0.0098 (14)
C8	0.029 (2)	0.040 (3)	0.050 (3)	-0.0023 (18)	0.0055 (18)	0.007 (2)
08	0.0375 (18)	0.093 (3)	0.047 (2)	-0.0056 (19)	0.0126 (15)	0.011 (2)
C9	0.032 (2)	0.045 (3)	0.043 (3)	0.0077 (19)	0.0056 (18)	0.005 (2)
09	0.0381 (17)	0.074 (2)	0.0380 (19)	0.0017 (17)	0.0033 (14)	0.0078 (17)
C10	0.0237 (19)	0.033 (2)	0.041 (2)	-0.0010 (16)	0.0028 (16)	-0.0006 (18)
O10	0.0225 (13)	0.0476 (19)	0.0476 (18)	0.0058 (13)	0.0057 (12)	-0.0001 (15)
C11	0.043 (3)	0.081 (4)	0.045 (3)	0.001 (3)	0.011 (2)	0.016 (3)
C12	0.092 (6)	0.139 (8)	0.088 (6)	-0.026 (5)	-0.004 (4)	0.057 (6)
C13	0.067 (4)	0.127 (7)	0.088 (5)	0.018 (4)	0.032 (4)	-0.016 (5)
C14	0.0297 (19)	0.036 (2)	0.036 (2)	-0.0022 (17)	0.0063 (16)	0.0001 (18)
C15	0.035 (2)	0.034 (2)	0.038 (3)	-0.0013 (18)	0.0085 (18)	0.0020 (19)
016	0.0374 (17)	0.0467 (19)	0.0411 (18)	-0.0065 (14)	-0.0014 (14)	0.0110 (15)
C17	0.039 (2)	0.054 (3)	0.037 (2)	0.011 (2)	0.0043 (19)	0.005 (2)
017	0.058 (2)	0.067 (2)	0.041 (2)	-0.0131 (19)	0.0138 (16)	-0.0052 (17)
C18	0.059 (3)	0.043 (3)	0.038 (3)	0.011 (2)	0.009 (2)	0.007 (2)
O18	0.068 (2)	0.054 (2)	0.0394 (19)	-0.0106 (18)	0.0182 (16)	0.0038 (16)
C19	0.051 (3)	0.038 (2)	0.037 (3)	0.002 (2)	0.011 (2)	0.004 (2)
019	0.065 (2)	0.043 (2)	0.058 (2)	0.0053 (17)	0.0159 (19)	-0.0085 (17)
C20	0.054 (3)	0.056 (3)	0.039 (3)	-0.004 (2)	0.011 (2)	0.007 (2)
C21	0.116 (7)	0.092 (5)	0.049 (4)	0.001 (5)	-0.004 (4)	0.016 (4)
C22	0.068 (4)	0.089 (5)	0.080 (5)	0.006 (4)	0.027 (4)	-0.012 (4)
C23	0.038 (2)	0.047 (3)	0.046 (3)	-0.008 (2)	0.002 (2)	0.002 (2)
C24	0.036 (3)	0.060 (3)	0.048 (3)	-0.004 (2)	0.002 (2)	0.000 (2)
O24	0.047 (2)	0.138 (5)	0.070 (3)	0.023 (3)	0.000 (2)	0.017 (3)
O25	0.053 (2)	0.107 (4)	0.040 (2)	0.007 (2)	0.0025 (17)	0.000 (2)
C26A	0.052 (7)	0.092 (14)	0.028 (6)	0.015 (8)	0.005 (5)	0.001 (7)
C27A	0.064 (8)	0.21 (3)	0.052 (10)	0.042 (14)	0.020 (7)	0.011 (14)
C26B	0.098 (17)	0.079 (19)	0.076 (15)	0.007 (14)	0.001 (11)	-0.022 (13)
C27B	0.087 (19)	0.099 (17)	0.049 (13)	0.010 (13)	0.004 (12)	-0.003 (10)
C28	0.062 (3)	0.066 (4)	0.054 (3)	0.009 (3)	0.021 (3)	0.004 (3)
Cl1	0.0489 (8)	0.0974 (14)	0.1159 (15)	0.0029 (8)	0.0069 (8)	0.0215 (11)
Cl2	0.0906 (13)	0.1116 (16)	0.0762 (12)	0.0305 (11)	0.0160 (9)	0.0255 (10)
C13	0.0649 (10)	0.0747 (11)	0.1271 (17)	0.0010 (8)	0.0295 (10)	0.0133 (10)

Geometric parameters (Å, °)

N1—02	1.470 (5)	C17—C18	1.524 (8)	
N1—C14	1.477 (6)	C17—H17A	0.9800	
N1—C5	1.488 (5)	O17—C20	1.428 (6)	
O2—C3	1.352 (6)	C18—O18	1.418 (6)	
C3—O3	1.203 (6)	C18—C19	1.521 (7)	

C3—C4	1.493 (7)	C18—H18A	0.9800
C4—C5	1.531 (7)	O18—C20	1.426 (7)
C4—H4A	0.9700	C19—O19	1.430 (6)
C4—H4B	0.9700	C19—H19A	0.9800
C5—C6	1.512 (6)	O19—H19	0.848 (14)
C5—H5A	0.9800	C20—C22	1.502 (9)
C6-07	1.454 (5)	C20—C21	1.519 (9)
C6-C10	1 513 (6)	C21—H21A	0.9600
C6—H6A	0.9800	C21—H21B	0.9600
07-68	1 428 (6)	C_{21} H21C	0.9600
C8-O8	1 395 (6)	C^{22} H ²² A	0.9600
C8 - C9	1.536 (6)	C22_H22B	0.9600
	0.0800	C_{22} H_{22} H_{22}	0.9600
$O_8 C_{11}$	1,427(7)	C_{22} C_{23} C_{24}	1 510 (8)
$C_0 = C_1$	1.427(7)	C_{23} H_{23} Λ	0.0700
$C_{2} = C_{2}$	1.415 (0)	C23 H23R	0.9700
	0.0800	C24 O24	1,100(7)
C_9 — H_9A	0.9800	$C_{24} = 0.025$	1.199(7)
C10 010	1.425 (0)	C24	1.322(7)
	1.413(0)	025 - C20B	1.41(3)
C10—H10A	0.9800	O_{23} O_{23} O_{23}	1.510(17)
	0.840(14)	$C_{20}A = C_{2}/A$	1.31(3)
C11 - C12	1.497 (10)	$C_{20}A = H_{20}A$	0.9700
	1.515 (11)	C20A—H20B	0.9700
CI2—HI2A	0.9600	$C_2/A = H_2/A$	0.9600
CI2—HI2B	0.9600	$C_2/A = H_2/B$	0.9600
CI2—HI2C	0.9600	$C_2/A = H_2/C$	0.9600
CI3—HI3A	0.9600	$C_{26B} = C_{27B}$	1.43 (4)
СІЗ—НІЗВ	0.9600	С26В—Н26С	0.9700
С13—Н13С	0.9600	C26B—H26D	0.9700
C14—C15	1.523 (6)	C27B—H27D	0.9600
C14—C23	1.532 (6)	C27B—H27E	0.9600
C14—H14A	0.9800	C27B—H27F	0.9600
C15—O16	1.436 (5)	C28—Cl1	1.741 (6)
C15—C19	1.533 (7)	C28—Cl3	1.747 (7)
C15—H15A	0.9800	C28—Cl2	1.750 (6)
O16—C17	1.410 (6)	C28—H28A	0.9800
C17—O17	1.400 (7)		
O2—N1—C14	107.2 (3)	O17—C17—C18	105.8 (4)
O2—N1—C5	105.5 (3)	O16—C17—C18	106.5 (4)
C14—N1—C5	118.0 (3)	O17—C17—H17A	110.8
C3—O2—N1	111.0 (3)	O16—C17—H17A	110.8
03-03-02	119.3 (5)	С18—С17—Н17А	110.8
03—C3—C4	130.1 (5)	C17—O17—C20	110.2 (4)
02-C3-C4	110.6 (4)	O18—C18—C19	108.8 (4)
C3—C4—C5	103.6 (4)	O18—C18—C17	103.7 (4)
C3—C4—H4A	111.0	C19—C18—C17	104.7 (4)
C5—C4—H4A	111.0	018—C18—H18A	113.0

C3—C4—H4B	111.0	C19—C18—H18A	113.0
C5—C4—H4B	111.0	C17—C18—H18A	113.0
H4A—C4—H4B	109.0	C18—O18—C20	108.8 (4)
N1—C5—C6	105.2 (3)	O19—C19—C18	108.6 (4)
N1—C5—C4	105.5 (3)	O19—C19—C15	110.4 (4)
C6-C5-C4	116 9 (4)	C18 - C19 - C15	99 5 (4)
N1-C5-H5A	109.6	019 - C19 - H19A	112.5
C6-C5-H5A	109.6	C18 - C19 - H194	112.5
$C_4 = C_5 = H_5 \Lambda$	109.6	$C_{10} = C_{10} = H_{10A}$	112.5
C_{+}	109.0	$C_{10} = C_{10} = H_{10}$	112.3
$0/-c_{0}-c_{3}$	110.2(3)	C19—019—H19	107(3)
$0/-c_{6}-c_{10}$	103.1 (3)	$018 - C_{20} - 017$	105.4 (4)
C5—C6—C10	120.0 (3)	018-020-022	108.6 (5)
07—С6—Н6А	107.7	017—C20—C22	109.2 (5)
С5—С6—Н6А	107.7	O18—C20—C21	110.8 (5)
С10—С6—Н6А	107.7	O17—C20—C21	108.0 (5)
C8—O7—C6	108.8 (3)	C22—C20—C21	114.6 (6)
O8—C8—O7	111.6 (4)	C20—C21—H21A	109.5
O8—C8—C9	104.9 (4)	C20—C21—H21B	109.5
O7—C8—C9	106.6 (3)	H21A—C21—H21B	109.5
O8—C8—H8A	111.2	C20—C21—H21C	109.5
O7—C8—H8A	111.2	H21A—C21—H21C	109.5
С9—С8—Н8А	111.2	H21B—C21—H21C	109.5
$C_{8} = C_{8} = C_{11}$	111.3 (4)	C20-C22-H22A	109.5
09-09-010	1100(4)	C_{20} C_{22} $H_{22}R$	109.5
$O_{2} C_{2} C_{10}$	104.1(4)	H_{22} H	109.5
$C_{10} = C_{20} = C_{10}$	104.1(4) 103.2(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C_{10} C_{9} C_{8}	103.3 (4)		109.5
09—09—H9A	112.9	H22A - C22 - H22C	109.5
C10—C9—H9A	112.9	H22B-C22-H22C	109.5
С8—С9—Н9А	112.9	C24—C23—C14	111.2 (4)
C9—O9—C11	109.4 (4)	C24—C23—H23A	109.4
O10—C10—C6	111.1 (3)	C14—C23—H23A	109.4
O10—C10—C9	109.2 (4)	C24—C23—H23B	109.4
C6—C10—C9	101.4 (3)	C14—C23—H23B	109.4
O10-C10-H10A	111.6	H23A—C23—H23B	108.0
C6—C10—H10A	111.6	O24—C24—O25	124.4 (5)
C9—C10—H10A	111.6	O24—C24—C23	124.8 (5)
C10-010-H10	106 (4)	O25—C24—C23	110.8 (5)
O9—C11—O8	105.9 (4)	C24—O25—C26B	128.4 (18)
O9—C11—C12	110.9 (6)	C24—O25—C26A	111.8 (8)
O8—C11—C12	108.2 (6)	C27A—C26A—O25	107.4 (18)
09-C11-C13	108.1.(6)	C27A - C26A - H26A	110.2
08-C11-C13	108.6(5)	025-C26A-H26A	110.2
C_{12} C_{11} C_{13}	100.0(3) 114.8(7)	C_{23} C_{26A} H_{26B}	110.2
$C_{12} = C_{11} = C_{13}$	100 5	$\begin{array}{c} C_{2} & T_{2} \\ C_{2} & T_{2} \\ C_{2} & C_{2} \\ C_{2} &$	110.2
$C_{11} = C_{12} = H_{12} R$	109.5	$U_{2} = U_{2} U_{2} = $	110.2
	109.5	$\Pi_2 \cup A \longrightarrow U_2 \cup A \longrightarrow U_2 \square A$	108.3
H12A - U12 - H12B	109.5	$U_{20}A - U_{2}/A - H_{2}/A$	109.5
С11—С12—Н12С	109.5	C26A—C27A—H27B	109.5
H12A - C12 - H12C	109.5	H27A—C27A—H27B	109.5

H12B—C12—H12C	109.5	C26A—C27A—H27C	109.5
C11—C13—H13A	109.5	H27A—C27A—H27C	109.5
C11—C13—H13B	109.5	H27B—C27A—H27C	109.5
H13A—C13—H13B	109.5	O25—C26B—C27B	105 (2)
C11—C13—H13C	109.5	O25—C26B—H26C	110.7
H13A—C13—H13C	109.5	C27B—C26B—H26C	110.7
H13B—C13—H13C	109.5	O25—C26B—H26D	110.7
N1—C14—C15	115.7 (3)	C27B—C26B—H26D	110.7
N1—C14—C23	106.9 (4)	H26C—C26B—H26D	108.8
C15—C14—C23	110.5 (4)	C26B—C27B—H27D	109.5
N1—C14—H14A	107.8	C26B—C27B—H27E	109.5
C15—C14—H14A	107.8	H_{27D} C_{27B} H_{27E}	109.5
C23—C14—H14A	107.8	$C_{26B} C_{27B} H_{27E}$	109.5
016-C15-C14	109.5 (3)	H_{27D} C_{27B} H_{27F}	109.5
016-C15-C19	103.1(4)	H27E C27B H27F	109.5
C14-C15-C19	1168(4)	C11 - C28 - C13	109.3 (4)
016-C15-H15A	109.0	$C_{11} - C_{28} - C_{12}$	109.9(1) 110.9(3)
C_{14} C_{15} H_{15A}	109.0	C_{13} C_{28} C_{12}	110.9(3) 111.9(4)
C19-C15-H15A	109.0	C11-C28-H28A	108.2
C17 - 016 - C15	109.0 108.1(3)	C_{13} C_{28} H_{28A}	108.2
017 - 010 - 015	100.1(5) 111.9(4)	C12_C28_H28A	108.2
	111.9 (4)	012 020 112011	100.2
C14—N1—O2—C3	-1138(4)	C5-N1-C14-C15	-65.8(5)
$C_{5}-N_{1}-O_{2}-C_{3}$	12.8 (4)	02 - N1 - C14 - C23	-70.7(4)
N1 - 02 - C3 - 03	12.0(1) 1787(5)	C_{5} N1 C_{14} C_{23}	170.6(4)
N1 - 02 - C3 - C4	-0.8(5)	N1-C14-C15-O16	694(5)
03-C3-C4-C5	1694(5)	C^{23} C^{14} C^{15} O^{16}	-168.9(4)
$0^{2}-C^{3}-C^{4}-C^{5}$	-110(5)	N1 - C14 - C15 - C19	-1739(4)
02 - N1 - C5 - C6	105.2(3)	C^{23} C^{14} C^{15} C^{19}	-523(5)
C_{14} N1 C_{5} C_{6}	-1351(4)	C_{14} C_{15} C_{16} C_{17}	163 1 (4)
$0^{2}-N^{1}-C^{5}-C^{4}$	-189(4)	C19-C15-O16-C17	381(5)
C_{14} N1 C_{5} C4	10.7(4)	C15 - 016 - C17 - 017	97.5 (5)
C_{3} C_{4} C_{5} N_{1}	182(4)	C15 - 016 - C17 - C18	-17.7(5)
C_{3} C_{4} C_{5} C_{6}	-98.3(4)	016-017-017-020	-1151(5)
N1 - C5 - C6 - O7	-1713(3)	C18 - C17 - O17 - C20	0.5(5)
C_{4} C_{5} C_{6} O_{7}	-546(5)	017 - 017 - 018 - 018	-150(5)
N1 - C5 - C6 - C10	-51.9(5)	016-017-018-018	104.2(4)
C_{4} C_{5} C_{6} C_{10}	64.7(5)	017 - C17 - C18 - C19	-1291(4)
$C_{5} - C_{6} - O_{7} - C_{8}$	163 3 (3)	017 - 017 - 018 - 019	-9.9(5)
$C_{10} - C_{6} - O_{7} - C_{8}$	341(4)	C19 - C18 - O18 - C20	1353(4)
$C_{10} = C_{0} = C_{10} = C_{10}$	101 4 (4)	C17 C18 O18 C20	133.3(+)
C6 - 07 - C8 - C9	-126(5)	018 - C18 - C19 - 019	165 1 (4)
$07 \ C8 \ 08 \ C11$	-1086(5)	$C_{17} = C_{18} = C_{19} = O_{19}$	-84.5(5)
$C_{1}^{0} = C_{2}^{0} = C_{2}^{0} = C_{1}^{0}$	64(6)	018 - C18 - C19 - C15	-795(4)
08_{0}	-170(5)	C_{17} C_{18} C_{19} C_{15}	30.0 (5)
0^{-}	17.0(3) 101 5 (4)	016-015-019-019	77.3(5)
0^{-}_{0}	-1310(4)	C_{14} C_{15} C_{19} C_{19}	-478(5)
0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	131.9(4) -125(5)	014 - 015 - 019 - 019	-41.7(4)
U/U/U/U/	13.3 (3)	010-013-019-018	-41./(4)

C10-C9-O9-C11	131.8 (4)	C14—C15—C19—C18	-161.8 (4)
C8—C9—O9—C11	21.7 (5)	C18—O18—C20—O17	-24.5 (5)
O7—C6—C10—O10	75.1 (4)	C18—O18—C20—C22	-141.3 (5)
C5-C6-C10-O10	-47.8 (5)	C18-018-C20-C21	92.1 (6)
O7—C6—C10—C9	-40.8 (4)	C17—O17—C20—O18	14.2 (6)
C5—C6—C10—C9	-163.7 (4)	C17—O17—C20—C22	130.7 (5)
O9—C9—C10—O10	165.0 (3)	C17—O17—C20—C21	-104.2 (6)
C8—C9—C10—O10	-84.4 (4)	N1-C14-C23-C24	-44.9 (6)
O9—C9—C10—C6	-77.7 (4)	C15—C14—C23—C24	-171.5 (4)
C8—C9—C10—C6	32.9 (4)	C14—C23—C24—O24	118.4 (7)
C9—O9—C11—O8	-18.2 (6)	C14—C23—C24—O25	-60.8 (6)
C9—O9—C11—C12	98.9 (7)	O24—C24—O25—C26B	15 (2)
C9—O9—C11—C13	-134.4 (5)	C23—C24—O25—C26B	-166 (2)
C8—O8—C11—O9	6.6 (6)	O24—C24—O25—C26A	-12.2 (14)
C8—O8—C11—C12	-112.3 (7)	C23—C24—O25—C26A	167.0 (12)
C8—O8—C11—C13	122.5 (6)	C24—O25—C26A—C27A	-174 (3)
O2—N1—C14—C15	52.9 (4)	C24—O25—C26B—C27B	-111 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C4—H4 <i>B</i> ···O16	0.97	2.52	3.083 (6)	117
C5—H5A···O2 ⁱ	0.98	2.60	3.469 (5)	148
С8—Н8А…О19 ^{іі}	0.98	2.62	3.246 (6)	122
O10—H10…O7 ⁱⁱⁱ	0.85 (1)	1.94 (2)	2.778 (4)	169 (6)
O19—H19…O10 ^{iv}	0.85 (1)	1.98 (3)	2.798 (5)	162 (7)
C28—H28A····O3	0.98	2.33	3.172 (7)	144

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*, *y*-1, *z*; (iii) *x*+1, *y*, *z*; (iv) *x*, *y*+1, *z*.