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Abstract

The liver is a vital organ involving in various major metabolic functions in human body.

MicroRNA-122 (miR-122) plays an important role in the regulation of liver metabolism, but

its intrinsic physiological functions require further clarification. This study integrated the

genome-scale metabolic model of hepatocytes and mouse experimental data with germline

deletion of Mir122a (Mir122a–/–) to infer Warburg-like effects. Elevated expression of MiR-

122a target genes in Mir122a–/–mice, especially those encoding for metabolic enzymes,

was applied to analyze the flux distributions of the genome-scale metabolic model in normal

and deficient states. By definition of the similarity ratio, we compared the flux fold change of

the genome-scale metabolic model computational results and metabolomic profiling data

measured through a liquid-chromatography with mass spectrometer, respectively, for hepa-

tocytes of 2-month-old mice in normal and deficient states. The Ddc gene demonstrated the

highest similarity ratio of 95% to the biological hypothesis of the Warburg effect, and similar-

ity of 75% to the experimental observation. We also used 2, 6, and 11 months of mir-122

knockout mice liver cell to examined the expression pattern of DDC in the knockout mice liv-

ers to show upregulated profiles of DDC from the data. Furthermore, through a bioinformat-

ics (LINCS program) prediction, BTK inhibitors and withaferin A could downregulate DDC

expression, suggesting that such drugs could potentially alter the early events of metabolo-

mics of liver cancer cells.
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Author summary

For almost a century, researchers have known that cancer cells have an abnormal metabo-

lism and utilize glucose differently than normal cells do. Aerobic glycolysis or the War-

burg effect in cancer cells involves elevated glucose uptake with lactic acid production in

the presence of oxygen. MicroRNAs have recently been discovered to be key metabolic

regulators that mediate the fine tuning of genes that are involved directly or indirectly in

cancer metabolism. MicroRNA-122 (miR-122) plays an important role in the regulation

of liver metabolism, but its intrinsic physiological functions require further clarification.

This study integrated the genome-scale metabolic modeling (GSMM) of hepatocytes and

mouse experimental data with germline deletion of Mir122a (Mir122a–/–) to infer War-

burg-like effects. In silico and in vivo observations indicated that DDC overexpression

induced Warburg effect in hepatocyte. Furthermore, through a bioinformatics prediction,

BTK inhibitors and withaferin A could downregulate DDC expression, suggesting that

such drugs could potentially alter the early events of metabolomics of liver cancer cells.

Introduction

Cancer cell metabolism is an exciting field of biology that provides a novel approach for treat-

ing cancer [1–8]. For almost a century, researchers have known that cancer cells have an

abnormal metabolism and utilize glucose differently than normal cells do. However, glucose

uptake may reveal only part of a cancer’s metabolic system [1–8]. Cancer cells have become

habituated to certain fuel sources and metabolic pathways (“metabolic reprogramming”), pro-

foundly changing how they consume and utilize nutrients such as glucose. Inhibiting key

enzymes in these metabolic pathways can disrupt tumor cell proliferation and survival without

affecting normal cells. The metabolic reprogramming of cancer cells is also linked to specific

genetic alterations in oncogenes and tumor suppressor genes. Hence, a systems biology

approach, which involves integrating genetic, protein-protein interaction and metabolic net-

works, may be a useful tool for discovering and developing novel targeted cancer therapeutics.

A superior understanding of the genome-scale human metabolic network may lead to the

identification of disease genes and related pathways, which may be more appropriate targets

for drug development. The development of genome-scale human metabolic networks, such as

Recon 1 and 2 [9, 10], the Edinburgh human metabolic network (EHMN) [11], and human

metabolic reactions [12, 13], has resulted in the emergence of network medicine. Network

medicine aims to understand the structure and function of the human genome and to provide

a connection between the genotype and phenotype [14]. Human metabolism is complex and

very specialized in different tissues and cell types. Studies of the human metabolism have

focused on reconstructing tissue-specific metabolic networks [13, 15, 16]. These previously

mentioned genome-scale reconstructions of the human metabolic network are an excellent

basis for reconstructing tissue-specific metabolic networks. HepatoNet1, the first manually

reconstructed tissue-specific network of human hepatocytes, was assembled according to two

global reconstructions, Recon1 and EHMN, and metabolic pathways in the Kyoto Encyclopedia
of Genes and Genomes (KEGG) [15]. This reconstructed network consists of 777 metabolites in

eight compartments (six intracellular and two extracellular) and 2539 reactions, including

1466 transport reactions. The network was curated using more than 1500 primary articles,

reviews, and biochemical textbooks. Recently, many algorithms, including the Model Building

Algorithm (MBA) [17] and the metabolic Context-specificity Assessed by Deterministic Reac-

tion Evaluation (mCADRE) method [18], have been proposed for inferring tissue-specific
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subnetworks from generic genome-scale human metabolic networks. Two liver-specific meta-

bolic networks, liverMBA and liverCADRE, generated using MBA and mCADRE, respec-

tively, have been used to predict potential drug targets and improve metabolic flux predictions

[19, 20]. The developers of mCADRE claimed that liverCADRE exhibited similar or more

improved coverage and higher functionality than the existing models. In addition to these two

liver-specific metabolic networks for the normal liver, MBA and mCADRE have been used

separately to generate metabolic networks for liver cancer.

MicroRNAs have recently been discovered to be key metabolic regulators that mediate the

fine tuning of genes that are involved directly or indirectly in cancer metabolism [21]. Mouse

studies have revealed that microRNA-122 (miR-122), which accounts for 70% of the total miR-

NAs in the liver, plays a pivotal role in liver and has been implicated as a regulator of fatty acid

metabolism. Reduced miR-122 levels are associated with hepatocellular carcinoma (HCC),

and miR-122 plays a crucial positive role in the regulating hepatitis C virus replication [22].

However, the intrinsic physiological roles of miR-122 remain largely undetermined. Tsai et al.

demonstrated that mice lacking the gene encoding miR-122a (Mir122a–/–) (hereafter referred

to as Mir122a–/–mice) are viable but developed temporally controlled steatohepatitis, fibrosis,

and HCC [23]. However, how miR-122 affects the metabolic network of hepatocytes is unclear.

This study aimed to reveal this metabolic reprogramming mechanism by integrating the flux

balance analysis (FBA) of a genome-scale metabolic model of hepatocytes and the experimen-

tal data of Mir122a–/–mice. Several new targets and inhibitors, which could modulate the

Warburg effect, are emerged from this integrated metabolomic analysis and warrant further

investigation in a future clinical study.

Results

Metabolomic analyses of miR-122a deficient mice

For the untargeted metabolomic analysis, 20 liver tissue samples including 10 control mice

and 10 Mir122a–/–mice were extracted using the Folch method, and the aqueous phases were

analyzed by LC-TOFMS in the electrospray positive-ion mode (S1 Fig). In the metabolomic

profiling, 1234 positive-mode features were identified and applied for SIMCA-P analysis. The

orthogonal partial least squares discriminant analysis (OPLS-DA) score plot and loading plot

showed remarkable separation between the controls and Mir122a–/–mice (Fig 1A and 1B). The

variable importance in the projection (VIP) values of those variables greater than 1.0 is shown

in Fig 1C and Table 1. Thirty-five metabolites with VIP values > 1.0 were included in the

metabolite set enrichment analysis (MSEA). The datasets were also analyzed using the Meta-

boanalyst platform. Fig 1D shows the metabolome view of the affected pathways. The results of

the untargeted analysis revealed these metabolites to be important discriminators of the

healthy controls and Mir122a–/–mice.

Similarity effect as compared with the Warburg effect hypothesis and

metabolomics profiling data of miR-122a deficient mice

A tissue-specific metabolic model of hepatocytes obtained from the supplementary data of

Recon 2 and cell type-specific models [10], hereafter referred to as the Recon 2-hepatocyte

model, was applied to evaluate flux distributions under normal or miR-122 dysregulated con-

ditions. In this study, the maximization of the ATP production rate was considered the cellular

objective.

According to the physiological data of mice reported by Trotman et al. [24], we restricted

the secretion rates of direct bilirubin and indirect bilirubin to 1.7� vdirect_bilirubin� 8.55 μmol/
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L/day and 0� vindirect_bilirubin� 6.84 μmol/L/day, respectively. A minimal medium containing

the selected nutrients of glucose, ammonia, sulfate, and phosphate was commonly used to pre-

dict cell growth in the study of FBA. This work uses the data of Mir122a knockout mice from

Tsai et al. [23, 25]. All the mice used in this study were male mice of 2-month old. The wild-

type and knockout mice are fed by the Laboratory Autoclavable Rodent Diet 5010, which the

ingredients are described in Materials and Methods.

Tsai et al. [23, 25] applied a miRNA-target interaction database to predict miR-122 target

genes in mice and humans (S2 and S3 Tables). In this study, using the KEGG and ExPASy

databases, we determined that 20 genes from the set of miR-122 target genes directly encode

enzymes listed in the Recon2-hepatocyte model. The target genes and their regulated reactions

Fig 1. Metabolomic data in miR-122a deficient mice. (A) Orthogonal partial least-squares discriminant analysis (OPLS-DA) score plot

of metabolite profiles derived from 10 miR-122a deficient mice (green) and the 10 control mice (blue) with corresponding loading plot. The

ellipse shown in the model represents the Hotelling T2 with 95% confidence. Each data point represents one mouse liver sample, and the

distance between points in the plot indicates the similarity between samples. (B) OPLS-DA loading plot of liver metabolite profiles, each

point in represents one feature (or metabolite). (C) Plot of variables importance for the projection (VIP) summarizes the importance of the

variables (Fig 1A and 1B). The VIP ranking priority was according to the VIP values, and metabolites with VIP >1 are shown. (D) The 35

metabolites were used for metabolite set enrichment analysis (MSEA). These metabolite sets are ranked according to the Holm P value

with hatched lines shown. Liver tissue samples were extracted by the Folch method, and the aqueous (upper) phases were analyzed using

LC-TOFMS in the electrospray positive ion mode. Each sample analysis consists of six replicates. A web-based tool (www.metaboanalyst.

ca) for metabolite set enrichment analysis was used for the analysis. Detail metabolomics differences were revealed by OPLS-DA model

(R2X = 0.612, Q2 = 0.984). The axes, t[1], to[1], pq[1], and poso[1] depict the predictive component, the first orthogonal component, the

predictive component loadings, and the first orthogonal loadings, respectively, of the OPLS-DA model.

https://doi.org/10.1371/journal.pcbi.1005618.g001
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are shown in S4 Table. The elevated expressions of the 20 target genes induced by Mir122a
deletion were applied to modulate the flux distributions in the normal and deficient states (S2

Fig).

We detected a group of 35 metabolites with significant variable importance for projection

(VIP) scores> 1 (S5 Table) in the liquid chromatography–mass spectrometry (LC/MS) analy-

sis. Of these, 12 metabolites had a decreased mass-to-charge ratio (m/z), and 23 metabolites

had an increased m/z ratio. Table 1 shows the similarity effect of the computational prediction

for each miR-122 target gene compared with the data for the 35 metabolites. We observed that

Ddc, the gene encoding 3,4-dihydroxy-L-phenylalanine (L-DOPA) decarboxylase (DDC),

exhibited the highest similarity ratio to the Warburg effect hypothesis (0.952, S5 Table listed

metabolites used for evaluation), and the experimental metabolomics profiling data (0.75), as

shown in Fig 2. DDC, which is widely distributed throughout the body, is a pyridoxal-phos-

phate (PLP)-dependent enzyme that catalyzes L-DOPA to dopamine and 5-hydroxy-Ltrypto-

phan (5-HTP) to serotonin [26–28]. DDC primarily participates in the synthesis of amines

that are involved in angiogenesis, cell proliferation, and differentiation [29, 30]. Elevated DDC

expression has been considered a potential novel biomarker for various cancer types, including

neuroendocrine malignancies [31–33], small-cell lung carcinoma [34, 35], neuroblastoma

[36], prostate cancer [37], colorectal adenocarcinoma [38] and laryngeal cancer[39]. In this

study, we investigated the role DDC in the metabolic reprogramming of cancer cells.

Fig 2. Similarity ratio of 20 miR-122a target enzymes to Warburg effect and experimental metabolic profiling

observations (LC/MS). The similarity ratio of each target gene was calculated to indicate that how many percentages for the

computational predictions (100% overexpression) are similar to the hypothesis of the Warburg effect (blue line) and

experimental metabolic profiling observations (pink line). The Ddc gene received the highest similarity ratio to the Warburg

effect (0.952) and experiments (0.75) (a, 54% overexpression; b, downregulation; c, knockout; d, overexpression of forward

and reverse reactions).

https://doi.org/10.1371/journal.pcbi.1005618.g002
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As stated in the hypothesis of the Warburg effect, the production rates of metabolites in gly-

colysis, the tricarboxylic acid (TCA) cycle, and glutamine metabolism pathways can be altered

by overexpression of a gene [1–8]. In this study, when DDC was fully overexpressed (100%),

glucose uptake from the extracellular matrix and cellular pyruvate levels increased by fold

changes (FC) of 3.15 and 1.17, respectively (Fig 3). Most pyruvate was further converted into

lactate (3.06-FC) instead of being transported into the mitochondria (0.62-FC). Elevated DDC

expression shifted liver metabolism toward glycolysis and lactate synthesis, which is in good

agreement with the Warburg hypothesis (aerobic glycolysis). Contrary to the Warburg effect,

we detected a slightly increased production rate (1.02-FC) of acetyl-coenzyme A (acetyl-CoA)

in the mitochondria. The acetyl-CoA levels in the mitochondria were not affected possibly

because of the conversion of other metabolites such as ketone bodies. Decreased oxaloacetate

production (0.49-FC) in mitochondria can potentially impair the TCA cycle and led to mito-

chondrial respiratory defects.

In contrast, glutamine transported from the extracellular matrix was increased by 4.54-FC.

Higher levels of glutamine were converted to glutamate (1.39-FC) by glutaminase. This reac-

tion occurs in tumor cells [23] and was detected in the experimental metabolomic profiling

(S5 Table). Glutamate was oxidized to α-ketoglutarate (1.52-FC), which then entered the TCA

cycle generating higher citrate (1.15-FC), isocitrate (3.07-FC), and succinyl-CoA (1.12-FC) lev-

els and eventually, higher ATP levels. Such metabolic reprogramming indicates that the gluta-

minolysis pathway serves as an alternative pathway to compensate for the production of

cellular ATP. Despite decreased production of oxaloacetate (0.49-FC), which is catalyzed by

malate dehydrogenase, the malate level in mitochondria still increased by 1.51-FC. This result

implies that malate can be converted to pyruvate by the malic enzyme, which has been con-

firmed to play a crucial role in glutamine metabolism in rapidly growing tissues and tumors

[40–42]. Lipid metabolism plays a critical factor of metabolic reprogramming in tumorigenesis

[23]. We observed an apparent increase in the intracellular cholesterol level and a decreased

extracellular cholesterol level when Ddcwas overexpressed. The computational prediction was

consistent with the experimental result as observed from Tsai et al. [23].

Fig 3. Metabolic reprogramming triggered by overexpression of Ddc. (A) Based on Recon2-hepatocyte

model, three enzymatic reactions (red lines) are catalyzed by overexpression of Ddc. As a result of metabolic

reprogramming, the fold change (FC) of the concentration of glutamine and glutamate are increased by 4.54

and 2.53, respectively (shown in blue). (B) Elevated expression of Ddc shift liver metabolism toward glycolysis

and lactate synthesis in agreement with the hypothesis of the Warburg effect. The (FC) of metabolites in

glycolysis, TCA cycle, and glutamine metabolism pathways are indicated in green (decrease) and red

(increase).

https://doi.org/10.1371/journal.pcbi.1005618.g003
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BTK inhibitor and withaferin-A can reduce the protein level of DDC

Since miR-122 knockout mice have increased levels of DDC (Fig 4C–4E), we then set up to

determine the association between DDC and liver cancer. We used the database (PORG-

geneV2, http://watson.compbio.iupui.edu/chirayu/proggene/database/index.php) [43] to

search for DDC in the liver cancer dataset and then performed the survival analysis. From the

dataset of GSE10141 [43, 44], high expression of DDC is associated with a poorer prognosis for

patients with liver cancer (S4 Fig). A rational approach is to knock down DDC and then to per-

form microarray profiling of the knockdown cells to delineate the DDC-elicited signaling

pathways. Alternatively, we can hypothesize that DDC knockdown cells may share similar

gene expression patterns that result from certain drugs (Fig 4A), which may potentially modu-

late DDC-elicited signaling. Thus, we accessed the Library of Integrated Network-based Cellu-

lar Signatures (LINCS) (http://systemsbiology.columbia.edu/lincs), which contains 1.3 million

L1000 microarray dataset of perturbational profiles spanning chemical compounds and gene

knockdowns across multiple cell types. More importantly, LINCS provides a query interface to

make inferences on the connections between the queries (e.g. DDC shRNA) and the internal

(e.g. chemical compounds) gene expression profiles. We found that the gene expression pro-

files of several compounds had similar gene expression profiles with DDC shRNA. Of particu-

lar interest, withaferin-A and BTK inhibitor (LFM-A13), which share 91% and 92% identity,

respectively, with the DDC knockdown gene expression profile (Fig 4B). LFM-A13, the BTK

inhibitor in LINCS, is still in the pre-clinical development stage. Since the first FDA-approved

BTK inhibitor is ibrutinib, we have also included ibrutinib in our assay. We examined the

expression pattern of DDC in mir-122 knockout mice livers to explore the role of DDC. The

results show upregulated profiles from 2, 6, and 11 months of mir-122 knockout mice liver

data (Fig 4C–4E). In addition, we also examined the role of BTK in the mir-122 knockout

mice livers. Interestingly, P-BTK and BTK were upregulated in mir-122 knockout mice livers

as early as 2 months of age. Moreover, LFM-A13 and ibrutinib are BTK inhibitors. Together,

BTK inhibitors may be potential drugs for liver cancer therapy. We next first determined

the IC50 values of two BTK inhibitors (LFM-A13 and ibrutinib) in Huh7 cells to test whether

these compounds could modulate DDC expression level. The IC50 values of both drugs were

>10 μM in Huh7 cells (Fig 4F), whereas the IC50 of withaferin A in Huh7 cells was>2 μM

(Fig 4F). Treatment of Huh7 cells with LFM-A13, ibrutinib, and withaferin A, but not sorafe-

nib, which is the only FDA-approved drug for advanced HCC, could indeed result in downre-

gulation of the protein expression level of DDC based on western blot analysis (Fig 4G–4I).

Discussion

The Warburg effect, commonly observed in the metabolic reprogramming of cancer cells, is

characterized by increased rate of glucose utilization and accumulation of lactate [45]. The

findings of this study, which used 2-month-old Mir122a knockout mice for the modeling of

metabolic reprogramming, addressed the disturbances in glucose utilization and accompa-

nying pyruvate, lactate, and alanine metabolism at the pre-cancer stage (Fig 3). All the mice

used in this work were male mice of 2-month old. It is an expansion of consideration of the

(so-called) aerobic glycolysis and functional mitochondrial metabolism in supporting the

energy-demanding biosynthetic pathways in cancer cells. Beyond that, this study also demon-

strated that combined contribution of pyruvate and glutamine/glutarate/α–ketoglutarate

was adapted and re-coordinated to drive TCA cycle for limited energy production (including

ATP and redox coenzymes formation) (Fig 3 and S3 Fig). In this metabolic reprogramming,

biosynthetic pathways, such as cholesterol biosynthesis for tumor cell growth, were minimally

retained.
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Fig 4. Downregulation of DDC expression by treatment with ibrutinib, LFM-A13, and withaferin-A. (A) Schematic illustration of similar gene

expression signatures between DDC shRNA and chemical compounds. (B) We queried the DDC shRNA gene signature via LINCS database and found BTK

inhibitor (LFM-A13), withaferin A, and several compounds shared similar gene expression profiles with DDC shRNA gene signature. Score_best4 and

score_best6 are the mean connectivity scores across the four and six cell lines, respectively, in which the perturbagen connected most strongly to the query
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We selected the 20 genes listed in Fig 2 (also in S4 Table) to investigate other miRNAs that

may co-regulate those genes. First, we identified experimentally verified miRNA-target pairs

from the miRTarBase dataset (http://mirtarbase.mbc.nctu.edu.tw) and the starBase v2.0 (http://

starbase.sysu.edu.cn/). Second, miRNA expression profiling of wild-type and Mir122a–/–mouse

livers (both 2-months old) was performed using Small RNA sequencing [46]. We were able to

identify miRNAs targeting 11 of the 20 genes with a total of 189 miRNA-target gene pairs. These

genes are Acer2, Cpox, Fech, Gys1, Pafah1b1, Pank3, Pfkp, Rpia, Scd2, Sgpl1, Sptlc1 and Txnrd1.

Differentially expressed miRNAs (expression ratio between Mir122a–/–and WT: 0.6≦KO/WT≧
1.5) were found only in 40/189 pairs (S6 Table). Most of the miRNAs in Mir122a–/–are expressed

at low (RPM<10) to moderate (RPM 10–100) levels compared to high level of miR-122-5p in

normal mouse liver (RPM 21378.2). Since miR-122 is a highly abundant liver-specific miRNAs,

an imbalance of the miRNA homeostasis in Mir122a–/–liver is anticipated. In addition, multiplic-

ity of miRNAs targeting one gene is well noted. Whether those low-to-moderate levels of miR-

NAs impacted on the gene expression is difficult to evaluate. Clearly our results favor the notion

that miR-122 plays a major dominant role in regulating these target genes in normal liver.

Ddc, PKM, and Urod exhibited the top three similarity ratios in Fig 2. PKM encodes to pyru-

vate kinase which catalyzes the transfer of a phosphoryl group from phosphoenolpyruvate to

ADP, generating ATP and pyruvate. This kinase exhibited the second high similarity ratio

(0.857) to Warburg hypothesis (metabolic reprogramming triggered by overexpression of Pkm
was shown in S3 Fig); this finding indicates that production rates for pyruvate and oxaloacetate

in the mitochondria are consistent with the hypothesis. This enzyme exhibited a similarity

ratio of 0.556 to the metabolic data. Urod provides instructions for the formation of uropor-

phyrinogen decarboxylase, which is involved in the production of heme. Heme is vital for all

organs in the body, and it is most abundant in the blood, bone marrow, and liver. Heme is an

essential component of iron-containing proteins called hemoproteins, including hemoglobin.

From this computation, this enzyme achieved the second highest score (0.694) of the LC/MS

experiment but exhibited the third highest ratio (0.810) of the Warburg effect. Furthermore,

the computational prediction indicated that the secretion flux for cholesterol in the extracellu-

lar space to the extracellular matrix was also reduced due to overexpression of UROD and

PKM, respectively.

Four target genes in Fig 2 exhibited an infeasible solution for the computation when the

genes were fully overexpressed. We were unable to attain a feasible solution for ALDOA if it

was greater than 54% overexpressed to upregulate the corresponding reactions catalyzed by

fructose bisphosphate aldolase. Its similarity ratio was 0.714 and 0.528 for the Warburg

hypothesis and the experimental observation, respectively, with 54% overexpression. Pfkp
encoded phosphofructokinase which catalyzes a rate-limiting step in glycolysis. It is highly reg-

ulated by small molecules for the promotion of glucose utilization for energy production, ter-

mination of glycolysis for gluconeogenesis initiation, or shunting hexoses into the pentose

phosphate pathway. Phosphofructokinase should be downregulated due to the deficiency of

miR-122a; otherwise, we could not obtain a feasible solution if it were assigned as upregulated.

Its similarity ratio was 0.810 and 0.583 for the Warburg effect and the experimental observa-

tion, respectively, when Pfkpwas 100% downregulated. Cpt1a could not up- or downregulate

forward or backward reactions because it encodes as carnitine palmitoyltransferase 1A, which

(DDC shRNA). (C, D, E) DDC, P-BTK, and BTK were upregulated in liver tissues from mir-122 knockout mice. (F) Huh7 cells were treated with various

concentrations of ibrutinib, LFM-A13, and withaferin-A for 24–72 hours, respectively. Huh7 cells were treated with (G) 10 and 20 μM ibrutinib or 5 μM

sorafenib, (H) 5–20 μM LFM-A13, and (I) 1 and 2 μM withaferin A or 5 μM sorafenib for 24 hours. Cell lysates were subjected to western blot analysis. DDC

was downregulated by the treatment of 20 μM ibrutinib and 2 μM withaferin A, but not the treatment of sorafenib. Both DDC and BTK were downregulated by

the treatment of LFM-A13 in Huh7 cells.

https://doi.org/10.1371/journal.pcbi.1005618.g004
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is present in the liver, to manipulate 85 fat acid oxidation reactions in the model. The Cpt1A

enzyme is essential for fatty acid oxidation, a multistep process that breaks down fats and con-

verts them into energy. Fatty acid oxidation takes place within mitochondria, which are the

energy-producing centers in cells. Cpt1a needs to maintain oxidation-reduction at an equilib-

rium state if the forward reactions are upregulated, and its corresponding backward reactions

should be upregulated simultaneously to maintain an equilibrium level. Here, Cpt1a was

knocked out with fluxes of zero. Consequently, its similarity ratio was 0.714 and 0.583 for the

Warburg effect and the experimental observation, respectively. Pank3 encodes a protein

belonging to the pantothenate kinase family, which is highly expressed in liver and catalyzes

the first committed step and is the rate-controlling enzyme in CoA biosynthesis in bacteria

and mammals. Pantothenate is the essential precursor for CoA, which is a cofactor for a multi-

tude of metabolic reactions including the oxidation of fatty acids, carbohydrates, pyruvate, lac-

tate, ketone bodies, and amino acids. According to our computation, the regulatory action of

Pank3 is similar to that of Cpt1a, which regulates the forward and backward reactions simulta-

neously to maintain CoA synthesis and catabolism in equilibrium.

In this study, 21 metabolites, consisted of TCA cycle and glutamine metabolism pathways,

were used to evaluate the Warburg effects (S5 Table). Eighteen of these metabolites were

obtained from hypotheses in the literature [1–8]. From the LC/MS experiments, three experi-

mental metabolites, glutamine, glutamate, and alanine, were increased and consistent with

Warburg hypothesis. From the computational prediction, glutamine transported from the

extracellular matrix was increased (4.45-FC). A high level of glutamine was converted to gluta-

mate by glutaminase. In addition, the increase of lactate and alanine was consistent with the

results obtained from Hu et al. [47] that increased conversion of pyruvate to lactate and alanine

by using hyperpolarized 13C-pyruvate in Myc-driven mouse liver cancer model. Furthermore,

Pavlova and Thompson [48] described cancer-associated metabolic changes into six hallmarks.

The article indicated that the import of an essential amino acid, leucine, through the plasma

membrane localized neutral amino acid antiporter LAT1, which is coupled to a simultaneous

efflux of glutamine [49]. In such a manner, intracellular glutamine may facilitate the import of

a broad range of LAT1 substrates, including leucine, isoleucine, valine, methionine, tyrosine,

tryptophan, and phenylalanine [50]. We found that five amino acids, such as leucine, valine,

methionine, tryptophan, and phenylalanine contained in the experimental metabolomics pro-

filing data increased and were consistent with the model predicted.

Using the online bioinformatics tool, LINCS, the gene expression profiles of withaferin A

and BTK inhibitor share-gene expression profiles similar to the DDC knockdown profiles.

Since LINCS has been terminated recently, similar result can be found in the new version of

LINCS, CLUE (https://clue.io/). This analysis provides an opportunity to employ these avail-

able drugs (or drug repurposing) to target DDC expression. In fact, empirical evidence also

suggests that withaferin A and BTK inhibitors can downregulate DDC, but not PKM2, expres-

sions (Fig 4). BTK inhibitors have emerged as crucial therapeutic agents for distinct cancer

treatment. The first FDA-approved BTK inhibitor is ibrutinib. The indication for ibrutinib is

for the treatment of patients with Mantle cell lymphoma, chronic lymphocytic leukemia, and

one kind of non-Hodgkin’s lymphoma (Waldenström’s macroglobulinemia). Moreover, there

are still many innovative compounds in preclinical or clinical development, including GDC-

0834, CGI-560, CGI-1746, HM-71224, CC-292, ONO-4059, and CNX-774 [51], raising the

possibility that some of these compounds might have effects similar to ibrutinib. Withaferin A

has many functions, including antioxidative, anti-inflammatory, antiproliferative and apopto-

sis-inducing properties. Recently, many studies show that withaferin-A can reduce the growth

of multiple tumor types in the mouse model [52]. To further elucidate the role of DDC, we

knocked out DDC in Huh7 cell line via CRISPR/Cas9 system and then performed microarray
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profiling of the knockout cells. The differentially expressed gene signatures were used to query

the ConsensusPathDB (http://consensuspathdb.org/) [53] database to search for DDC-elicited

signaling pathways. The metabolism pathway received the highest score than other pathways

(manuscript in preparation). Our data further extend the potential use of these drugs as metab-

olism regulators in liver cancer cells.

One metabolic profiling dataset for human HCC [54] was also compared with the computa-

tional prediction of the Recon 2-hepatocyte model. According to the U.S. National Library of

Medicine, the secretion rates of direct bilirubin and indirect bilirubin in humans are restricted

by 0� vdirect_bilirubin� 5.13 mol/L/day and 5.13� vindirect_bilirubin� 27.36 mol/L/day, respectively.

We applied 560 gene-encoded enzymes listed in the model to compute the flux distributions in

the normal and cancer states. From the computation, 13 gene-encoded enzymes exhibited high

similarity ratios to the Warburg effect (S7 Table), and are shared by the Mir122a–/–mouse case

and human HCC case. Four of them, DDC, PKM, ENTPD4, and ALDOA, are miR-122 target

genes. DDC scored the highest similarity ratio (0.905) to the Warburg effect and the experimental

metabolomics profiling data (0.513) in human HCC case (S7 Table). The metabolic reprogram-

ming from the computation could be applied to predict the oncogenic behavior.

A genome-scale human metabolic model can be applied to identify disease genes and dis-

ease pathways, offering more appropriate targets, such as DDC, for drug development. Micro-

RNAs mediate fine tuning of the genes that are directly or indirectly involved in cancer

metabolism. In summary, this study integrated the genome-scale metabolic model of hepato-

cyte, namely Recon 2-hepatocye model, and experimental data of 2-month old Mir122a–/

–mice to infer the metabolic reprogramming that was initiated in the early stages of cancer

development. DDC has not only exhibited the highest similarity ratios to the biological

hypothesis of Warburg effect and the experimental observation in Mir122a–/–mice, but also

demonstrated its importance in human HCC cases. Moreover, the genome-scale metabolic

model could be applied to rationally analyze flux distributions for the normal and dysregulated

cell. Finally, the role of ibrutinib on metabolism in cancer warrants further investigation.

Materials and methods

The wild type and Mir122a–/–mice were housed in the Animal Center of National Yang Ming

University and were handled following institutional guidelines. The mice were fed with the

Laboratory Autoclavable Rodent Diet 5010, (http://www.labdiet.com/) which contains 69

chemical compounds in the ingredients. Twenty compounds, as listed in S8 Table, are repre-

sented as the metabolites in the Recon 2-hepatocye model. On the basis of the feeding instruc-

tions for Rodent Diet 5010, we set the molar fraction of each compound to the upper bound of

the uptake rate while analyzing the flux distributions in normal and Mir122a–/–mice.

This study employed a liver-specific metabolic network model reconstructed from Recon 2,

which is the second version of the largest reconstruction of the human genome [10]. It consists

of 2163 metabolites and 3047 reactions in eight compartments and was used to predict the

metabolic capability under a particular condition and to infer the metabolic reprogramming

of hepatocytes under miR-122 dysregulation.

Ethics statement

The animal were euthanized by CO2 following the institutional guidelines. All the studies were

conducted in accordance with the Guidelines for the Care and Use of Mammals in Neurosci-

ence and Behavioral Research and were approved by Institutional Animal Care and Use Com-

mittee (IACUC) of National Yang Ming University.
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Computational methods

FBA is an in silico flux-based optimization model for predicting the metabolic flux distribu-

tions in genome-scale metabolic networks. Such an optimization problem usually includes a

cellular objective, (e.g., maximization of cell growth). The biomass reaction actually contains

in Recon 2-hepatocyte model, but it is a block reaction in the model. We therefore considered

FBA with the maximization of ATP production as an objective in this study.

max
v
ðcTf vf þ cTb vbÞ

subject to

Nðvf � vbÞ ¼ 0

vi ¼ vReg
i ; i 2 O

Reg

vLBj � vj � vUBj ; j=2O
Reg

ð1Þ

8
>>>>>>>><

>>>>>>>>:

where vf and vb are the irreversible forward and backward fluxes, respectively, for the production of a

metabolite such as ATP, N is an m×n stoichiometric matrix where m is the number of metabolites and

n is the number of reactions, vjLB and vjUB are the positive lower and upper bounds of the jth flux,

respectively, and viReg is the ith up- or downregulated flux due to the ith enzyme dysregulation. The

value for the forward or backward flux is computed by the following equations:

Up� regulation for vi;f or vi;b :

( vi;b=f ¼ vbasali;b=f

vi;f =b ¼ vbasali;f =b þ dðvmax
i;f =b � vbasali;f =bÞ

ð2Þ

Down� regulation for vi;f or vi;b :

( vi;b=f ¼ vbasali;b=f

vi;f =b ¼ vbasali;f =b þ dðvmin
i;f =b � vbasali;f =bÞ

ð3Þ

where vibasal is the basal flux, vimax and vimin are the maximum and minimum fluxes, respectively, at a

normal state, and δ is the regulation strength parameter between 0 and 1.

The optimal flux distribution of the flux-balance problem expressed by Eq (1) is not unique,

and there is a large set of alternative flux distributions with identical values for the objective

function. We minimized the squared sum of all internal fluxes for FBA to ensure efficient

channeling of all the fluxes through all pathways to eliminate the multiplicity of flux values due

to the problem expressed in Eq (1). The second optimization problem can be reformulated as

the principle of flux minimization [55] if the equilibrium constant for each reaction is avail-

able. Such a problem is to using minimum enzyme activities to enhance cellular capacity. The

minimizing Euclidean norm problem is expressed as:

min
v

X

i2OInt

ðvf ;kÞ
2
þ ðvb;kÞ

2

subject to

Nðvf � vbÞ ¼ 0

vi ¼ vReg
i ; i 2 O

Reg

vLBj � vj � vUBj ; j =2O
Reg

cTf vf þ cTb vb � z�

ð4Þ

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:
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where z� is the maximum specific metabolite production rate obtained from the problem expressed

in Eq (1). The problem expressed in Eq (4) is a quadratic programming problem that can numeri-

cally achieve a unique solution.

Flux balance equations in (1) and (4) omit the dilution term during cell growth. The dilu-

tion rate should be included in the mass balance equations of the intracellular metabolites to

cope with cell growth [56, 57]. The specific growth rate is generally in terms of a kinetic

constant and concentration of uptake nutrients. Metabolite dilution flux balance analysis

(MD-FBA) [58] and flux imbalance analysis [59] are applied to surmount such a weakness to

predict flux distribution in genome-scale metabolic networks. Both methods can be applied to

this study in order to improve predictability of flux distributions. However, the cell-growth

rate in Recon 2-hepatocyte model is a block reaction so that the flux value is zero [10]. In the

future, a liver-specific metabolic model has to be reconstructed to achieve a non-zero flux of

cell growth rate to account for metabolite dilution.

In the computational viewpoint, the production rate of a metabolite is involved in different

compartments, and it can be calculated through a GSMM. However, this work applied an LC/

MS experiment to obtain the metabolomic profiling for the normal and dysregulated cell.

According to the protocol of LC/MS experiment, the liver tissues were minced in small chunks

and were rapidly frozen in liquid nitrogen, and then the tissue was homogenized to prepare a

sample to determine the metabolomic profiling. Such a homogenization was indicated that

metabolites contained in different compartments was destroyed. As a result, LC/MC was

applied to measure the homogenized metabolite concentrations. In order to compare with LC/

MS experiments, the metabolite involved in different compartments has to sum up to yield the

overall production rate of the metabolite which is an intracellular compound of the cell. The

overall production rate (rm) of each intracellular compound at deficient and normal states is

respectively evaluated as

rm ¼
X

i2Oc

X

Nij>0;j

Nijvf ;j �
X

Nij<0;j

Nijvb;j
� �

;m 2 O
m

ð5Þ

where Nij is the stoichiometric coefficient for the ith metabolite participating in the jth reaction.

An intracellular compound (or metabolite) exists in different compartments of the metabolic

network; therefore, the rates for all compartments, Oc, are summed to provide the production

rate of the metabolite. The production rate is then applied to compute the fold change (FC) at

deficient and normal states and to evaluate the similarity ratio between the computational

results and experimental observations. The logarithmic FC (LFCm) for the mth metabolite and

similarity ratio (SR) are respectively expressed as

LFCm ¼ log
2
ðFCmÞ ¼ log

2

rm;deficient

rm;normal

 !

ð6Þ

SR ¼

XNdata

m¼1

mm

Ndata
ð7Þ

where the similarity indicator (μm) for each metabolite is defined as:

mm ¼
1; sgnðLFCmÞ ¼ sgnðLFCExp

m Þ

0; otherwise
ð8Þ

(

where sgn is defined as the signum function. The similarity indicator is a qualitative
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comparison that we hypothesize the prediction is similar to the experiment if an increase/

decrease of the overall production rates between deficient and normal states is consistence

with the change for experimental results.

The production rate of a metabolite obtained from the computation is not equal to the con-

centration of that metabolite achieved through LC/MS experiments. Rates of metabolites are

in term of their regulated enzyme activities and metabolite concentrations. Such kinetic mod-

els can be used to predict concentrations if model parameters are given in advance. A genome-

scale kinetic model is generally not available up to date. As a result, the constraint-based

model can be applied to predict fluxes in the genome-scale metabolic network. In contrast to

kinetic models of metabolism, a shortage of constraint-based approaches is the incapacity to

predict metabolite concentrations, but it can be used to analyze the genome-wide flux distribu-

tion. In this study, we firstly compute the metabolite flux-sum distributions in the normal and

deficient states, respectively. The flux-sum changes between these states are then compared

with the changes of LC/MS metabolomics observations in the normal and cancer states. The

similarity indicator in Eq (8) is used as a measure to inspect whether the trend of flux change is

coincided with the trend of experimental observations and Warburg hypothesis, i.e. the simi-

larity indicator is assigned to be one if the flux change in the normal and deficient states is sim-

ilar to concentration change (A toy example shown in S1 Table). The similarity ratio denotes

the percentages of the computational predictions are similar to the experimental observations.

As a result, the similarity ratio is used as an measure to explain variation of overall fluxes based

on metabolite-centric approach alter from the normal state to the deficient situation.

This study was not only used LC/MS metabolomic data of mice lacking Mir122a for evalu-

ating the similarity ratio, Warburg hypothesis was also applied to compute the similarity ratio.

Indeed, the Warburg effect accessed from literatures [1–8] hypothesizes that it could trigger

the production rate of metabolite to be increase/decrease, not concentration. In this study, 21

metabolites, consisted of TCA cycle and glutamine metabolism pathways, were used to evalu-

ate the Warburg effects (S5 Table). We found three metabolites, glutamine, glutamate, and ala-

nine, were also contained in LC/MS experiments, and their concentrations were increased and

similar trend as Warburg hypothesis. Furthermore, Pavlova and Thompson [47] have recently

reviewed cancer-associated metabolic changes to enhance the import of an essential amino

acid, leucine, through the plasma membrane localized neutral amino acid antiporter LAT1,

which is coupled to a simultaneous efflux of glutamine. In such a manner, intracellular gluta-

mine may facilitate the import of a broad range of LAT1 substrates, including leucine, isoleu-

cine, valine, methionine, tyrosine, tryptophan, and phenylalanine. We found that five amino

acids, i.e. leucine, valine, methionine, tryptophan, and phenylalanine contained in the mouse

experimental metabolomics profiling data increased and were similar to the increasing fluxes

of the hypothesis and model prediction. We additionally acquired metabolomics profiling data

for human HCC [53], and found that the trend of metabolic alternation was similar to War-

burg hypothesis (see S7 Table). All optimization problems were solved using the CPLEX solver

accessed from GAMS on a 3.4 GHz Intel Core i7 CPU with 32 GB of RAM. The source code is

available in the supporting information (S1 File).

Metabolomic analysis by liquid chromatography–mass spectrometry

A modified Folch’s method was used for hydrophilic and hydrophobic metabolite extraction

[60]. Approximately 0.3 g of frozen liver tissue was homogenized in liquid nitrogen and trans-

ferred to a 20-mL glass tube. Subsequently, 6 mL of chloroform/methanol (2:1, v/v) solution

and 1.5 mL of water were added. The mixture was vortexed four times for 30 s and subse-

quently centrifuged at 700 × g for 30 min at 4˚C. The upper phases (hydrophilic phase and
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water soluble phase) were transferred to new glass tubes and then dried under a stream of

nitrogen. The residues were collected and stored at −80˚C. The residues were suspended in

100 μL of 95:5 water/acetonitrile and centrifuged at 14,000 × g for 5 min. The clear supernatant

was collected for liquid chromatography–mass spectrometry (LC/MS) analysis.

Liquid chromatographic separation was achieved on a 100-mm×2.1 = mm Acquity 1.7-μm

C8 column (Waters Corp., Milford, USA) using the ACQUITY UPLC system (Waters Corp.,

Milford, USA). The column was maintained at 45˚C and a flow rate of 0.5 mL/min. Analytes

were eluted from LC column using with a linear gradient: 0–1.25 min: 1%-50% B; 1.25–2.5

min: 50%-99% B; 2.5–5.0 min: 99% B; 5.1–6 min: 1% B for re-equilibration. The mobile phase

was 0.1% formic acid in water (solvent A) and acetonitrile (solvent B).

The eluent was introduced into the Synapt G1 high-definition mass spectrometer (Waters

Corp., Milford, USA) operated in the positive ion mode. It is a time of flight mass spectrometer

(TOFMS) and this system is less than 5 ppm mass error in specification. The specification was

checked in every study to make sure the mass accuracy. The following conditions were used:

the desolvation gas was set to 700 l/h at a temperature of 300˚C, the cone gas was set to 25 l/h,

and the source temperature set at 80˚C. The capillary voltage and cone voltage were set to

3,000 V and 35 V, respectively. The MCP detector voltage was set to 1,650 V. The data acquisi-

tion rate was set at 0.1 s with a 0.02 s interscan delay. The data were collected in centroid mode

from 20 to 990 m/z. For the long-term study, all analyses of the LCTOFMS were acquired

using the lock spray to ensure accuracy and reproducibility. For accurate mass acquisition, a

lock-mass of sulfadimethoxine at a concentration of 60 ng/mL and a flow rate of 6 μL/min (an

[M+H]s+ ion at 311.0814 Da in ESI positive mode) were used. The lock spray frequency was

set at 10 s.

For the purpose of quality control (QC) in LC-MS performance was also prepared. As to

the QC sample, 10 μl aliquot of supernatant that had been extracted of each sample was mixed

and the LC-MS experiment was performed together with the samples and replicates from the

same LC-MS condition. The QC sample was applied before and after injection of every 20

samples. Each sample was analyzed six replicates. We checked six replicates in the QC and

each sample. Each sample including QC was shown highly reproducibility in principal compo-

nent analysis (PCA) and orthogonal partial least square analysis (OPLS-DA) plots (S5 Fig).

Raw mass spectrometric data were processed using MassLynx V4.1 and MarkerLynx soft-

ware (Waters Corp., Milford, USA). The intensity of each mass ion was normalized with

respect to the total ion count to generate a data matrix including the retention time, m/z value,

and the normalized peak area. The multivariate data matrix was analyzed by SIMCA-P soft-

ware (version 13.0, Umetrics AB, Umea, Sweden). Orthogonal projection to latent structure-

discriminant analysis (OPLS-DA) was carried out before the Pareto scaling was applied. This

software had been used for multivariate data analysis and representation.

Precise molecular mass data for metabolites, which showed significant differences between

two groups, were then submitted for database searching, either using either an in-house data-

base or online HMDB (http://www.hmdb.ca/) or the METLIN (metlin.scripps.edu/index.php)

database. For identifying specific metabolites, standards were subject to UPLC-MS/MS analy-

ses under the conditions that were identical to those of the profiling experiment. MS/MS spec-

tra were collected and confirmed by chemical standards or database match from HMDB or

METLIN.

Statistical analyses. To maximize identification of differences in metabolic profiles

between groups, an OPLS-DA model was applied and performed using the SIMCA-P software

(version 13.0, Umetrics AB, Umea, Sweden). The variable importance in the projection (VIP)

value of each variable in the model was calculated to indicate its contribution to the classifica-

tion. A higher VIP value represents a stronger contribution to discrimination between the
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groups. The VIP values of those variables greater than 1.0 are considered significantly differ-

ent. Results are expressed as the mean ± SD for continuous variables and as the number (per-

centage) for categorical variables. Data were compared by two-sample t-tests. A p value

of< 0.05 was considered significant.

Metabolite set enrichment analysis. Among those significantly altered features of meta-

bolomics profiling data, 35 were matched to the human metabolites database (HMDB). The

mapped species were assigned an HMDB ID for subsequent MSEA analysis implemented in

the MetaboAnalyst assessment [61].

Cell culture

The Huh7 cell line was obtained from Dr. Zhong-Zhe Lin, National Taiwan University Hospi-

tal, Taiwan. Huh7 cells were cultured in DMEM and supplemented with 10% fetal bovine

serum (FBS, Invitrogen), 10 U/ml penicillin, 1% nonessential amino acids and 2 mM L-gluta-

mate in an incubator with 5% CO2 at 37˚C.

Western blotting

Cells (5 × 105 cells) were seeded in 6-cm tissue culture dishes for overnight incubation and

were then treated with ibrutinib (Santa Cruz Biotechnology, sc-483194), LFM-A13 (Enzo,

BML-EI295), and withaferin A (Enzo, BML-CT104), respectively, for 24 hours. Mice liver tis-

sues were harvested from C57BL/6 wildtype and mir-122 knockout mice at 2, 6 and 11 months

of age. All samples were lysed in lysis buffer (25 mM Tris-HCl pH 7.6, 137 mM NaCl, 1 mM

EDTA pH 8.0, 1 mM EGTA pH 8.0, 1% Triton X-100, 2 mM sodium pyrophosphate, 25 mM

β–glycerol phosphate) supplemented with protease inhibitor and phosphatase inhibitor. All

samples were denatured by heating at 95˚C for 5 minutes. The total protein was electropho-

resed on 10%, 12% SDS-polyacrylamide gel and transferred onto PVDF membranes (Milli-

pore). The membrane was blocked with 5% non-fat milk at room temperature for 1 hour. The

membrane was incubated with the primary antibody at 4˚C overnight. They were washed with

TBST three times (10 minutes per time). The membrane was incubated with the HRP-conju-

gated secondary antibody at room temperature for 1 hour. They were washed with TBST three

times (10 minutes per time). The proteins were detected using an enhanced ECL.

Supporting information

S1 Fig. Metabolomics analyses of miR-122a deficient mice.

(TIF)

S2 Fig. Similarity ratio related to different regulation strength parameters for triggering

overexpression of Ddc.

(TIF)

S3 Fig. Metabolic reprogramming triggered by overexpression of Pkm.

(TIF)

S4 Fig. High DDC mRNA expression is a negative prognostic factor in patients with hepa-

tocellular carcinoma.

(TIF)

S5 Fig. Reproducibility in principal component analysis (PCA) and orthogonal partial

least square analysis (OPLS-DA) plots.

(TIF)
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