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A B S T R A C T

We propose a random forest classifier for detecting rare variants from sequencing errors in Next Generation
Sequencing (NGS) data from viral populations. The method utilizes counts of varying length of k-mers from
the reads of a viral population to train a Random forest classifier, called MultiRes, that classifies k-mers as
erroneous or rare variants. Our algorithm is rooted in concepts from signal processing and uses a frame-
based representation of k-mers. Frames are sets of non-orthogonal basis functions that were traditionally
used in signal processing for noise removal. We define discrete spatial signals for genomes and sequenced
reads, and show that k-mers of a given size constitute a frame.
We evaluate MultiRes on simulated and real viral population datasets, which consist of many low frequency
variants, and compare it to the error detection methods used in correction tools known in the literature.
MultiRes has 4 to 500 times less false positives k-mer predictions compared to other methods, essential for
accurate estimation of viral population diversity and their de-novo assembly. It has high recall of the true k-
mers, comparable to other error correction methods. MultiRes also has greater than 95% recall for detecting
single nucleotide polymorphisms (SNPs) and fewer false positive SNPs, while detecting higher number of
rare variants compared to other variant calling methods for viral populations. The software is available freely
from the GitHub link https://github.com/raunaq-m/MultiRes.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The sequence diversity present in a population of closely related
genomes is important for their survival under environmental pres-
sures. Viral population within a host is an example of such popu-
lation of closely related genomes, where some viral strains survive
even when large segments of their genome are deleted. The sequence
variants that occur at low frequency in the population, also known as
rare variants, have been known to impact the population’s survival
and understanding their prevalence is important for drug design and
in therapeutics [1].

However, detection of rare variants from Next Generation
Sequencing (NGS) data is still a challenge as the rare variants are
tangled with errors in sequencing technologies due to their similar
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prevalence [2,3]. The NGS data technologies are error prone and
even though their error profiles are well studied [4,5], removing
sequencing errors is essential before downstream processing of NGS
data such as assembly of haplotypes in viral populations [2,6-9] and
variant calling for viral populations [7,9,10].

In order to remove sequencing errors from NGS data, the first step
is detecting the errors from true biological sequences and then cor-
recting the errors to the true sequence. For NGS data obtained from
a viral population, the reads are mapped to a reference genome to
detect true variants from sequencing errors based on a probabilis-
tic model [6,7,9-11], and then the sequencing errors are corrected
to the sequence of the reference genome. However, as virus popula-
tion contains a large diversity of true sequences, accurate mapping
of reads to any one reference may not be possible.

Alternatively, sampled reads are broken into small fixed length
sub-strings called k-mers and their counts are used for error detection
(e.g. [12–16]). The erroneous k-mers are corrected by changing
minimum number of bases in the reads using the detected true
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k-mers. These methods use a generative model for k-mer counts to
determine if an observed k-mer is erroneous or a true k-mer [12]
based on a counts threshold [12-14,17].

For k-mer based error detection, the length of the k-mer and the
frequency threshold are important parameters. The size of a k-mer
can effect the performance of error detection method, as it either
decreases the evidence for a segment of the genome for a large k,
or combines evidences from multiple segments for a small k. How-
ever, a single appropriate k-mer size for error detection in viral
populations is restrictive in nature, as a combination of different
sized overlapping k-mers, although redundant, can provide richer
information.

The error detection part in most k-mer based error correction
tools [12–15] has been designed assuming the reads are sampled
from a single diploid genome and rely on a single counts thresh-
old. However, for viral populations a single threshold is not suitable
as viral strains occur at different relative frequencies. Currently, a
number of time and memory efficient k-mer counting algorithms
are available [18,19]. Thus, choosing an appropriate size of k-mer is
possible by performing k-mer counts at multiple sizes [20].

With the availability of large amounts of data from NGS tech-
nologies, data driven classifiers have also been used for detection
of sequencing errors [21] and for variant calling [5,12,22,23]. How-
ever, identifying the features for classification of rare variants and
sequencing errors is still a challenge, due to their similar character-
istics in the NGS data.

We propose, MultiRes, a reference-free k-mer based error detec-
tion algorithm for a viral population. The algorithm uses k-mer
counts of different sizes to train a Random Forest Classifier that clas-
sifies k-mers as erroneous or rare variant k-mers. We also propose a
mechanism for selecting the optimal combination of k-mer sizes. The
rare variant k-mers along with high frequency k-mers can be used as
is in downstream tools for variant calling and for de novo assembly
of viral populations.

MultiRes uses a collection of sizes of k-mers as features for detect-
ing sequencing errors and rare variants. Our rationale to choose a
combination of sizes for k-mers is rooted in signals processing, where
analysis of signals at different resolutions has been used for noise
removal [24]. Signals are projected onto a series of non-orthonormal
basis functions, known as a frame, [25–27]; these projections are
used for error removal and signal recovery [28,29].

The classifier in MultiRes is trained on a simulated dataset that
models NGS data generated from a replicating viral population. We
evaluate the performance of MultiRes on simulated and real datasets,
and compare it to the error detection algorithms of error correction
tools BLESS [13], Quake [12], BFC [14], and Musket [15]. We also
compare our results to BayesHammer [30] and Seecer [31], which
can handle variable sequencing coverage across the genome and
polymorphisms in the RNA sequencing data respectively.

MultiRes has a high recall of the true k-mers, comparable to other
methods and has 5 to 500 times better removal of erroneous k-mers
compared to other methods. Our results demonstrate that the classi-
fier in MultiRes performs well for error detection on real sequencing
data obtained from the same sequencing technology. Thus, the clas-
sifier in MultiRes is generalizable to viral population data from the
same sequencing technology.

As MultiRes detects the rare variant k-mers in an NGS data, its
output can be directly used for identifying rare variants in a viral
population. Variant calling for viral populations typically relies on a
single reference genome or on a consensus genome generated from
the population being studied [7,9,10]. We compare the rare vari-
ants detected by MultiRes to variant calling methods VPhaser-2 [9],
LoFreq [10] and the outputs from haplotype reconstruction method
ShoRAH [7]. MultiRes has the higher recall of true SNPs compared
to the SNPs called by VPhaser-2, LoFreq and ShoRAH on both sim-
ulated and real datasets, and misses the least number of true SNPs

amongst all methods. This demonstrates its applicability for rare
variant detection in viral populations.

2. Methods

MultiRes is a classifier for detecting sequencing errors from rare
variants. The counts of the k-mers along with the counts of their
sub-sequences (sub k-mers within a k-mer) are used as features for
training a classifier. The true k-mers observed in the viral haplotypes
with counts in the reads less than a threshold THigh are defined to
be rare variant k-mers, while the rest of k-mers with counts less
than THigh are erroneous k-mers. The k-mers that occur at counts
greater than THigh are known as common k-mers, as they occur fre-
quently in the viral haplotypes. The common k-mers are assumed to
be error-free and the classifier is trained only for the erroneous and
rare variant k-mers.

The premise of our method is that reads sequenced from a popu-
lation of genomes can be modeled as discrete spatial signals. Discrete
spatial signals can be projected on to a frame [25-27,32] for their
representation (See Supplementary Material for details), where the
coefficients of projections characterize the discrete spatial signals.
Similarly, we show that k-mers (of a given size k) form a frame and
the maximal projection of k-mers correspond to their counts in a
sequencing run. Additionally, a k-mer can be projected on to a col-
lection of frames, where each frame represents counts of k′-mers
(k′ < k) that are sub-strings of the given k-mer.

The choice of k for a frame is important and should be large
enough such that a k-mer only occurs once in the haplotypes. On the
other hand, it should be smaller than the read lengths so that k-mer
counting is still meaningful.

The minimum k can be approximated by ensuring that the prob-
ability of picking a string of length equal to the genome length (say
|H|) where all k-mers in it occur only once is low [12]. Thus the
probability of picking approximately |H| unique k-mers out of a set
of 4k/2 (considering reverse complements) should be low. We set
2 • |H|/4k ≈ 4, where 4 is a small number, to determine the smallest
possible choice of k (kmin) for the frame.

As an example, a k-mer u occurring c(u) times in the reads when
projected on a frame of size k is in-fact represented by its max-
imal projection c(u). The same k-mer u, can also be represented
on frames of sizes (k′, k

′ ′
in the range [kmin, k]. Now the maximal

projections for u in these frames are the counts of k′-mers and k
′ ′
-

mers present within u. This representation of k-mer u can be used
to train a classifier for identifying erroneous versus rare variant
k-mers.

2.1. MultiRes: Classification algorithm for detecting sequencing errors
and rare variants

We define a classifier, EC, for classifying a k-mer as erroneous,
a rare variant, or a common k-mer in the dataset. Algorithm 1
describes MultiRes, the proposed algorithm for detecting rare vari-
ants and sequencing errors. The algorithm takes as input the sampled
reads, the classifier EC, an ordered array (k, k′, k

′ ′
), and a thresh-

old parameter THigh. It outputs for every k-mer observed in the
sampled reads a status: whether the k-mer is erroneous or a rare
variant.

It first computes the counts of k-mers, k′-mers, and k
′ ′
-mers using

the dsk k-mer counting software [18]. The k-mers u that have counts
greater than THigh are marked as true k-mers while the rest of the k-
mers are classified using the classifier EC based on their counts on
k′-mers, and k

′ ′
-mers.

The classifier EC captures the profile of erroneous versus rare
variant k-mers from Illumina sequencing of viral populations. We
used the software dsk (version 1.6066) [18] for k-mer counting,
which can perform the k-mer counts in a limited memory and disk
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space machine quickly. The run time of MultiRes is linearly depen-
dent on the number of unique k-mers in a dataset, as once the
classifier EC is trained, it can be used for all datasets, and it can be
easily parallelized.

Algorithm 1. MultiRes: Error detection in the sampled
reads by frame-based classification of k-mers

2.1.1. Simulated data for classifier training
MultiRes assumes the availability of a classifier EC which can

distinguish between the erroneous and rare variant k-mers. We
use simulated datasets to train a series of classifiers and set EC to
the classifier which has the highest accuracy. The simulated viral
population consists of 11 haplotypes and is generated by mutating
10% of positions on a known HIV-1 reference sequence of length
9.18 kb (NC_001802). These mutations also model the evolution of
a viral population under a high mutation rate. The mutations intro-
duced are randomly and uniformly distributed across the length of
the genome so that the classifier is not biased towards the distribu-
tion of true variants. This introduces a total of 195,000 ground truth
unique 35-mers in the simulated HIV-1 dataset.

We next simulate Illumina paired-end sequencing reads using
the software dwgsim (https://github.com/nh13/DWGSIM) at 400x
sequencing coverage from this viral population. The status of each
k-mer in this dataset is known as being erroneous, rare variant or
a common k-mer. We use close to 100,000 k-mers in the training
dataset. Thus, there is a test dataset of k-mers left for evaluating the
efficacy of the classifiers.

In order to train a classifier, we need to choose the size of the
k-mer, the sizes of k′-mers for computing the projections of k-mer
signals, and the number of such projections needed. The choice of
the smallest of {k, k′, . . .} should be above the minimum length kmin

to ensure that each k-mer still corresponds to a unique location on a
viral genome.

For HIV populations, with genome length 9180 base pairs (9.1 kbp)
and taking 4 = 0.001 (a small value, as mentioned before), the
minimum length of k-mer is kmin = �log42 • G/4� = �12.06� = 13. As
in signal processing domain, we choose k ≈ 3 • kmin = 35 (an integral
multiple of kmin) as the largest k-mer, and consider its projections
on frames of sizes ranging from 13 to 35.

MultiRes assumes that k-mers above the threshold count Thigh are
error-free, and only classifies the k-mers with counts less than Thigh.

The choice of Thigh should ensure that the probability of erroneous
k-mers with counts above Thigh is negligible. We use the gamma dis-
tribution model mentioned in the Quake error correction paper [12]
for modeling erroneous k-mers, as it approximates the observed
distribution of errors. Based on this gamma distribution, we set
Thigh = 30 for the simulated HIV population data. The classifiers are
therefore trained on 35-mers with counts less than 30.

Three training datasets consisting of both erroneous and rare
variant 35-mers are generated. The features in the three datasets are
the projection of the 35-mers onto (i) the frame of size 23, (ii) the
frame of size 13, and (iii) a combination of both frames (Fig. 1 a). The
features in the three settings translate to the counts of the 13-mers
and 23-mers observed within the 35-mer along with the counts of
the 35-mer. We observed 11.9 million unique 35-mers in the simu-
lated HIV-1 population, from which features from 76,000 erroneous
35-mers and 32,000 true variant 35-mers distributed uniformly over
counts 1–30 were used for training the classifiers.

2.1.2. Classifier selection
Classifiers Nearest Neighbor, Decision Tree, Random Forest,

Adaboost, Naive Bayes, Linear Discriminant Analysis (LDA), and
Quadratic Discriminant Analysis (QDA) are trained on the three train-
ing datasets and evaluated based on their test data accuracy over a
5-fold cross validation dataset. The classifiers are implemented in the
scikit-learn library (version is 0.16.1) in python programming lan-
guage (version 2.7.6). For all the classifiers, the accuracy improves as
the 35-mers are projected onto 13-mers rather than 23-mers (higher
resolution, lower size of k′-mers), and improves even further when
35-mers are resolved onto both 13-mers and 23-mers (Fig. 1). No fur-
ther feature selection was performed when 35-mers were resolved
onto 13-mers and 23-mers. The Random Forest Classifier performs
the best on all three datasets, where the accuracy for dataset (iii) is
98.12%. The accuracy for Naive Bayes and QDA classifiers are lower
for all datasets, and also decreases when the projections in both
13-mers and 23-mers are considered, indicating that inadequacy of
their models for the classification of 35-mers in these projections.
The performance of other classifiers are comparable and follows
similar trends.

2.1.3. Exploring additional feature spaces
Additionally, we generate a series of 4 projections of the 35-mers

onto frames of sizes a) 15, b) {15 + 20}, c) {15 + 20 + 25}, and
d) {15+20+25+30} to evaluate the effect of number of frames used
for projection on the performance (Fig. 1 b). Increasing the num-
ber of projections has no visible effect on increasing the accuracy
of performance, although it increases the memory requirements and
time complexity for computing counts of all five different values of
k. Based on this, we chose the Random Forest classifier with a res-
olution of 35-mers decomposed into a combination of 13-mers and
23-mers for other simulated and real datasets.

3. Results

3.1. Error detection for reconstruction of haplotypes

We evaluate MultiRes on simulated HIV and HCV datasets and
a laboratory mixture of HIV-1 strains. MultiRes is compared to
the detection algorithms in the error correction tools Quake (last
checked version Feb 2012) [12], BLESS (version 0.15) [13], Musket
(last downloaded October 2015) [15], BFC (last downloaded October
2015) [14], BayesHammer (version 3.6.2) [30] and Seecer (version
0.1.3) [31]. As these tools are traditionally designed for error cor-
rection, the error corrected reads or k-mers from these methods
were used for comparison with the rare variant k-mers and com-
mon k-mers predicted by MultiRes. ShoRAH [7] reconstructs a set
of haplotypes as its final output rather than error corrected reads

https://github.com/nh13/DWGSIM
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Fig. 1. Performance of classification algorithms for erroneous versus rare variant
k-mer classification. The performance of mentioned classification algorithms for clas-
sifying 35-mers are compared over two sets of features. 35-mers are either projected
onto a family of (a) 23-mers, 13-mers, and a 13 + 23-mers, and (b) projections onto
15-mers, 15+20-mers, 15+20+25-mers, and 15+20+25+30-mers. The accuracy
reported is over fivefold cross validation on 35-mers extracted from HIV viral popula-
tion. Accuracy improves when 35-mers are projected onto smaller sized k′- mers and
as the number of projections increases. Random Forest Classifier has the best accuracy
across different classification algorithms.

and thus was not evaluated for error correction. The error cor-
rected reads, although available as an intermediate output, are not
reported due to their low precision numbers, but ShoRAH is used
for single nucleotide variant calling and comparison later in the text.
Other recent error correction methods available for viral popula-
tions such as PredictHaplo http://bmda.cs.unibas.ch/software.html,
HaploClique [11], and Viral Genome Assembler (VGA) [8] were not
evaluated in this study.

Three measures, defined in terms of the true and erroneous
k-mers, are used for comparing the detection algorithms in all
methods. Precision is defined as the ratio of the known true k-mers
identified to the total number of k-mers predicted as true variants
by an algorithm. Recall is defined as the ratio of the true variant

k-mers identified to the total number of true k-mers by an algorithm
and measures the goodness of a method to retain true k-mers for a
dataset. False Positives to True Positives Ratio (FP/TP ratio) is the ratio
of the erroneous k-mers predicted as true variants to the true variant
k-mers identified by the algorithm. FP/TP ratio measures the num-
ber of erroneous k-mers identified by an algorithm to detect a single
true variant k-mer and is a measure of the overall volume of k-mers
predicted by an algorithm.

3.1.1. HIV simulated datasets
We first assess the performance of MultiRes on the reads simu-

lated from the HIV-1 population containing 11 haplotypes, generated
from a single HIV-1 reference sequence (NC_001802) as mentioned
before. Two datasets are generated from the simulated reads: one
with average haplotype coverage of 100x (denoted as HIV 100x), and
second where the average coverage is 400x (denoted as HIV 400x)
as increasing sequencing depth increases the absolute number of
erroneous k-mers introduced in the data.

The recall of MultiRes is 95% and 98% on HIV 100x and HIV
400x datasets, respectively, indicating that performance of MultiRes
improves with increasing sequencing depth as expected. The recall
numbers are comparable to around 98% recall of other methods on
the HIV 100x dataset and 94% to 99% for HIV 400x dataset (Table 1).

The precision of MultiRes is 89% in the HIV 100x while all other
methods have low precisions for HIV 100x. While precision in all
other methods is less than 5% for HIV 400x dataset, the precision
of MultiRes is 95%, suggesting that precision decreases for other
methods with increasing sequencing depth. As higher depth sam-
ples also have higher sequencing errors, the detection algorithms in
these methods are not able to differentiate between rare variants
and sequencing errors. Seecer and BayesHammer, methods which
can handle variability in sequencing coverage, also have very low
precision values compared to the proposed method.

The FP/TP ratio obtained by MultiRes are 4 to 500 times better
than other methods and the number of k-mers retained is close to
the true set of k-mers in the two datasets (FP/TP ratio is close to zero
& recall close to 95–98 %).Thus, while all methods retain the true
k-mers to the same extent, only MultiRes reduces the number of
false positive k-mers. This is important as the memory requirements
for de novo assembly tools linearly increases based on the number
of k-mers. Thus the k-mers predicted by MultiRes would have a
500 times reduction in memory consumption for downstream de
novo assembly tools as compared to current error correction methods.

Table 1
Comparison of performance metrics of error detection on simulated HIV datasets.
FP/TP ratio is the measure of false positive to true positive ratio, Recall measures the
percentage of true k-mers out of all true k-mer predicted by an algorithm, Precision
measures the percentage of predicted k-mers by an algorithm that are true k-mers.

Algorithm FP/TP ratio Recall Precision

HIV 100x HIV 400x HIV 100x HIV 400x HIV 100x HIV 400x

Uncorrected 53 121 98.91 99.67 1.85 0.82
Quake 9.26 29.5 98.63 94.84 9.74 3.27
BLESS 0.71 76.7 98.38 99.36 58.48 1.28
Musket 0.46 121 98.46 99.67 68.48 0.82
BFC 2.12 112 98.47 99.57 32.01 0.89
BayesHammer 0.37 69.1 98.47 98.59 73.04 1.42
Seecer 12.1 110 98.49 98.31 7.65 0.90
MultiRes 0.11 0.048 95.01 98.17 89.34 95.39

The False positive/True Positive ratios (FP/TP ratios), Recall, and Precision are
compared on two HIV datasets for the methods: Quake, BLESS, Musket, BFC,
BayesHammer, Seecer, and the proposed method MultiRes. The error corrected reads
from each method are broken into k-mers and compared to the true k-mers in the
HIV-1 viral populations. Uncorrected denotes the statistics when no error correction
is performed. Bold in each column indicates the best method for the dataset and the
metric evaluated.

http://bmda.cs.unibas.ch/software.html
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3.1.2. Generalizability: Testing MultiRes on a Hepatitis C virus dataset
We also evaluate our method on reads simulated from viral pop-

ulations consisting of the E1/E2 gene of Hepatitis C virus (HCV). The
purpose of using HCV strains is to understand the generalization of
the MultiRes classifier on other viral population datasets. Two HCV
populations observed in patients in previous studies are used as
simulated viral populations. The first, denoted as HCV 1, consists of
36 HCV strains from E1/E2 region and are of length 1672 bps [33].
The second, denoted as HCV 2, consists of 44 HCV strains from
the E1/E2 regions of the HCV genome with lengths 1734 bps [8,17].
We simulate 500 K Illumina paired end reads from both datasets
under a power law (with ratio 2) of reads distribution amongst the
strains [34]. The two simulated datasets are denoted as HCV1P and
HCV2P respectively. The power law distribution of reads also helps
in evaluating the performance of MultiRes when more than 50% of
the haplotypes are present at less than 5% relative abundances.

All methods have recall greater than 90% on both datasets
(Table 2). Again, the difference between MultiRes and other methods
is evident from the FP/TP ratios and precision. The false positive to
true positive ratios for MultiRes are less than other methods at least
by a factor of 5 (Table 2). MultiRes still outperforms all other methods
on predicting the smallest set of predicted k-mers while maintaining
high recall levels of true k-mers.

The recall for MultiRes is respectively 96% and 94% on HCV1P and
HCV2P datasets, which is less than the method Seecer that has recall
values around 99%. Seecer marks more than 90% of the observed
k-mers as true, which explains the high recall values. However, this
also leads to a large number of false positive k-mers being predicted
as true k-mers in Seecer, leading to low precision values. All other
methods also achieve high recall by retention of all large fraction of
observed k-mers, as indicated by their precision values being less
than 1% and false positive to true positive ratios being greater than
100.

The similar performance of MultiRes on a dataset, such as the
HCV population, which is diverse in genome composition from the
simulated HIV-1 sequences used in simulation indicates the general-
izability of the Random Forest Classifier in MultiRes. The classifier is
capturing properties of the Illumina sequencing platform and the fact
that both datasets contain a large number of rare variants occurring
at k-mer counts close to the sequencing errors. Thus, MultiRes can be
used as it is for error and rare variant detection in diverse datasets.

As the performance of MultiRes on HCV population is not as
impressive as on the HIV simulated populations, it is also impor-
tant to understand the cause for this decrease in performance. It is
possible that the decrease in performance is correlated to the large
number of low-frequency variants that are being misclassified by
MultiRes. In order to test this, we investigate MultiRes’ classification
as a function of the count of the 35-mer which is being classified.
MultiRes predicts about one-fourth of the observed k-mers as rare

Table 2
Comparison of performance metrics of different methods on HCV population datasets.

Algorithm FP/TP ratio Recall Precision

HCV1P HCV2P HCV1P HCV2P HCV1P HCV2P

Uncorrected 1201 571 99.51 99.88 0.08 0.17
Quake 303.3 149 96.41 97.23 0.32 0.66
BLESS 202 112 98.35 97.18 0.49 0.88
Musket 938 463 93.53 89.17 0.10 0.21
BFC 352 161 99.32 99.84 0.28 0.61
BayesHammer 699 340 98.12 97.1 0.14 0.29
Seecer 1095 528 99.48 99.85 0.09 0.19
MultiRes 37.4 19.54 96.5 94.25 2.6 4.87

The false positive to true positive ratios, Recall, and Precision of error correction meth-
ods on the two simulated HCV datasets are shown. Uncorrected refers to the statistics
when no error correction is performed. Bold font in each column indicates the best
method for each dataset on the evaluated measure.

variants for k-mer counts less than 15, and predicts more than 99% all
of the observed k-mers as true for counts greater 20 (Fig. 2 (a)). This
suggests that MultiRes predicts rare variant k-mers for all observed
counts and detects more rare variant k-mers than a method based on
a single threshold.

Most of the k-mer based error correction methods use a single
threshold over the k-mer counts, which will clearly lose true rare
variant k-mers (Fig. 2 (b)). On the other hand, MultiRes has a recall
of 50% for k-mers observed 3 times, while still correctly identifying
more than 75% of the k-mers as erroneous. The recall of MultiRes
increases to 100% as the counts of the observed k-mers increases to
35. This indicates the importance of not having a single threshold for
distinguishing between sequencing errors and rare variants in viral
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Fig. 2. Performance of MultiRes on HCV datasets under power law distributions of
viral haplotypes with respect to count of k-mer. 35-mer multiplicity plots for HCV1P
and HCV2P datasets are shown. x-axis indicates the number of times a 35-mer was
observed while y-axis indicates the number of 35-mers at a count. (a) The predicted
true 35-mers from MultiRes (HCV1P red, HCV2P pink) compared to the uncorrected
data (HCV1P blue,HCV2P green), and (b) The true positive rare variants 35-mers from
MultiRes (HCV1P red, HCV2P pink) versus the ground truth 35-mers (HCV1P red,
HCV2P pink). MultiRes predicts rare variants k-mers at all counts greater than 3, with
its accuracy improving as counts of k-mer increases.
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population datasets, and our MultiRes bypasses a single threshold by
training a Random Forest classifier.

3.1.3. Evaluation on population of 5 HIV-1 sequences
We also evaluate MultiRes on a laboratory mixture of five known

HIV-1 strains [35], which captures the variability occurring during
sample preparation, errors introduced in a real sequencing project,
and mutations occurring during reverse transcription of RNA sam-
ples. Five HIV-1 strains (named YU2, HXB2, NL43, 89.6, and JRCSF)
of lengths 9.1 kb were pooled and sequenced using Illumina paired
end sequencing technology (Refer to [35] for details). Each HIV strain
was also sequenced separately in their study and aligned to their
known reference sequence (from Genbank) to generate a consensus
sequence for each HIV-1 strain [35]. This provides us with a dataset
of actual sequence reads where the ground truth is known allow-
ing us to assess the performance of MultiRes and other methods. We
extracted 35-mers from the paired end sequencing data and classify
them using the Random Forest classifier of MultiRes trained on the
simulated HIV sequencing data.

All the error correction methods and MultiRes have recall values
around 97%, indicating that the performance for recovery of true
k-mers is comparable across all methods (Table 3). The false positive
to true positive ratio for MultiRes is 13 while all other methods have
ratios more than 120. MultiRes predicts 359 thousand unique k-mers
in the set of true k-mers while all other methods predict more than 5
million unique k-mers. Even methods that take variance in sequenc-
ing depths while performing error correction, such as BayesHammer
and Seecer, predict 11.3 million and 6.3 million unique k-mers which
is two orders more than the ground truth number of k-mers in the
consensus sequence of the 5 HIV-1 strains (53 thousand unique
k-mers). Thus, even considering the artifacts introduced in sequenc-
ing, MultiRes has by far the most compact set of predicted error free
k-mers amongst all methods while retaining high number of true
k-mers. As mentioned earlier, as the number of k-mers linearly affects
the memory requirements for downstream de novo assembly meth-
ods, the error detection from MultiRes would translate to a 10-fold
reduction in memory.

3.1.4. Runtime and memory
MultiRes has comparable running times to BayesHammer on

the five-viral mix dataset (Fig. 3) on a Dell system with 8 GB
main memory, and 2X Dual Core AMD Opteron 2216 CPU type. The

Fig. 3. Runtime comparison on five-viral mix dataset. Comparison of running times
for different algorithms on 5-viral mix dataset on 8GB memory nodes of 2X Dual Core
AMD Opteron 2216 systems from Dell. The time noted for BayesHammer is only the
time reported for BayesHammer error correction step in SPADES (version 3.6.2). The
time reported for MultiRes is the combined time for k-mer counting, predicting k-mers
as erroneous and rare variants and generating the final output.

performance on all other datasets was similar indicating that the
timings are comparable. Additionally, while other methods have par-
allel implementations, the error detection classifier step in MultiRes
is a single thread serial implementation. As the random forest classi-
fier used by MultiRes is already trained and independent of the input
k-mers for classification, the runtime of MultiRes can be significantly
improved via parallelization of the k-mer classification step.

3.2. Comparison of MultiRes to variant calling methods for viral
populations

As one of the objectives in NGS studies of viruses is to identify
the single nucleotide polymorphisms (SNPs) in a population [2,7,9]
which is sensitive to erroneous reads, we evaluate the inference
of SNPs from the k-mers predicted by MultiRes, and compare it to
known SNP profiling methods for viral populations. We first align the
predicted k-mers from MultiRes to a reference sequence of the viral
population using the bwa mem aligner and a base is called as a SNP
when its relative fraction amongst the k-mers aligned at that posi-
tion is greater than 0.01. All the variants that occur at a frequency
greater than the error threshold at that position are reported as SNPs.
The choice of the reference sequence is based on the viral population
data being evaluated, and the same reference sequence is used for
calling true SNPs and the SNPs predicted by a method.

Each SNP detected at a base position of the reference and detec-
tion of the reference base itself are treated as true positives for a
method; thus the number of true positives can be greater than the
length of the reference sequence. All the SNPs predicted by a method
and the number of bases mapped to the reference sequence are
known as the total SNP predictions of a method. We use three mea-
sures for evaluating the SNPs called by any method. Precision is
defined as the ratio of the number of true positives to the total SNP
predictions made by a method, while recall is defined as the ratio of
the true positives to the total number of SNPs and reference bases
in the viral population. Finally, false positive to true positive ratio is a
ratio of the number of false SNP predictions to the number of true
positives detected by a method.

We compare our results to state-of-the-art variant calling meth-
ods for viral populations VPhaser-2 [9], a rare variant calling
method LoFreq [10], and viral haplotype reconstruction algorithm
ShoRAH [7] using the above three measures. The reference sequence
used by variant calling methods VPhaser-2 and LoFreq is the same as
that used by samtools to determine the true SNPs, while the SNPs pre-
dicted by ShoRAH at default parameters are compared directly to the
true SNPs. We only used the SNP calls from VPhaser-2 for evaluation,
as length polymorphisms are not generated by the other methods,
but the results from VPhaser-2 were not penalized when comparing
the SNPs.

We report results for LoFreq [10], VPhaser [9], ShoRAH [7] and
our method MultiRes on all datasets (Table 4). Overall, MultiRes has
greater than 94% recall and precision values greater than 83% in

Table 3
Comparison of performance metrics on 5-viral mix HIV-1 dataset.

Algorithm Recall Precision FP/TP ratio # of unique 35-mers

Uncorrected 98.01 0.2 439 11.4 M
BLESS 97.31 0.4 227 5.89 M
Musket 97.91 0.3 366 11.2 M
BFC 97.55 0.3 316 9.6 M
BayesHammer 97.49 0.8 122 6.3M
Seecer 97.84 0.5 220 11.3M
MultiRes 96.64 7.1 13 359 K

The recall, precision, and FP/TP ratios of each method are evaluated on the 5-viral mix
HIV-1 dataset. The number of unique 35-mers indicates the number of unique 35-mers
predicted by a method. There are 53 thousand true unique 35-mers in the consensus
sequences of the 5 viral strains. Bold indicates the best method for the measure in each
column.
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Table 4
Comparison with Variant Calling methods on all datasets.

Dataset Method Recall (%) FP/TP ratio Precision (%) # of False negatives Mapped reads (%)

HIV 100x LoFreq 97.33 0.004 99.60 444 89.51
Vphaser 98.90 0.007 99.26 183 89.51
ShoRAH 55.21 0 100 7746 98.04
MultiRes 99.69 0.011 98.88 51 97.89

HIV 400x LoFreq 84.83 0 99.99 2522 99.55
Vphaser 95.92 0.292 77.37 678 99.55
ShoRAH 55.21 0 100 7746 99.95
MultiRes 95.57 0.007 99.33 736 97.34

HCV1P LoFreq 98.30 1.282 43.82 31 99.99
Vphaser 93.51 1.628 38.05 118 99.99
ShoRAH 91.92 0 100 147 99.99
MultiRes 98.24 0.597 62.64 32 97.32

HCV2P LoFreq 97.10 1.046 48.87 60 100
Vphaser 95.65 1.492 40.13 90 100
ShoRAH 83.73 0 100 337 99.95
MultiRes 98.79 0.201 83.27 25 85.14

5-viral mix LoFreq 99.06 0.085 92.15 101 98.59
Vphaser 92.68 0.039 96.25 789 98.59
ShoRAH 98.66 0.014 98.99 109 99.3
MultiRes 99.39 0.077 92.82 66 96.29

The Recall, false positive to true positive ratios (FP/TP), Precision, number of false negatives, and % of mapped reads by methods LoFreq, VPhaser-2, ShoRAH, and MultiRes are
computed for listed datasets. All reads from a sample were aligned using bwa-mem tool for LoFreq and VPhaser-2 under default settings. ShoRAH uses its own aligner for read
alignment and variant calling, while k-mers detected by MultiRes were aligned using bwa-mem for MultiRes. Outputs from LoFreq (version 2.1.2), VPhaser-2 (last downloaded
version October 2015), and ShoRAH (last downloaded version from November 2013) are compared against known variants for simulated datasets. For 5-viral mix, the consensus
reference provided by [35] was used to determine ground truth variants. MultiRes variants are determined by aligning 35-mers to a reference sequence and bases occurring at
more than 0.01 frequency as variants. Bold for each dataset indicates the best method for the performance measures.

all datasets. LoFreq and VPhaser have comparable recall but lower
precision values and an increase in the FP/TP ratios on the HCV
population datasets, indicating a decrease in performance. ShoRAH
overall has lower recall values, nevertheless a 100% precision in all
but the 5-viral mix dataset, suggesting that it misses true SNPs but
is very accurate when it calls a base as SNP. Overall all methods
have low values for FP/TP ratio as compared to before, indicating
that the number of false positive SNP predictions are low. The met-
ric where MultiRes outperforms others is the lowest number of true
SNPs missed. This shows that even with a simplistic SNP prediction
method used in MultiRes, it is able to capture the true variation of the
sampled viral population and has the lowest false negatives of well
established methods. This demonstrates that using error-free set of
k-mers can vastly increase the variant detection in viral populations.

The number of reads or k-mers aligned to the reference sequence
are comparable across the methods, except for HCV2P dataset where
MultiRes has 85% k-mers mapped compared to 100% read mapping
(Table 4). It is possible that the unmapped k-mers correspond to the
length variants and could be verified by haplotype reconstruction
using the predicted k-mers, but that was not the focus in this paper.

4. Discussion and conclusions

We have proposed a classifier MultiRes for detecting rare vari-
ant and erroneous k-mers obtained from Illumina sequencing of viral
populations. Our method does not rely on a reference sequence and
uses concepts from signal processing to justify using the counts of
sets of k-mers of different sizes. We utilize the projections of sam-
pled reads signals onto multiple frames as features for our classifier
MultiRes.

We demonstrated the performance of MultiRes on simulated
HIV and HCV viral populations and real HIV viral populations con-
taining viral haplotypes at varying relative frequencies, where it
outperformed the error detection algorithms used in error correc-
tion methods in terms of recall and the total number of predicted
k-mers. Though, the error detection algorithms in the error correc-
tion methods evaluated assumed that sequenced reads originated
from a single genome sequenced at uniform coverage, our method
also works better than the method BayesHammer, which can tackle

non-uniform sequencing coverage, and the method Seecer, which
additionally incorporates methods for detecting alternative splicing
and polymorphisms.

The error-free k-mers predicted by MultiRes enable the usage of
de novo assembly methods for viral genomes. A major challenge for
using De Bruijn graph based methods for viral populations has been
the increased complexity of the graph due to the presence of large
number of sequencing errors [36]. Moreover, the memory footprint
of a De Bruijn assembly graph increases linearly with the number of
k-mers in the NGS data. Thus the low false positives along with high
recall of k-mers predicted by MultiRes drastically reduce the memory
requirements for De Bruijn graphs. An edge-centric De Bruijn graph
of size k − 1 can be directly generated from error free k-mers, such
as in de novo assembly tools SPADES, Cortex [37,38] for reconstruc-
tion of viral haplotypes in a viral population. The graph can be used
for calling structural variants in the viral population data. MultiRes
has high recall of true k-mers while outputting the least number
of false positive k-mers, thereby making de novo assembly graphs
manageable.

MultiRes also can be directly used for SNP calling as the predicted
error-free k-mers can be aligned to an existing reference genome or a
consensus sequence of the current viral population. The SNPs called
by MultiRes’ data has either the highest or the second highest recall
of the SNPs compared to other methods for viral population variant
calling.

MultiRes relies on the counts of multiple sizes of k-mers observed
in the sequenced reads, and the choice of k-mer length is an
important parameter. The minimum value of k chosen should be
such that a k-mer can only be sampled from a single location in the
genome. This is possible in viral populations where there are small
repeats present. Choosing the number of k-mer sizes used is another
parameter, and while accuracy can be improved by increasing it,
additional k-mer counting increased the number of computations. As
demonstrated by our experiments, choosing three different values of
k, namely (k, 2 • k, 3 • k) was sufficient for accurate results.

MultiRes also has applications for studying the large scale varia-
tion in closely related genomes, including as viral populations. The
complexity of De Bruijn graphs, useful for studying structural vari-
ants and rearrangements in the population, increases because of
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sequencing errors. Our method can provide a compact set of k-mers
while still retaining high recall of the true k-mers, which can be uti-
lized for constructing the graph. Additionally, the error-free k-mers
predicted by MultiRes can be directly used for understanding the
SNPs observed in the viral population to a high degree of accuracy.

MultiRes’ classifier also has its limitations. The model, although
trained to model the features of an Illumina sequencing machine,
does have a decreased performance on different viral populations
with a large number of rare variants, as is evident from its 50%
accuracy for HCV2P population for k-mers observed only 3 times.
Although it is able to eliminate a large number of false positive
k-mers (more than 75% of k-mers at counts of 3), the classifier model
can be improved with additional training data and an ensemble of
classifier models.

MultiRes was primarily developed for detection of sequencing
errors and rare variants in viral populations, which have small
genomes. Extending our method for larger genomes may require addi-
tional tuning of the parameters via re-training of the classifier, but
the concepts developed here are applicable to studying variation in
closely related genomes such as cancer cell lines. It is also applicable
for understanding somatic variation in sequences as their variation
frequency is close to the sequencing error rates. The technique can
also be explored for newer sequencing machines, such as PacBio
sequences and Oxford Nanopore long read sequencing, where the
type of sequencing errors are different, but the concepts of projections
of signals are still applicable. The software is available for download
from the github link (https://github.com/raunaq-m/MultiRes).
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