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Tumor Radiomic Features on Pretreatment MRI to 
Predict Response to Lenvatinib plus an Anti-PD-1 
Antibody in Advanced Hepatocellular Carcinoma: 
A Multicenter Study
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Abstract
Introduction: Lenvatinib plus an anti-PD-1 antibody has 
shown promising antitumor effects in patients with ad-
vanced hepatocellular carcinoma (HCC), but with clinical 
benefit limited to a subset of patients. We developed and 
validated a radiomic-based model to predict objective re-
sponse to this combination therapy in advanced HCC patients. 
Methods: Patients (N = 170) who received first-line combina-

tion therapy with lenvatinib plus an anti-PD-1 antibody were 
retrospectively enrolled from 9 Chinese centers; 124 and 
46 into the training and validation cohorts, respectively. 
Radiomic features were extracted from pretreatment contrast-
enhanced MRI. After feature selection, clinicopathologic, 
radiomic, and clinicopathologic-radiomic models were built 
using a neural network. The performance of models, incre-
mental predictive value of radiomic features compared with 
clinicopathologic features and relationship between radiomic 
features and survivals were assessed. Results: The clinico-
pathologic model modestly predicted objective response 
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with an AUC of 0.748 (95% CI: 0.656–0.840) and 0.702 (95% CI: 
0.547–0.884) in the training and validation cohorts, respec-
tively. The radiomic model predicted response with an AUC 
of 0.886 (95% CI: 0.815–0.957) and 0.820 (95% CI: 0.648–
0.984), respectively, with good calibration and clinical utility. 
The incremental predictive value of radiomic features to clin-
icopathologic features was confirmed with a net reclassifica-
tion index of 47.9% (p < 0.001) and 41.5% (p = 0.025) in the 
training and validation cohorts, respectively. Furthermore, 
radiomic features were associated with overall survival and 
progression-free survival both in the training and validation 
cohorts, but modified albumin-bilirubin grade and neutro-
phil-to-lymphocyte ratio were not. Conclusion: Radiomic 
features extracted from pretreatment MRI can predict indi-
vidualized objective response to combination therapy with 
lenvatinib plus an anti-PD-1 antibody in patients with unre-
sectable or advanced HCC, provide incremental predictive 
value over clinicopathologic features, and are associated with 
overall survival and progression-free survival after initiation 
of this combination regimen. © 2022 The Author(s).

Published by S. Karger AG, Basel

Introduction

Hepatocellular carcinoma (HCC) is one of the most 
prevalent malignant tumors and one of the leading causes 
of cancer mortality in the world and China [1, 2]. Most 
patients with HCC are diagnosed at an advanced stage, 
non-amenable to curative treatment [3].

In recent years, combination strategies including 
targeted therapy plus immunotherapy, such as atezoli-
zumab plus bevacizumab and sintilimab plus a bevaci-
zumab biosimilar [4], have been approved for the first-
line treatment of advanced HCC (the latter only in 
China). Furthermore, combination therapy with len-
vatinib plus pembrolizumab for the first-line treat-
ment in advanced HCC was investigated in a phase Ib 
trial (KEYNOTE-524 study) and showed a promising 
objective response rate (ORR) of 36% (according to 
Response Evaluation Criteria in Solid Tumors, version 
1.1 (RECIST v1.1)), with promising progression-free 
survival (PFS) and overall survival (OS) [5]. Similar 
ORRs have been reported for lenvatinib in combina-
tion with a range of different anti-programmed cell 
death protein 1 (PD-1) antibodies [6]. Although LEAP-
002 study (lenvatinib plus pembrolizumab vs. lenvatinib 
as first-line therapy for advanced HCC, NCT03713593) 
is a negative trial in terms of PFS and OS, it is also not-

ed that ORR was much higher in the combination arm 
than the lenvatinib monotherapy arm [7], which im-
plies there may be a role of this combination therapy 
in neoadjuvant therapy. Indeed, preliminary investiga-
tion suggested a great value of this combination treat-
ment in either conversion therapy or neoadjuvant thera-
py settings [8–10]. A multicenter prospective clinical 
trial has been initiated in China to further investigate 
the efficacy of this combination in the neoadjuvant set-
ting (NCT05389527). Therefore, it is also important to 
predict efficacy of this combination therapy, especially 
in the neoadjuvant setting when we already have mul-
tiple choices for systemic therapies.

Although the combination of lenvatinib plus an anti-
PD-1 antibody provides a relatively high ORR, the clin-
ical benefit is limited to a subset of patients. As the inci-
dence of grade 3/4 adverse events is ∼50% with this 
combination [5, 11], identifying patients who are more 
likely to respond before initiating treatment is of clin-
ical significance. However, currently, no validated bio-
marker has been identified to predict the response to 
combination therapy with targeted therapy plus immuno-
therapy [12].

Biomarkers such as programmed death-ligand 1 
(PD-L1) expression, tumor mutational burden, micro-
satellite instability [13], and mismatch repair deficiency 
[14] have been proposed to predict response to immu-
notherapy in HCC and other cancers. However, wheth-
er these biomarkers could predict the efficacy of combi-
nation treatment with targeted therapy plus immuno-
therapy remains unclear [12]. Furthermore, these are 
tissue-based biomarkers that require invasive biopsies 
or procedures to obtain tumor tissue samples and do not 
adequately characterize the spatial and temporal hetero-
geneity of tumors.

Radiomics is an emerging field that converts standard-
of-care medical imaging into high-throughput, mineable, 
and quantitative features using a variety of predefined 
image-characterization algorithms [15, 16]. Medical im-
ages contain information that directly reflects the overall 
tumor burden and each tumor lesion [16]. Therefore, 
radiomics, which can be perceived as a “digital biopsy” 
of the entire tumor, provides a noninvasive, repeatable, and 
comprehensive view of tumor biology and heterogeneity, 
without the need for additional blood or tissue samples.

Radiomics have been shown to improve diagnostic 
[17], prognostic [18, 19], and predictive accuracy [20, 21] 
in HCC. Radiomics can also be used to predict response 
to transcatheter arterial chemoembolization (TACE) 
in HCC [22], neoadjuvant therapy in rectal and breast 
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cancer [23, 24], systemic therapy in lung cancer [25], and 
to immune checkpoint inhibitors in solid tumors [26, 27]. 
However, to the best of our knowledge, no study has in-
vestigated the ability of radiomics to predict response to 
lenvatinib plus an anti-PD-1 antibody in advanced HCC.

Magnetic resonance imaging (MRI) provides a higher 
soft-tissue contrast than computed tomography (CT) im-
ages, and contrast-enhanced MRI remains the most reli-
able radiologic technique to evaluate response to system-
ic therapy in HCC [28]. Therefore, we hypothesized that 
a radiomic model to predict response to lenvatinib plus 
an anti-PD-1 antibody in unresectable or advanced HCC 
based on pretreatment contrast-enhanced MRI would 
have similar or incremental value to a clinicopathologic 
model. In this study, we aimed to develop a radiomic 
model based on pretreatment contrast-enhanced MRI to 
predict objective response to the first-line combination 
therapy with lenvatinib plus an anti-PD-1 antibody in 
patients with unresectable or advanced HCC, and validate 
this radiomic model using a multicenter dataset.

Materials and Methods

Study Design and Patients
This was a retrospective, multicenter study involving 9 tertiary 

referral centers in China. Consecutive patients diagnosed with 
HCC according to local and international guidelines [29, 30] were 
eligible for inclusion if they received combination therapy with 

lenvatinib plus an anti-PD-1 antibody (see online suppl. methods 
for details of treatment; see online suppl. Result S1, online sup-
pl. Table S9 and online suppl. Table S10 for details of treatment-
related adverse events; for all online suppl. material, see www.
karger.com/doi/10.1159/000528034) as a first-line systemic treatment 
between October 2018 and February 2022, had undergone a pretreat-
ment contrast-enhanced MRI within 2 weeks before initiating combi-
nation therapy, and had tumor response assessments every 2 months 
(±2 weeks) via CT or MRI according to RECIST v1.1. Patients were 
also required to have an interval of at least 2 months between any pre-
vious therapy (e.g., TACE, radiofrequency ablation, hepatectomy) and 
the initiation of combination therapy, and have at least one tumor re-
sponse assessment after initiating combination therapy. Different anti-
PD-1 antibodies were permitted across the study population to reflect 
real-world practice more accurately and showed similar ORRs when 
combined with lenvatinib [6]. Exclusion criteria were incomplete clin-
icopathologic data; a history of cancer other than HCC; a gadoxetic 
acid-enhanced pretreatment MRI; inadequate MRI quality; intrahe-
patic tumor lesions that could not be measured or segmented in mag-
netic resonance (MR) images; and additional antitumor treatment 
after the initiation of combination therapy.

Eligible patients formed two cohorts: a training cohort re-
cruited from an ongoing observational, prospective cohort study 
(NCT04639284) at one of the centers (Zhongshan Hospital, Fudan 
University), whose data were used to build the model; and an 
independent validation cohort recruited from the remaining 8 
centers (online suppl. methods).

Objective and Sample Size
The objective of this study was to predict objective response 

(defined as a complete response or partial response as the best 
overall response) to the first-line combination therapy with 
lenvatinib plus an anti-PD-1 antibody with an area under the 
receiver operating characteristic (ROC) curve (AUC) of ≥0.8. 

Training cohort

Clinical features

Feature
normalization

Training cohort

Radiomic features
Hyperparameter

optimization

Stratified 5-fold
cross-validation

Model development

Neural network

Feature selection

Univariate analyses

Clinical significance

ICC ≥ 0.8
Univariate analyses
LASSO regression

Validation cohort
Clinical features

Feature normalization
with parameters determined

in the training cohort

Validation cohort
Radiomic features

Model validation

Patients who received combination therapy with lenvatinib plus an anti–PD-1 antibody
From October 2018 through February 2022 from 9 tertiary referral centers in China (n = 312)

Training cohort
(n = 124)

Independent validation cohort
(n = 46)

Zhongshan hospital
(n = 220)

Other eight centers
(n = 92)

Excluded (n = 96)
Non-first-line combination therapy (n = 40)
No tumor response assessment (n = 41)
Inadequate pretreatment MRI quality (n = 5)
Non-measurable intrahepatic tumor lesions (n = 5)
Receiving other anti-tumor therapy concurrently (n = 2)
Incomplete clinicopathologic data (n = 3)

Excluded (n = 46)
Non-first-line combination therapy (n = 4)
An anti-PD-L1 antibody used (n = 1)
No tumor response assessment (n = 3)
Pretreatment MRI >2 weeks before combination therapy (n = 2)
No pretreatment contrast-enhanced MRI (n = 14)
Interval between other treatments to combination therapy <2 months (n = 6)
With a history of other type of cancer (n = 1)
Pretreatment gadoxetic acid-enhanced MRI (n = 8)
Inadequate pretreatment MRI quality (n = 2)
Non-measurable or non-segmented intrahepatic tumor lesions (n = 5)

a

b

Fig. 1. Framework and flowchart for this study. a Framework for development and validation of prediction models. 
b Flowchart of patient enrollment and grouping. ICC, intraclass correlation coefficient; LASSO, least absolute 
shrinkage and selection operator; MRI, magnetic resonance imaging; PD-1, programmed cell death protein 1; 
PD-L1, programmed cell death-ligand 1.
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Table 1. Baseline characteristics of patients in the training cohort and independent validation cohort

Variables Training cohort  
(n = 124)

Validation cohort  
(n = 46)

p value

Age in years, mean±SD 55.37±11.2 56.96±11.13 0.412
Sex

Female 10 (8.1) 6 (13.0) 0.377
Male 114 (91.9) 40 (87.0)

ECOG PS
0 65 (52.4) 35 (76.1) 0.010
1 50 (40.3) 11 (23.9)
2 9 (7.3) 0 (0)

Child-Pugh class
A 116 (93.5) 43 (93.5) 1
B 8 (6.5) 3 (6.5)

HBsAg
Negative 28 (22.6) 13 (28.3) 0.570
Positive 96 (77.4) 33 (71.7)

HBV DNA
≤103/mL 72 (58.1) 33 (71.7) 0.146
>103/mL 52 (41.9) 13 (28.3)

BCLC stage
0 2 (1.6) 0 (0) 0.942
A 15 (12.1) 4 (8.7)
B 22 (17.7) 9 (19.6)
C 85 (68.5) 33 (71.7)

CNLC stage
Ia 2 (1.6) 3 (6.5) 0.413
Ib 8 (6.5) 2 (4.3)
IIa 3 (2.4) 2 (4.3)
IIb 25 (20.2) 6 (13.0)
IIIa 48 (38.7) 16 (34.8)
IIIb 38 (30.6) 17 (37.0)

Macrovascular invasion
No 58 (46.8) 22 (47.8) 1
Yes 66 (53.2) 24 (52.2)

Extrahepatic disease
No 86 (69.4) 29 (63.0) 0.551
Yes 38 (30.6) 17 (37.0)

AFP, ng/mL 784 (21.85, 12512.25) 390 (25.95, 1481.5) 0.170
AFP

≤400 ng/mL 51 (41.1) 23 (50.0) 0.389
>400 ng/mL 73 (58.9) 23 (50.0)

Sum of diameter of baseline intrahepatic target lesions, cm 11.45 (5.57, 15) 9.91 (5.85, 12.46) 0.188
Anti-PD-1 antibody used

Camrelizumab 42 (33.9) 13 (28.3) 0.724
Nivolumab 4 (3.2) 0 (0)
Pembrolizumab 11 (8.9) 4 (8.7)
Sintilimab 47 (37.9) 18 (39.1)
Tislelizumab 9 (7.3) 6 (13)
Toripalimab 11 (8.9) 5 (10.9)

Tumor objective response
No 87 (70.2) 33 (71.7) 0.991
Yes 37 (29.8) 13 (28.3)
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To avoid model overfitting, the rule of thumb is that the num-
ber of predictors should remain within 1/20-1/6 of the sample 
size in the training cohort used to build a model [31]. A sample 
size of at least 33 patients (10 patients with objective responses 

and 23 patients without objective responses) in each cohort was 
required based on the following assumption: a power of 0.8, 
two-sided α of 0.05, alternative hypothesis of an AUC of 0.8 
compared with the null hypothesis of an AUC of 0.5, and an 

Variables Training cohort  
(n = 124)

Validation cohort  
(n = 46)

p value

Tumor response
CR 5 (4) 1 (2.2) 0.942
PR 32 (25.8) 12 (26.1)
SD 67 (54) 27 (58.7)
PD 20 (16.1) 6 (13.0)

Progressive disease
No 104 (83.9) 40 (87.0) 0.797
Yes 20 (16.1) 6 (13.0)

Data are n (%) or median (IQR) unless indicated otherwise. AFP, α-fetoprotein; BCLC, Barcelona Clinic Liver Cancer; 
CNLC, China Liver Cancer; CR, complete response; ECOG PS, Eastern Cooperative Oncology Group performance status; 
HBV DNA, hepatitis B virus DNA copy number; HBsAg, hepatitis B surface antigen; IQR, interquartile range; PD, 
progressive disease; PD-1, programmed cell death protein 1; PR, partial response; SD, stable disease.

Table 1 (continued)

Table 2. Univariate logistic regression analyses of clinicopathologic features in the training cohort between patients 
with and without an objective response

Features Odds ratio 95% CI p value

Age in years (divided by 5) 1.042 0.876–1.242 0.644
Sex

Male versus female 1.772 0.418–12.142 0.483
ECOG PS

1 versus 0 0.862 0.385–1.886 0.713
2 versus 0 0.653 0.094–2.865 0.606

Child-Pugh class
B versus A 1.447 0.284–6.235 0.626

HBsAg
Positive versus negative 0.704 0.292–1.764 0.441

HBV DNA
>103/mL versus ≤103/mL 0.397 0.165–0.896 0.031

BCLC stage
A versus 0 0.837 0.22–2.652 0.775
B versus 0 0.859 0.286–2.31 0.772
C versus 0 1.350 0.588–3.272 0.490

Macrovascular invasion
Yes versus no 0.770 0.354–1.666 0.506

Extrahepatic disease
Yes versus no 1.897 0.837–4.275 0.122
AFP in ng/mL (divided by 100) 0.999 0.997–1.001 0.514

AFP
>400 ng/mL versus ≤400 ng/mL 0.471 0.213–1.025 0.059
Sum of diameter of baseline intrahepatic target lesions in cm 0.978 0.913–1.047 0.529

AFP, α-fetoprotein; BCLC, Barcelona Clinic Liver Cancer; CI, confidence interval; ECOG PS, Eastern Cooperative 
Oncology Group performance status; HBV DNA, hepatitis B virus DNA copy number; HBsAg, hepatitis B surface antigen.
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expected ORR of ∼30% based on a previous report [6]. Sample 
size was calculated using PASS 2021 (NCSS, LLC, Kaysville, UT, 
USA).

Radiomic Feature Analysis
Image Acquisition
MRI data acquisition and scan parameters are described in on-

line supplementary methods and online supplementary Table S1, 
respectively.

Image Segmentation
Tumor segmentation was performed using 3D slicer (version 

4.11). The regions of interest for all intrahepatic target tumors were 
manually drawn along the tumor boundary on arterial phase and 
delayed phase images by a radiologist (S-Y Dong), and 60 random-
ly selected tumors were re-segmented by a senior radiologist (S-X 
Rao) to test the robustness and reproducibility of extracted ra-
diomic features. Both radiologists were blinded to clinical, labora-

tory, and response assessment results for all patients. A representa-
tive case of tumor contouring on MR images is shown in online 
supplementary Figure S1.

Radiomic Feature Extraction
Image preprocessing and radiomic feature extraction were 

performed using PyRadiomics (v3.0.1) [32]. Briefly, MRI signal 
intensity was normalized followed by resampling and interpola-
tion of voxels to minimize the effects of different MRI acquisition 
parameters and scanners, which are detailed in the online supple-
mentary methods. Finally, 1,118 features were extracted for each 
of the arterial and delayed phases (2,236 in total). The extracted 
features in each image type are listed in online supplementary 
Table S2.

Robustness, Reproducibility, and Normalization
Radiomic features with an interobserver intraclass correlation 

coefficient (ICC) <0.8 were excluded to ensure robustness and 

Table 3. ROC analyses of prediction models

AUC (95% CI)a Cut-off Numerator/denominator (%)

Acc Sens Spec PPV NPV

Clinicopathologic model
Training cohort 0.748 (0.656–0.840) 0.614 105/124 (84.7) 18/37 (48.6) 87/87 (100) 18/18 (100) 87/106 (82.1)
Validation cohort 0.702 (0.547–0.884) 33/46 (71.7) 4/13 (30.8) 29/33 (87.9) 4/8 (50.0) 29/38 (76.3)

Radiomic model
Training cohort 0.886 (0.815–0.957) 0.504 114/124 (91.9) 30/37 (81.1) 84/87 (96.6) 30/33 (90.9) 84/91 (92.3)
Validation cohort 0.820 (0.648–0.984) 40/46 (87.0) 8/13 (61.5) 32/33 (97.0) 8/9 (88.9) 32/37 (86.5)

Clinicopathologic-radiomic model
Training cohort 0.987 (0.968–1.000) 0.443 121/124 (97.6) 37/37 (100) 84/87 (96.6) 37/40 (92.5) 84/84 (100)
Validation cohort 0.876 (0.750–1.000) 39/46 (84.8) 9/13 (69.2) 30/33 (90.9) 9/12 (75.0) 30/34 (88.2)

Acc, accuracy; AUC, area under the receiver operating characteristic curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive 
value; Sens, sensitivity; Spec, specificity. aCalculated with bootstrap resampling (n = 1,000).

Table 4. Relationship between the observed and predicted response to combination therapy

Observed response p value

predicted response objective response no objective response

Radiomic model
Training cohort Objective response 30 (90.9) 3 (9.1) <0.001

No objective response 7 (7.7) 84 (92.3)
Validation cohort Objective response 8 (88.9) 1 (11.1) <0.001

No objective response 5 (13.5) 32 (86.5)
Clinicopathologic-radiomic model

Training cohort Objective response 37 (92.5) 3 (7.5) <0.001
No objective response 0 (0) 84 (100)

Validation cohort Objective response 9 (75.0) 3 (25.0) <0.001
No objective response 4 (11.8) 30 (88.2)

Data were expressed as n (%).
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reproducibility as previously reported [31] and were normalized 
using z-score method.

Prediction Model Development and Validation
The framework for the development and validation of the pre-

dictive models is shown in Figure 1a.

Feature Selection
Clinicopathologic features with a p value <0.2 in univariate lo-

gistic regression analyses along with features that may have clinical 
significance [33] were selected to build a clinicopathologic model. 
Radiomic features with an interobserver ICC ≥0.8 and a p value 
<0.1 in Student’s t test were selected by least absolute shrinkage 
and selection operator logistic regression with stratified 5-fold 
cross-validation, maximizing the AUC, to build a radiomic model. 
The features in the clinicopathologic model and the radiomic score 
(rad-score) calculated using the radiomic model was used to build 
the clinicopathologic-radiomic model.

Prediction Model Building
All prediction models were built using a neural network mod-

el in the training cohort. To avoid overfitting and increase gener-
alizability, hyperparameter optimization was performed. The 
neural network model and hyperparameter optimization are de-
scribed in the online supplementary methods. The prediction 
models were validated in the independent validation cohort to 
assess generalizability following development in the training co-
hort.

Model Performance Assessment
Bootstrap resampling (n = 1,000) was used to calculate an AUC 

with 95% confidence intervals (CI) and compare the difference be-
tween two ROCs. The optimal cut-off threshold of prediction models 
was determined using ROC by maximizing the Youden index in the 
training cohort. Net reclassification index (NRI) was used to quantify 
how well a new model reclassifies patients compared with an old 
model, at their respective cut-off values, which is particularly useful if 
there is no significant difference between the AUCs for the new and 
old models [34]. A NRI >0 indicates the predictive ability of the new 
model is better than that of old model. Calibration curves were plotted 
to assess the calibration of models. Decision curve analysis was con-
ducted to determine the clinical utility of the prediction models by 
quantifying the net benefits at different threshold values [35].

Follow-Up
Patients were followed every 60 days (±7 days) after initiation 

of combination therapy. OS was calculated from the date of first 
dose of drug to death from any cause or censored on the last follow-
up. PFS was calculated from the date of first dose of drug to the 
first documented disease progression or death from any cause.

Statistical Analysis
Categorical variables were expressed as counts and percentages, 

and were compared using Pearson’s χ2 analysis, Fisher’s exact test, or 
Mann-Whitney U test, as appropriate. Continuous variables were 
expressed as mean (± standard deviation) or median (interquartile 
range (IQR)) and were compared using Student’s t test or Mann-
Whitney U test, as appropriate. The multivariate logistic regression 
was used to identify independent predictors. Survival curves were 
calculated using the Kaplan-Meier method and compared using the 

log-rank test. A p value <0.05 was considered statistically significant. 
All statistical analyses were performed using the R software (version 
4.1.2; packages used listed in online suppl. Table S3).

Results

Patient Characteristics
In total, 170 eligible patients were enrolled, 124 in the 

training cohort and 46 in the independent validation co-
hort (Fig. 1b). Patients in the validation cohort had better 
Eastern Cooperative Oncology Group performance status 
than patients in the training cohort (p = 0.010); there were 
no significant differences in other baseline demographic 
and disease characteristics between the training and vali-
dation cohorts (Table 1). The ORRs were 29.8% (37/124) 
and 28.3% (13/46) in the training and validation cohorts, 
respectively (p = 0.991).

The baseline demographic and disease characteristics 
of patients with and without an objective response in the 
training and validation cohorts are summarized in on-
line supplementary Tables S4 and S5. In the training co-
hort, a smaller proportion of patients who had an objective 
response had a hepatitis B virus DNA copy number >103/
mL compared with those who did not have an objective 
response (27.0% vs. 48.3%, p = 0.046). Patients who had 
an objective response also had lower baseline α-fetoprotein 
(AFP, ng/mL) levels than those who did not have an 
objective response (median (IQR), 80.4 (5.5–10,385) vs. 
1,104 (74.85–14,559), p = 0.029). In the validation co-
hort, patients with an objective response had a higher 
proportion of an Eastern Cooperative Oncology Group 
performance status of 0 (100% vs. 66.7%, p = 0.020) and 
a lower proportion of AFP >400 ng/mL (23.1% vs. 60.6%, 
p = 0.049) than those without an objective response.

Association between Clinicopathologic Features and 
Objective Tumor Response
Clinicopathologic features with a p value <0.2 in uni-

variate logistic regression analyses in the training cohort 
were hepatitis B virus DNA (>103/mL vs. ≤103/mL), ex-
trahepatic disease (yes vs. no), and AFP (>400 ng/mL vs. 
≤400 ng/mL) (Table 2). The additional features that may 
have clinical significance in predicting objective response 
were macrovascular invasion (yes vs. no), and sum of 
diameter of baseline intrahepatic target lesions in cm. 
The continuous form of AFP was used instead as the 
continuous form can provide more information than 
the categorical form.
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The clinicopathologic model was built with 1, 4, and 2 
neurons in hidden layers 1, 2, and 3, respectively. The 
diagram and formula of this model are shown in online 
supplementary Figure S2. The AUC (95% CI) using 
this model was 0.748 (0.656–0.840) and 0.702 (0.547–
0.884) in the training and validation cohorts, respec-
tively, after bootstrap resampling (n = 1,000) (online sup-
pl. Fig. S3). The optimal cut-off threshold for this model 
was 0.614; accuracy, sensitivity, specificity, positive pre-
dictive value (PPV), and negative predictive value (NPV) 
for this model are summarized in Table 3. These results 
indicated that clinicopathologic features modestly pre-
dict the objective response to lenvatinib plus an anti-
PD-1 antibody. Furthermore, the training and valida-
tion cohorts did not meet the study objective in the 
clinicopathologic model.

Radiomic Features Predicted the Objective Tumor 
Response
The heatmap expressions of extracted radiomic fea-

tures in each patient are shown in Figure 2a, b. The details 
of radiomic feature selection and selected features are de-
scribed in Figure 2c and online supplementary Result S2, 
respectively. Ultimately, 14 radiomic features selected in 
the arterial and 3 in the delayed phase were used to build 
the radiomic model.

The radiomic model was built with 2 neurons in the 
single hidden layer. The diagram and formula of this 
model are shown in online supplementary Figure S4. 
The AUC (95% CI) using this model was 0.886 (0.815–
0.957) and 0.820 (0.648–0.984) in the training and valida-
tion cohorts, respectively, after bootstrap resampling 
(n = 1,000) (Fig. 3a). The rad-score was identified as an 
independent predictor for objective response in both 
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Fig. 2. Heatmap expression of radiomic features and feature selec-
tion. a, b Heatmap expression of radiomic features extracted from 
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feature selection for prediction of objective response to combina-
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radiomic features in the arterial and delayed phases are shown in 
Figure 2d. d The distribution of ICC of radiomic features in the 
arterial and delayed phases in the training cohort. AP, arterial 
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the training and validation cohorts (online suppl. Ta-
ble S6).

Rad-scores were significantly associated with objective 
tumor response both in the training and validation co-
horts (p < 0.001 for both, Fig. 3b; the distributions of rad-
scores in the training and validation cohorts are shown in 
Fig. 3c, d, respectively). The optimal cut-off threshold of 
rad-score was 0.504, and accuracy, sensitivity, specificity, 
PPV, and NPV for the radiomic model are summarized 
in Table 3. Patients with a rad-score >0.504 were predict-
ed to have an objective response; otherwise, patients were 
predicted not to have an objective response. This cut-off 

discriminated between patients with and without an 
objective response in both the training and validation 
cohorts (p < 0.001 for both, Table 4).

There were no statistically significant differences in the 
clinicopathologic features between patients predicted to 
have an objective response and those predicted not to in 
the training cohort (online suppl. Table S7). Compared 
with patients predicted not to have an objective response 
in the validation cohort, a smaller proportion of patients 
predicted to have an objective response were AFP >400 ng/
mL (11.1% vs. 59.5%, p = 0.022), and they had an earlier 
CNLC stage (p = 0.011) (online suppl. Table S8). The cali-
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Fig. 3. Performance of the radiomic and clinicopathologic-ra-
diomic models. a The ROC of radiomic model in the training and 
validation cohorts. b The scores predicted by radiomic model be-
tween patients with and without objective response in the training 
and validation cohorts. c, d The radiomic score of each patient in 
the training cohort and validation cohort, respectively. e, f The de-
cision curves of radiomic model in the training cohort and valida-
tion cohort, respectively. g The ROC of clinicopathologic-radiomic 

model in the training and validation cohorts. h The scores pre-
dicted by clinicopathologic-radiomic model between patients 
with and without objective response in the training and validation 
cohorts. i, j The decision curves of clinicopathologic-radiomic 
model in the training cohort and validation cohort, respective-
ly. AUC, area under the receiver operating characteristic curve; 
CI, confidence intervals; ROC, receiver operating characteristic 
curve.
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bration curves showed good agreement between the out-
comes predicted by the radiomic model and the actual clin-
ical outcomes (online suppl. Fig. S5). The decision curves 
revealed that the radiomic prediction model can add net 
benefit than assuming all patients did or did not have an 
objective response in both the training and validation co-
horts (Fig. 3e, f). These results demonstrated that radiomic 
features obtained from pretreatment MRI can predict ob-
jective response to lenvatinib plus an anti-PD-1 antibody 
with good discrimination, calibration, and clinical utility, 
independent on clinicopathologic features.

Incremental Predictive Value of Radiomic Features 
over Clinicopathologic Features
We incorporated rad-scores calculated using the ra-

diomic model into the clinicopathologic model and built a 
clinicopathologic-radiomic model with 5, 3, and 2 neurons 
in the hidden layers 1, 2, and 3, respectively. The diagram 
and formula of this model are shown in online supple-
mentary Figure S6. The AUC (95% CI) using this model 
was 0.987 (0.968–1.000) and 0.884 (0.762–1.000) in the 
training and validation cohorts, respectively, after boot-
strap resampling (n = 1,000) (Fig. 3g).
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The scores calculated using the clinicopathologic-
radiomic model were significantly associated with objec-
tive tumor response in both the training and validation co-
horts (p < 0.001 for both; Fig. 3h). The optimal cut-off for 
this model was 0.443, and accuracy, sensitivity, specificity, 
PPV, and NPV for this model are summarized in Table 3. 
Patients with a score >0.443 were predicted to have an ob-
jective response; otherwise, patients were predicted not to 
have an objective response. This cut-off threshold discrim-
inated between patients with and without an objective 
response in both the training and validation cohorts (p < 
0.001 for both, Table 4). The calibration curves showed 
good agreement between the outcomes predicted by clini-
copathologic-radiomic model and the actual clinical out-
comes (online suppl. Fig. S5). The decision curves revealed 
that this prediction model can add net benefit than assum-
ing all patients did or did not have an objective response in 
both the training and validation cohorts (Fig. 3i, j).

Compared with the clinicopathologic model, the clin-
icopathologic-radiomic model had a higher AUC in the 
training cohort (0.987 vs. 0.748, p < 0.001) and a margin-
ally higher AUC in the validation cohort (0.884 vs. 0.702, 
p = 0.074). According to NRI, the clinicopathologic-
radiomic model improved prediction performance over 
the clinicopathologic model in both the training (NRI = 
47.9%, p < 0.001) and validation cohorts (NRI = 41.5%, 
p = 0.025). These results indicated that radiomic features 
can provide incremental predictive value to clinicopatho-
logic features for prediction of objective response to len-
vatinib plus an anti-PD-1 antibody.

Radiomic Features Associated with OS and PFS
As of August 22, 2022, median follow-up was 15.2 

(IQR: 8.5–22.2) months in the training cohort and 10.0 
(IQR: 4.4–17.6) months in the validation cohort; median 
duration of treatment was 5.6 (IQR: 2.5–9.0) months in 
the training cohort and 6.0 (IQR: 2.6–14.8) months in the 
validation cohort. 81 (65.3%) of 124 patients in the train-
ing cohort and 28 (60.9%) of 46 patients in the validation 
cohort had progressive disease or died. The median OS 
was 20.1 (95% CI: 16.8–30.5) months in the training 
cohort and was not reached in the validation cohort; the 
median PFS was 10.7 (95% CI: 8.2–18.0) months and 11.4 
(95% CI: 9.2–16.0) months in the training and validation 
cohorts, respectively (online suppl. Fig. S7).

Patients with a rad-score >0.504 were associated with 
a significantly longer median OS or median PFS than 
those with a rad-score ≤0.504 both in the training cohort 
(median OS: 30.5 (95% CI: 22.2–not evaluable (NE)) 
months versus 16.8 (95% CI: 14.3–22.1) months, hazard 

ratio (HR) (95% CI): 0.377 (0.192–0.740), p = 0.003; me-
dian PFS: 28.2 (95% CI: 12.6–NE) months versus 8.1 (95% 
CI: 6.1–10.9) months, HR (95% CI): 0.368 (0.203–0.667), 
p < 0.001) and validation cohort (median OS: NE (95% CI: 
NE–NE) months versus 14.4 (95% CI: 9.7–NE) months, 
HR (95% CI): 0.066 (0.001–0.504), p = 0.008; median PFS: 
NE (95% CI: 14.3–NE) months versus 10.5 (95% CI: 7.0–
14.4) months, HR (95% CI): 0.177 (0.042–0.754), p = 
0.009; Fig. 4).

Previous studies showed that modified albumin-bil-
irubin (mALBI) grade [36, 37] and neutrophil-to-lym-
phocyte ratio (NLR) [38] were associated with OS and 
PFS in lenvatinib treatment. In the drug combination set-
ting of this study, mALBI grade was associated with OS 
in the training cohort (p = 0.018) but not in the validation 
cohort (p = 0.360); mALBI grade was not associated with 
PFS both in the training (p = 0.570) and validation (p = 
0.270) cohorts (online suppl. Fig. S8).

The AUC (95% CI) using NLR to predict objective re-
sponse was 0.514 (0.404–0.623) and 0.629 (0.400–0.826) 
in the training and validation cohorts, respectively, after 
bootstrap resampling (n = 1,000). The optimal cut-off 
threshold of NLR was 5.861 by Youden index using ROC. 
NLR was not associated with OS or PFS both in the train-
ing and validation cohorts (online suppl. Fig. S9). When 
using 2.548 (the median value of NLR) as the optimal cut-
off threshold, NLR was not associated with OS in the 
training cohort (p = 0.095) but in the validation cohort 
(p = 0.014); NLR was not associated with PFS both in the 
training (p = 0.440) and validation (p = 0.350) cohorts 
(online suppl. Fig. S10). When using 3 [38] as the optimal 
cut-off threshold, NLR was associated with OS both in the 
training (HR (95% CI): 0.568 (0.347–0.929), p = 0.022) 
and validation (HR (95% CI): 0.291 (0.102–0.824), p = 
0.014) cohorts, but not associated with PFS both in the 
training (p = 0.470) and validation (p = 0.380) cohorts 
(online suppl. Fig. S11).

Discussion

In this study, we developed a radiomic model based on 
pretreatment MRI to predict objective responses to com-
bination therapy with lenvatinib plus an anti-PD-1 anti-
body in patients with unresectable or advanced HCC, 
which was validated in a multicenter dataset, and indi-
cated that radiomic features were associated with OS and 
PFS after initiating this combination therapy. To the best 
of our knowledge, this is the first study to report the ra-
diomic analysis based on pretreatment contrast-enhanced 
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MRI to predict response to combination therapy with 
lenvatinib plus an anti-PD-1 antibody in advanced HCC 
patients.

Tumor radiomic features were associated with response 
to anti-PD-1 antibodies or lenvatinib monotherapy plus 
TACE in advanced HCC in two recent studies [39, 40], 
providing important data to support the generation of the 
hypothesis of the present study. The first study proposed a 
radiomic model based on contrast-enhanced CT with a rel-
atively small sample size (N = 58) from one center to pre-
dict response to anti-PD-1 antibodies monotherapy [39]. 
MRI has several advantages over CT; it can provide supe-
rior contrast resolution, does not rely on ionizing radiation 
[41], and remains the preferred modality to assess response 
to systemic therapy in HCC [28]. In the second study, 
tumor radiomic features extracted from pretreatment MRI 
predicted disease progression after lenvatinib monothera-
py plus TACE [40]. It was also a single-center study with a 
small sample size (N = 61); the AUC was 0.71, which had a 
modest discrimination power.

All (17/17) the final radiomic features selected to pre-
dict objective response were from wavelet and Laplacian 
of Gaussian filtered images instead of original images, in-
dicating that radiomics can be used to identify details and 
extract features on MRI that cannot be captured or quan-
tified by the naked eye, and thus accurately reflect the bi-
ology of HCC. These high-dimensional features cannot 
be detected in original images or by the naked eye, but 
hold more detailed information about the tumors and 
more sensitively predicted treatment response than clini-
copathologic features [24]. For example, the “3D_glszm_
GrayLevelVariance” feature represents the discrete degree 
of gray level in tumor regions, which was associated with 
tumor heterogeneity (e.g., tumor cellularity, micro-necro-
sis, and inflammation). Previous studies have shown that 
tumor heterogeneity is related to tumor response, which 
is consistent with the results of this study [42, 43]. Fur-
thermore, the “firstorder_Kurtosis” feature was associ-
ated the degree of tumor enhancement in the arterial 
phase, which reflects tumor vasculature. A previous study 
has shown that the enhancement degree of tumor in arte-
rial phase before immunotherapy is related to its progres-
sion [44]. The remaining texture features may reflect the 
immune microenvironment of tumors, but need to be 
further studied with genomic or histological correlative 
data [31].

Consistent with the present study, the model based on 
clinicopathologic features alone did not satisfactorily pre-
dict objective response; however, the radiomic model ro-
bustly predicted objective response. Furthermore, incor-

porating radiomic features into the clinicopathologic 
model provided incremental predictive value for ob-
jective response, suggesting that clinicopathologic fea-
tures and radiomic features may reflect different charac-
teristics of tumors related to the response to combination 
therapy. The clinicopathologic-radiomic model had a 
marginally higher AUC than the clinicopathologic model 
(0.884 vs. 0.702, p = 0.074) in the validation cohort, which 
may be attributed to an insufficient sample size. However, 
using NRI, we confirmed the incremental predictive val-
ue of radiomic features compared with clinicopathologic 
features in predicting response. Tumor radiomic features 
may capture tumor biology and heterogeneity; however, 
the objective response is not only associated with tumor 
biology but also related to tumor burden and condition 
of patients. For example, according to the updated IM-
brave150 data, patients with BCLC stage B disease had a 
higher objective response than all patients (43.0% vs. 
29.8%) [45, 46]. Therefore, the clinicopathologic-radiomic 
model provided a modestly higher discriminative ability to 
predict the objective response than the radiomic model in 
each cohort.

As the prognosis of HCC patients depends on tu-
mor burden and hepatic reserve function, previous 
studies demonstrated that the mALBI grade was a nega-
tive prognostic factor for OS in lenvatinib treatment 
against advanced HCC [36, 37]. However, mALBI grade 
was only associated with OS in the training cohort, but 
not in validation cohort, which might be attributed to 
limited patient number and immature survival data in 
the validation cohort, or different treatment regimen. An-
other study first indicated NLR <3 was a favorable factor 
for OS in HCC patients treated with lenvatinib [38]. In 
this study, NLR <3 was demonstrated to be associated 
with OS both in the training and validation cohorts for 
lenvatinib plus an anti-PD-1 antibody, but not associated 
with PFS.

This study has several limitations. First, it had a lim-
ited sample size with potential selection bias. The sample 
size requirement for developing the radiomic model in 
the training cohort was met, but more data are required 
to optimize and improve models. Second, the majority 
of the study population had hepatitis B virus-related 
HCC. As heterogeneity exists in patients with HCC of 
different etiologies [47], the proposed radiomic model 
may not be applied to HCC patients with nonalcoholic 
fatty liver disease or infected with hepatitis C virus. Ad-
ditional studies are required to compare the differences in 
radiomic features among patients with HCC of different 
etiologies. Third, due to the retrospective nature of this 
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study, the MR image acquisition parameters were not 
standardized across different hospitals, although this 
study demonstrated that MR image preprocessing could 
overcome this influence; furthermore, tumor tissues 
were not prospectively collected to explore the biologi-
cal meaning of radiomic features. Fourth, manual seg-
mentation of tumors is relatively subjective, especially for 
tumors with blurry edges, but ICC was used to reduce 
subjectivity and ensure robustness and reproducibility 
as previously reported [31]. Automatic or semiautomat-
ic segmentation tools may reduce the interobserver ICC. 
Furthermore, only radiomic features from arterial and 
delayed phases were analyzed. Although characteristics 
of HCC on imaging are mainly reflected on these two 
phases, radiomic features from other sequences in MRI 
should be analyzed in the future. Fifth, different anti-
PD-1 antibodies were used across the study population, 
which could increase internal variability with a limited 
sample size; however, lenvatinib in combination with dif-
ferent anti-PD-1 antibodies were reported to have similar 
ORRs [6] and could reflect real-world practice.

In conclusion, this study demonstrated that tumor ra-
diomic features extracted from pretreatment MRI can be 
used to predict objective response to combination thera-
py with lenvatinib plus an anti-PD-1 antibody in patients 
with unresectable or advanced HCC, and provide incre-
mental predictive value over clinicopathologic features, 
and are associated with OS and PFS after initiation of this 
combination regimen. A prospective study with a unified 
protocol to investigate the performance of radiomic and 
clinicopathologic-radiomic models and to explore their 
usage in patients receiving existing first-line systemic treat-
ments for advanced HCC is warranted.
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