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Pilot Study Using Machine Learning 
to Identify Immune Profiles for the 
Prediction of Early Virological Relapse 
After Stopping Nucleos(t)ide Analogues in 
HBeAg-Negative CHB
Maximilian Wübbolding,1-3* Juan Carlos Lopez Alfonso,2,4* Chun-Yen Lin ,5,6 Sebastian Binder,2,4 Christine Falk,7  
Jennifer Debarry ,2,8 Paul Gineste,9 Anke R.M. Kraft ,1-3 Rong-Nan Chien,5,6,10 Benjamin Maasoumy ,1 Heiner Wedemeyer,1,3 
Wen-Juei Jeng ,5,6** Michael Meyer Hermann ,2,4,11** Markus Cornberg ,1-3,8** and Christoph Höner zu Siederdissen1**

Treatment with nucleos(t)ide analogues (NAs) may be stopped after 1-3  years of hepatitis B virus DNA suppression 
in hepatitis B e antigen (HBeAg)-negative patients according to Asian Pacific Association for the Study of Liver and 
European Association for the Study of Liver guidelines. However, virological relapse (VR) occurs in most patients. We 
aimed to analyze soluble immune markers (SIMs) and use machine learning to identify SIM combinations as predictor 
for early VR after NA discontinuation. A validation cohort was used to verify the predictive power of the SIM com-
bination. In a post hoc analysis of a prospective, multicenter therapeutic vaccination trial (ABX-203, NCT02249988), 
hepatitis B surface antigen, hepatitis B core antigen, and 47 SIMs were repeatedly determined before NA was stopped. 
Forty-three HBeAg-negative patients were included. To detect the highest predictive constellation of host and viral 
markers, a supervised machine learning approach was used. Data were validated in a different cohort of 49 patients 
treated with entecavir. VR (hepatitis B virus DNA ≥ 2,000  IU/mL) occurred in 27 patients. The predictive value for 
VR of single SIMs at the time of NA stop was best for interleukin (IL)-2, IL-17, and regulated on activation, normal 
T cell expressed and secreted (RANTES/CCL5) with a maximum area under the curve of 0.65. Hepatitis B core an-
tigen had a higher predictive power than hepatitis B surface antigen but lower than the SIMs. A supervised machine-
learning algorithm allowed a remarkable improvement of early relapse prediction in patients treated with entecavir. The 
combination of IL-2, monokine induced by interferon γ (MIG)/chemokine (C-C motif ) ligand 9 (CCL9), RANTES/
CCL5, stem cell factor (SCF), and TNF-related apoptosis-inducing ligand (TRAIL) was reliable in predicting VR 
(0.89; 95% confidence interval: 0.5-1.0) and showed viable results in the validation cohort (0.63; 0.1-0.99). Host im-
mune markers such as SIMs appear to be underestimated in guiding treatment cessation in HBeAg-negative patients. 
Machine learning can help find predictive SIM patterns that allow a precise identification of patients particularly suit-
able for NA cessation. (Hepatology Communications 2021;5:97-111).

Chronic hepatitis B is a major challenging 
health problem, with 250 million chronically 
infected patients worldwide.(1) Treatment 

options are either pegylated interferon alfa (PEG-
IFN) or nucleoside or nucleotide analogues (NAs).(2) 

PEG-IFN has the advantage of finite treatment dura-
tion, but it has to be administered subcutaneously and 
side effects restrict its use.(2) Oral NAs are safe and 
highly effective in terms of hepatitis B virus (HBV) 
DNA suppression, but treatment duration is not finite. 
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In hepatitis B e antigen (HBeAg)–negative patients, 
usually treatment should only be stopped after hep-
atitis B surface antigen (HBsAg) clearance, which 
is a rare event in this setting.(3,4) Based on model-
ing studies, HBeAg-negative patients would need 
to be treated for a median duration of 39-52  years 
until HBsAg loss.(5,6) However, based on experience 
primarily from Asia, some guidelines recommend 
that NA therapy can be stopped in patients with-
out cirrhosis after 1-3  years of successful therapy.(2,7) 
Nevertheless, HBV relapse is still frequent, and only 
30% remain in virological remission in the long-term 

follow-up after cessation of therapy.(8) Some patients 
may even experience severe alanine aminotransferase 
(ALT) flares associated with increased risk for liver 
decompensation.(8,9) Thus, frequent monitoring after 
cessation of NA therapy is required.(2) So far, there 
are no valid biomarkers to predict the outcome after 
stopping NA treatment in HBeAg-negative patients. 
Several studies have shown that low HBsAg level at 
the time before stopping NA therapy is associated 
with virological remission subsequently having less 
clinical relapse(10-13) but the predictive value is still 
unsatisfactory. Other virologic markers that may help 
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to predict virological relapse (VR) are HBV RNA 
or hepatitis B core antigen (HBcAg), which may be 
better surrogates of transcriptional covalently closed 
circular DNA.(14,15) A recent study has shown that 
detectable HBV RNA and HBcAg were associated 
with severe ALT flares after NA withdrawal.(16)

So far, no host marker has been considered as a 
biomarker to predict the outcome after stopping NA 
therapy. Multi-omics technologies have advanced and 
become affordable.(17) Because virological remission after 
stopping NA therapy is most likely controlled by host 
immune responses, host immune marker measured in 
the plasma or serum might be a promising biomarker in 
this setting. However, it is unlikely that just one param-
eter will serve as a predictive biomarker, so a multi- 
omics approach might be needed to identify a valuable 
marker panel. Artificial intelligence technologies such as 
machine learning (ML) may be helpful in identifying 
the best combination of markers,(18) and were used here. 
In addition, a validation cohort was implemented to val-
idate the results in an independent cohort.

Thus, the aim of our study was to analyze 47 sol-
uble immune markers (SIMs) at three different time 
points during the NA treatment, and use ML to 
identify SIM combinations as predictors for early VR, 
defined as HBV DNA ≥ 2,000 IU/mL until week 
24 after NA discontinuation in HBeAg-negative 
patients, and confirm these results in the validation 
cohort. We also compared the performance of SIMs 
with the viral markers HBsAg and HBcAg.

Materials and Methods
COHORT

The derivation cohort was selected from the ABX 
203-002 study. The ABX 203-002 trial was a phase 
2b-3, open-label, randomized, comparative study that 
assessed the efficacy of the ABX 203 vaccine to main-
tain control of HBV infection after cessation of anti-
viral treatment with NAs in adult HBeAg-negative 
patients with chronic hepatitis B in the Asia Pacific 
region. The design, inclusion, and exclusion criteria 
were as described previously.(19) For the present anal-
ysis, we included only patients who were HBeAg-
negative before the start of NA treatment. Subjects in 
the study also had to have HBV DNA < 40 IU/mL  
as well as ALT and aspartate transaminase levels less 

than or equal to the upper limit of normal each, at 
least 1 year before screening. As additional serum 
samples were needed for the measurement of SIMs, 
only patients who participated in the additional serum 
sampling with sufficient clinical data and serum sam-
ples at all three time points during therapy were 
included (weeks 0, 12, and 24).

To eliminate possible confounders for SIM mea-
surement, we excluded patients who received the 
investigational vaccine. A detailed description is 
shown in Fig. 1A.

The validation cohort was derived from the 
Chang Gung Memorial Hospital (CGMH) off-Nuc 
cohort.(20) Briefly, mono-infected, HBeAg-negative 
patients had stopped NA therapy after demonstration 
of undetectable HBV DNA on three occasions, each 
more than 6 months apart according to Asian Pacific 
Association for the Study of Liver (APASL) guide-
lines.(20,21) After end of therapy, patients were moni-
tored every 1-1.5 months in the first 3 months, then 
every 3  months, along with HBV-DNA assay for a 
total of 1 year and every 3-6 months thereafter (more 
frequently in cases of virological or clinical relapse).(20)

The procedures of this study were in accordance 
with the Declaration of Helsinki and approved by 
the ethics committee (ClinicalTrials.gov registration 
No. NCT02249988).(20) All patients gave written, 
informed consent to participate in this study.(20)

STRUCTURE OF THE STUDY AND 
DEFINITIONS

All patients received at least 2  years of NA treat-
ment before enrollment into the study. Subjects then 
received NA therapy for another 24 weeks after screen-
ing, and then stopped treatment (Fig. 1B). Patients 
were followed up every 2 weeks for the first 8 weeks 
after cessation of treatment, and from there on every 
4 weeks. The primary endpoint of the study was the 
percentage of subjects with HBV DNA < 40 IU/mL 
at week 24 after NA discontinuation. Serum samples 
were taken during therapy at weeks −24, −12, and 0 
(end of therapy), after therapy was stopped (weeks 12 
and 24), and at the end of the study. The end-of-study 
time point was variable: For subjects who relapsed, it  
was defined as an increase in HBV DNA > 2,000 IU/mL  
[European Association for the Study of Liver (EASL), 
American Association for the Study of Liver Diseases 
(AASLD), APASL]); for those who did not relapse, it 
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was defined as the visit at week 24 after stopping the 
NA therapy.

LABORATORY TESTING
Clinical laboratory tests were performed according 

to the Good Clinical Laboratory Practice standards. 
In the derivation and validation cohorts, the Roche 
Cobas AmpliPrep/Cobas TaqMan HBV Test (version 
2.0; Roche Diagnostics, Basel, Switzerland) with a 
lower limit of < 20 IU/mL was used for HBV-DNA 
quantification. Quantitative levels of HBcAg were 
determined using the Lumipulse G HBcAg assay 
(Fujirebio Europe, Belgium; Fujirebio Japan). Samples 
were handled according to the manufacturer’s instruc-
tions. The assay’s validated measurement range is 
from 3 log to 7 log U/mL. However, if HBcAg levels 
are lower than 3 log U/mL, the machine indicates it 
down to 2  log U/mL in HBcAg-positive samples.(22) 
In the cases of undetectable HBcAg levels (below 
2 log U/mL), it is not possible to distinguish between 
HBcAg-negative samples and samples that are detect-
able but not quantifiable.(23) If HBcAg levels were 
below 2 log U/mL, they were calculated as 2 log U/mL  

for statistical analysis.(23) For measuring of SIMs, we 
used Bio-Plex Pro Human Cytokine, Chemokine, 
and Growth Factor Assay (Bio-Rad Laboratories, 
Hercules, CA), which includes the following 48 SIMs: 
CTACK/CCL27 (cutaneous T-cell-attracting chemo-
kine), eotaxin/CCL11 (eosinophil chemotactic pro-
tein), FGF-β (basic fibroblast growth factor), G-CSF 
(granulocyte colony-stimulating factor), GM-CSF 
(granulocyte-macrophage colony-stimulating factor), 
GRO-α/CXCL1 (growth-regulated protein alpha), 
HGF/scatter factor (hepatocyte growth factor), IFN 
(interferon)-α2, IFN-µ, interleukin (IL)-1α, IL-1β, 
IL-1ra (receptor antagonist), IL-2, IL-2Rα (recep-
tor alpha chain), IL-3, IL-4, IL-5, IL-6, IL-7, IL-8/
CXCL8, IL-9, IL-10, IL-12 (p40), IL-12 (p70), 
IL-13, IL-15, IL-16, IL-17A, IL-18, IP-10/CXCL10 
(interferon-γ-inducible protein 10), LIF (leukemia 
inhibitory factor), MCP (monocyte chemotactic pro-
tein)-1/CCL2, MCP-3/CCL7, M-CSF (macrophage 
colony-stimulating factor), MIF (macrophage migra-
tion inhibitory factor), MIG/CXCL9 (monokine 
induced by interferon γ), MIP (macrophage inflamma-
tory protein)-1α/CCL3, MIP-1β/CCL4, PDGF-BB 
(platelet-derived growth factor BB), RANTES/CCL5 

FIG. 1. (A) Selection of the study population. Patients were included from the ABX 203-002 study. The ABX 203-002 trial was a phase 
2b-3, open-label, randomized, comparative study to assess the efficacy of the ABX 203 vaccine to maintain control of hepatitis B disease 
after cessation of antiviral treatment with NA in adult HBeAg-negative patients with chronic hepatitis B in the Asia Pacific region.  
(B) Study structure: All patients received at least 2 years of NA treatment before enrollment into the study. In the study phase, patients 
received another 24 weeks of NA treatment and then discontinued treatment at week 0. Blood samples were drawn at weeks −24, −12, and 
week 0. Patients were followed for 24 weeks. The primary endpoint was percentage of subjects with HBV DNA < 40 IU/mL at week 24 
after NA discontinuation.
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(regulated on activation, normal T cell expressed and 
secreted), SCF (stem cell factor), SCGF-β (stem cell 
growth factor-beta), SDF-1α (stromal cell-derived 
factor 1), TNF (tumor necrosis factor)-α, TNF-β/lym-
photoxinα, TRAIL (TNF-related apoptosis-inducing 
ligand), VEGF (vascular endothelial growth factor), 
and β-NGF (beta–nerve growth factor) (Supporting 
Table S1). Measurement was performed according 
to manufacturer’s instructions. To prevent interassay 
variation, all samples of each cohort were measured 
in one run. The derivation and validation cohort were 
measured at different time points and laboratories. 
However, they used the same immunoassays and labo-
ratory equipment. Detectable SIMs at the lower limit 
of quantification were used according to the method 
implemented by Beal: The lowest measurable value of 
the particular analyte given by the instruction man-
ual was divided by two.(24) VEGF had to be excluded 
from further analysis due to agglutination error in the 
validation cohort.

STATISTICAL ANALYSIS

Correlations Among Cytokines, Viral 
Markers, and Early Relapse

Pearson correlation coefficients were obtained 
with the function pearsonr() in the scipy.stats mod-
ule (https://docs.scipy.org/doc/scipy/​refer​ence/stats.
html) and then used to assess correlations among 
cytokines, viral markers (HBsAg and HBcAg), and 
the target variable of early VR and nonrelapse at 
each time point.

Machine Learning Approach
A supervised ML approach for classification on 

labeled data of early VR versus nonrelapse after ther-
apy cessation was implemented using the scikit-learn 
0.21.2 package.(25) A cohort of 43 HBeAg-negative 
patients with chronic hepatitis B (27 early relapsers 
and 16 nonrelapsers) and measurements of 47 SIMs 
and two viral markers (HBsAg and HBcAg) at differ-
ent time points before therapy cessation (weeks −24, 
−12, and 0) were included. Input feature data (i.e., 
SIMs and viral markers) for ML algorithms were 
standardized by removing their mean and scaling to 
unit variances while using pipelines of the sklearn tool 
to avoid data leakage during cross-validation. Early 

VR was used as the binary target variable for the 
supervised ML classifiers.

Feature selection was performed to identify the most 
predictive subset of features (i.e., SIMs). This process 
consisted of the following main steps: (1) Find dif-
ferent subsets of k-best features (with k = 15) at week 
0 as outputs of different feature selection approaches; 
(2) select the most predictive feature combinations 
from each feature subset in step 1; and (3) select from 
all resulting feature subsets in step 2 the most predic-
tive (on average) when individually evaluated on the 
three time points (weeks −24, −12, and 0).

In the first step, three independent alternative cate-
gories of algorithms(26) were implemented:

•	 Filter methods assign a score to each feature and 
allow to select the k-best feature subset based on 
a given metric. Herein, we scored features by their 
(i) variance, (ii) Pearson correlation coefficient with 
the target variable, (iii) chi-squared tests, and (iv) 
the analysis of variance F-tests. The k top-ranked  
features sorted in descending order according to 
their scores were obtained for each metric. These 
methods were implemented using the SelectKBest 
function in sklearn, which removes all but the 
k-highest scoring features for each metric.

•	 The Wrapper method considers feature selection as a 
search problem, in which a predictive model is used 
to rank features by recursive feature elimination and 
cross-validation using the RFECV function in sklearn. 
This assigns a score to each feature based on model 
accuracy. The implemented wrapper method used lo-
gistic regression (LGR), C-support vector classifier 
(SVC), and the SGDClassifier as predictive models, 
which implement logistic regression with elastic net 
penalty on the loss function. The k top-ranked fea-
tures were obtained for each predictive model.

•	 Embedded methods perform feature selection during 
the process of training predictive models. We imple-
mented this approach through the SelectFromModel 
function in sklearn, which is a meta-transformer 
for selecting features based on importance weights. 
LGR, SVC, and SGDClassifier were considered 
predictive models for SelectFromModel. Features 
were ranked based on their importance weights, and 
the k-top features with the highest weights were 
obtained for each model.

All feature combinations verified in both the 
wrapper and embedded approaches were equally 

https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
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evaluated using the default parameter sets of pre-
dictive models (i.e., without hyperparameter 
optimization).

In the second step, additional wrapper methods 
were applied to each set of k top-ranked features from 
the filter, wrapper, and embedded methods in step 1. 
We implemented forward and backward stepwise fea-
ture-selection approaches(27) coupled with the classi-
fication models LGR, SVC, and SGDClassifier with 
their default parameter sets to identify smaller feature 
subsets of more predictive value.

In step 3, all resulting feature subsets in step 2 were 
then individually evaluated on each time point and for 
each model with cross-validation and hyperparameter 
optimization. The feature subset with most predictive 
value (on average) of the three time points (i.e., weeks 
0, −12, and −24) was selected.

To evaluate the quality of the identified feature 
subset, hyperparameter optimization with a 5-fold 
cross-validation repeated 20 times was individually 
conducted on different classification models. Among 
the five classifiers (LGR, SVC, SGDClassifier, k-Near-
est Neighbors, and Random Forest(25,27)), SVC showed 
the best cross-validation accuracy at all time points 
and was selected as the reference predictive model. 
Hyperparameters of the SVC model were optimized 
on each individual time point with cross-validation, 
and the resulting accuracy was reported. In this study, 
we always considered 5-fold cross-validation repeated 
20 times, and hyperparameter optimization was per-
formed using the GridSearchCV function in sklearn, 
which is the most widely used exhaustive grid search 
algorithm with cross-validation.(25) To report the pre-
dictive performance of the classification procedure, 
receiver operating characteristic (ROC) curves that 
plot the trade-offs between sensitivity and specificity 
were computed by means of the function roc_curve() 
of the sklearn.metrics module. The mean area under 
the curve (AUC), SDs, and 95% confidence intervals 
(CIs) resulting from cross-validation were reported.

Results
CLINICAL PARAMETERS OF THE 
DERIVATION COHORT

All patients were HBeAg-negative before the 
start of NA therapy. Twenty-eight patients were 

treated with entecavir (ETV; 65%) and 15 patients 
with tenofovir (TDF; 35%) (Table 1). Of the 43 
patients, 27 experienced early VR (HBV DNA > 
2,000 IU/mL) until week 24 after stopping therapy, 
whereas 16 patients had no relapse (Table 1). The 
median relapse time point was 20 weeks after cessa-
tion of NA treatment. No significant differences in 
terms of clinical and virological parameters at base-
line (week 0) were noticed between patients with 
and without early relapse, except for type of antiviral 
therapy (P = 0.023) (Table 1). The two viral markers 
HBsAg and HBcAg were not significantly different 
between the two groups when NA treatment was 
stopped (Table 1).

SINGLE SIMs AND PREDICTION 
OF EARLY VR

Forty-seven different SIMs were analyzed. Figure 2 
shows a heat map with the different SIM expression 
levels of all single patients (relapsers and nonrelapsers) 
in comparison to the median of the entire cohort. For 
some SIMs, relapsers appear to show higher expres-
sion levels, whereas for others, the nonrelapsers have 
higher values (Fig. 2). To get the exact value of SIM 
that was higher in one of the two groups, we calcu-
lated the ratio of the medians between patients with 
and without early relapse (Fig. 3A). Of the 47 SIMs 
included in the analysis, 20 yielded higher medians 
in the nonrelapse group at week 0, 10 yielded higher 
medians in the relapse group, and the remaining 17 
showed equal medians between the two groups (Fig. 
3A). In the next step, we assessed whether SIM lev-
els could predict VR. The SIMs that were most sig-
nificantly linked with early VR at the time point of 
therapy withdrawal were IL-2, IL-6, MIP-1α/CCL3, 
RANTES/CCL5, and IL-7 (P values: 0.002, 0.021, 
0.027, 0.039, and 0.042, respectively), with higher 
values in the relapse group for RANTES/CCL5 and 
lower values for IL-2, IL-6, IL-7, and MIP-1α/CCL3. 
IL-1α, IL-1β, MIG/CXCL9, IP-10/CXCL10, and 
IL-17A showed association with early VR to a lower 
degree (P values: 0.063, 0.063, 0.063, 0.069, and 0.088, 
respectively). The results for all cytokines are given in 
Supporting Table S2A-C for weeks 0, −12, and −24.

Next, we examined the predictive values for sin-
gle SIMs and viral markers using ROC analysis. 
All markers showed an AUC ≤ 0.67 at any time 
point (Fig. 3B). The highest AUC values at NA 
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stop (week 0) were achieved by IL-2, RANTES/
CCL5, IL-17A, IP-10/CXCL10, and IL-6 (mean 
AUC, 95% CI: 0.65, 0.01-0.99; 0.65, 0.12-0.93; 
0.63, 0.07-0.99; 0.60, 0.14-0.99; and 0.59, 0.5-0.83; 
respectively).

The viral markers HBsAg and HBcAg showed 
lower AUC values. The ROC analysis for HBsAg at 
weeks 0, −12, and −24 revealed lower results across 
all time points (0.49, 0.2; 0.52, 0.21; and 0.51, 0.23; 
respectively). HBcAg showed an AUC value of [0.56, 
0.2], only measured at week 0. All values for all time 
points are depicted in Fig. 3B.

DYNAMICS OF THE SIMs OVER 
TIME

To assess the dynamic changes in the cytokine 
levels over time, a heat map was created (Fig. 4 and 
Supporting Fig. S1). Over the total cohort, IFN-γ 
and IL-13 showed a > 1.4-fold change of median 
cytokine levels (−1.46 and 1.46, respectively). 
Within the relapse group, IL-1Ra, IFN-α2, IFN-
γ, and IL-13 changed > 1.4-fold (5.93, 4.36, −1.58, 
and 1.48, respectively), whereas in the nonrelapse 
group, > 1.4-fold changes were observed for LIF 
(2.09) and IL-8 (1.64). All SIMs previously identi-
fied as possible predictors of early VR with an AUC 

of > 0.6 had fold changes of less than 1.2 in the 
entire cohort over the three time points, except for 
PDGF-BB (1.24).

COMBINATION OF SIM AND 
PREDICTION OF EARLY VR

Because single SIM measurement showed over-
all low AUC values of < 0.7, we analyzed a combi-
nation of cytokines to improve prediction of early 
relapse, applying a ML algorithm to identify the 
SIM combination with the highest predictive value. 
Due to the very uneven distribution of relapse in 
the TDF-treated group (only 2 nonrelapsers), no 
sufficient data were available in these patients. Thus, 
we focused on patients treated with ETV in further 
analyses, to find a solid and reliable biomarker to 
predict early VR.

First, we assessed the correlation among the single 
SIMs and their correlation with early relapse over the 
different time points (Fig. 5 and Supporting Fig. S2). 
Overall, the correlation of the specific SIMs with early 
VRR varied between r = 0.01 and r = 0.39. Almost all 
SIMs correlated strongly with at least one additional 
SIM at all three time points, and therefore delivered 
similar information regarding the outcome of early 
VR. This result suggests that subsets of SIMs contain 

TABLE 1. BASELINE CHARACTERISTICS OF UNVACCINATED HBeAg-NEGATIVE PATIENTS (n = 43) AT THE 
TIME POINT OF NA CESSATION (WEEK 0)

Parameters Week 0 All Patients
Relapsers  

(Until Week 24)
Nonrelapsers  

(Until Week 24)
P Value  

(Relapsers vs. Nonrelapsers)

No. of patients 43 27 16

Age (years) 53 (20-65) 51 (26-63) 56 (20-65) 0.371

Sex 1

Female 14 (33%) 9 (64%) 5 (36%)

Male 29 (67%) 18 (62%) 11 (38%)

Antiviral therapy 0.023

Entecavir 28 (65%) 14 (50%) 14 (50%)

Tenofovir 15 (35%) 13 (87%) 2 (13%)

Albumin (g/dL) 46 (38-50) 47 (42-50) 46 (38-50) 0.215

ALT (U/L) 20 (12-44) 20 (12-44) 23 (13-38) 0.119

Bilirubin (mg/dL) 8 (0-31) 8 (0-21) 9 (3-31) 0.679

HBcAg log (U/mL) 3.0 (2.0-5,4) 3.1 (2.0-5.4) 2.9 (2.0-4.4) 0.179

HBsAg (U/L) 987 (4-19,382) 847 (4-19,382) 1,125 (6-3,637) 0.839

Hemoglobin (g/L) 148 (111-167) 148 (111-164) 151 (114-167) 0.166

Platelets (/nL) 197 (105-385) 187 (117-317) 211 (105-385) 0.111

Note: Continuous data are presented as the median plus range. VR is defined as HBV DNA increase ≥ 2,000 IU/mL within 24 weeks 
after NA cessations.
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redundant information on the relapse probability, thus 
guiding us to reduce the dimensionality of the data 
set. The correlations for the time point of NA dis-
continuation (week 0) are shown in Fig. 5, while the 
correlations for weeks −12 and −24 are depicted in 
Supporting Fig. S2.

A supervised ML approach was implemented to 
figure out a combination of SIMs that gives us a high 
predictability for early VR at all three time points 
in the derivation cohort. This involves a system-
atic reduction of the SIM space to its most relevant 

representatives, and connecting those to the smallest 
possible subset of SIMs with high predictive value 
for the three time points of the patient cohort. The 
feature combination with the highest predictive value 
at the time point of NA discontinuation was IL-2, 
MIG/CXCL9, RANTES/CCL5, SCF, and TRAIL.

At the time point of NA therapy withdrawal (week 
0), this constellation of SIMs reached an AUC value 
of 0.89, 0.5-0.99 (Fig. 6A). Its predictability remained 
high at weeks −12 and −24 (0.76, 0.34-0.99; and 0.78, 
0.1-0.99; respectively) (Fig. 6A).

FIG. 2. Heat map distribution of the SIM. The heat map shows the expression levels of the 47 SIM for relapsers (n = 16) and nonrelapsers 
(n = 27) at time point of NA discontinuation (week 0) normalized by setting median = 1.
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Of note, the constellation of SIMs also showed good 
results at all three time points in the entire cohort, 
including TDF-treated patients (Supporting Fig. S3).

As previous studies have suggested a possible pre-
dictive role for HBsAg and HBcAg, we included 
these parameters as viral markers in our analysis. 
The predictive power of HBsAg, IL-2, RANTES/
CCL5, SCF, and TRAIL at the time of cessation of 
NA treatment (week 0) was 0.76, 0.1-0.99, which is 
lower compared with the results with the five SIMs 
alone (Fig. 6C). However looking at week −12 and 
week −24 SIMs together with HBsAg had compa-
rable AUC levels with the five SIMs alone (0.73, 
0.17-0.99; and 0.81, 0.34-0.99; respectively) (Fig. 
6C). A combination of HBcAg, IL-2, RANTES/
CCL5, SCF, and TRAIL reached an AUC of 0.72, 
0.1-0.99 at NA cessation (Fig. 6E). We conclude that 
the inclusion of viral markers into the set of predictive 
cytokine biomarkers does not provide any increase in 
the predictive power.

VALIDATION OF SIM 
COMBINATION IN AN 
INDEPENDENT COHORT

Next, we validated the combination of SIMs in an 
independent cohort of HBeAg-negative patients with 
chronic hepatitis B treated with ETV before treat-
ment discontinuation (validation cohort). The cohort 
consisted of 49 patients (details are found in Table 2). 
The cohorts were different for the frequency of relapse 
within 24 weeks, gender distribution, and HBcAg lev-
els (P = 0.038, P = 0.036, and P = 0.015, respectively), 
although HBcAg was low in both cohorts and at the 
lower limit of quantification (2.8 and 3.1 log U/mL) 
(Table 2). No significant differences in terms of age, 
HBsAg levels, ALT, and platelets were observed at the 
time point of treatment discontinuation (Table 2).

The five selected SIMs (IL-2, MIG/CXCL9, 
RANTES/CCL5, SCF, and TRAIL) reached an 
AUC of 0.63, 0.1-0.99 in the validation cohort (Fig. 

FIG. 3. (A) Ratio (relapser/nonrelapser) of medians for respective SIM and viral marker at week 0 (red), week −12 (green), and week −24 
(blue). The black line in the middle of each figure represents the value = 1 in which both groups have the exact same median. If the bar 
is higher than 1, relapsers have higher values; if the value is lower than 1, nonrelapsers have higher values. (B) AUC values (± SD) for the 
prediction of VR (HBV DNA > 2,000 IU/mL) for respective SIM and viral marker at week 0 (red), week −12 (green), and week −24 (blue).
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6B). Adding the viral parameter HBsAg to the four 
cytokines (IL-2, RANTES/CCL5, SCF, and TRAIL), 
the predictive power was 0.59, 0.23-0.89 (Fig. 6D). 
Adding HBcAg to the four SIMs (IL-2, RANTES/
CCL5, SCF, and TRAIL), the AUC was 0.67, 0.42-
0.85 (Fig. 6F).

As HBsAg and HBcAg are currently the best eval-
uated viral markers to predict virological relapse, we 
tested their predictive power in the ETV group of the 
derivation cohort as well as in the validation cohort, 
to compare them with the SIMs. At the time point of 

NA discontinuation, the AUC values for HBsAg and 
HBcAg were 0.56, 0.0-1.0 (validation cohort); 0.57, 
0.2-0.8 (derivation cohort) and 0.59, 0.0-0.8 (valida-
tion cohort); 0.56, 0.0-0.9 (derivation cohort); respec-
tively (Supporting Fig. S4).

Discussion
Stopping NA therapy in HBeAg-negative individu-

als remains a controversial topic. Although the AASLD 

FIG. 4. Heat map showing the fold change of medians for 47 soluble immune markers and HBsAg before NA discontinuation for all 
patients (A), patients with VR (HBV DNA > 2,000 IU/mL) (B), and patients without VR within 24 weeks of follow-up (C). The time 
point of NA cessation (week 0) was set as standard.
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guideline does not recommend stopping NA therapy 
before HBsAg loss,(28) EASL as well as APASL guide-
lines consider stopping NA therapy in selected HBeAg-
negative patients if a certain duration of consolidation 
therapy without detectable levels of HBV DNA was 
achieved (3 and 1-2 years, respectively).(2,7) Noteworthy, 
a reliable biomarker to predict VR is not yet established. 
While most studies have focused on viral parame-
ters,(10-13,16,29,30) we investigated SIMs such as cytokines 
as host parameters, to find a reliable predictor for early 
VR, defined as HBV DNA > 2,000 IU/mL until week 
24 after cessation of NA therapy. Although the overall 
number of patients is small, to our knowledge this is the 
largest cohort analyzing 47 SIMs at several time points 
before stopping NA therapy, thus providing in-depth 
insight into the cytokine milieu in this setting.

We show that (1) the cytokine profile is signifi-
cantly different between patients with and without 

subsequent early relapse; (2) the performance of sin-
gle SIMs for the prediction of early virological relapse 
is poor, but (3) a combination of five SIMs identified 
by ML is predictive for early VR; and (4) the identi-
fied SIM combination was tested in an independent 
cohort.

VR after stopping NA therapy occurs in most 
patients.(8) In our study, 63% experienced an early 
VR, defined as HBV DNA > 2,000  IU/mL until 
week 24 after cessation of treatment. Those patients 
who did not experience VR may control HBV DNA 
by immune responses. As shown by Rivino et al., 
immune responses such as programmed death-1– 
positive CD8+ T-cell responses may contribute to the 
control of HBV DNA and control viremia after stop-
ping therapy.(31) Thus, the host immune marker might 
be a promising biomarker to predict relapse or viro-
logical remission. However, cellular immune responses 

FIG. 5. Correlation of SIM with each other and with VR (HBV DNA > 2,000 IU/mL) at week 0. The second row shows the correlation 
of the combination of five SIMs, which demonstrated the highest AUC among all 47 cytokines for prediction of VR at the time point of 
NA cessation (week 0).
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such as T cells are difficult to implement as biomark-
ers. SIMs measured in plasma or serum are much eas-
ier to implement. Recently, we have shown that SIMs 
differ in the different phases of chronic HBV infec-
tion, suggesting that SIMs are associated with control 
of HBV DNA.(32)

In our study, we identified a combination of five 
SIMs, including IL-2, MIG, RANTES, SCF, and 
TRAIL, which showed the highest predictive val-
ues for early VR at all three different points ana-
lyzed before NA cessation. In the overall derivation 
cohort, IL-2, MIG/CXCL9, and TRAIL tended to 
show higher results in the nonrelapser group, whereas 
RANTES/CCL5 and SCF had higher values in the 
relapse group. Interestingly, three of the five pre-
dictive SIMs, namely, IL-2, RANTES/CCL5, and 
MIG/CXCL9, target T-cell responses directly. IL-2 
is an important cytokine associated with protective 

immunity, and the major source and the major tar-
get are activated T cells.(33) For HBV infection, it has 
also been shown that IL-2 down-regulates HBV gene 
expression in transgenic mice.(34) The main producer 
of RANTES/CCL5 is, again, T cells. The receptor 
CXCR3 (chemokine [C-X-C motif ] receptor 3) is 
expressed on T cells and monocytes, and is associated 
with recruitment of these cells to infected tissue.(35)

The higher results of MIG/CXCL9 in the nonre-
lapser group indicate that IFN-ɣ responses may con-
tribute to the control of HBV DNA after stopping  
NA. MIG/CXCL9 provides a measure of bio-active  
IFN-γ and a functional IFN-γ signaling pathway, 
and is important for immune cell migration.(36) 
Interestingly, in the transgenic mouse model, MIG/
CXCL9 was produced by Kupffer cells, leading to 
a recruitment of further inflammatory cells to the 
liver.(37)

FIG. 6. Sensitivity and specificity for the best SIM combinations to predict VR (HBV DNA ≥ 2,000 IU/mL) identified by ML. Sensitivity 
and specificity of the five cytokines (IL-2, MIG, RANTES, SCF, and TRAIL) at weeks 0, −12, and −24 in the derivation cohort (A); 
the five cytokines (IL-2, MIG, RANTES, SCF and TRAIL) at the time point of NA discontinuation in the validation cohort (B); the 
four cytokines (IL-2, RANTES, SCF, and TRAIL) and HBsAg at weeks 0, −12, and −24 in the derivation cohort (C); the four cytokines 
(IL-2, RANTES, SCF, and TRAIL) and HBsAg at time point of NA discontinuation in the validation cohort (D); the four cytokines 
(IL-2, RANTES, SCF, and TRAIL) and HBcAg at week 0 in the derivation cohort (E); and the four cytokines (IL-2, RANTES, SCF, 
and TRAIL) and HBcAg at time point of NA discontinuation in the validation cohort (F). AUC, standard deviation and CI are provided 
in the respective graphs.
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The SCF receptor c-kit is up-regulated in diseased 
livers, suggesting an involvement in hepatic repair 
mechanism. Increased ckit messenger RNA expres-
sion was also observed in patients with liver failure.(38)

The level of TRAIL in nonrelapsers is more puz-
zling. TRAIL-expressing natural killer (NK) cells may 
control activated CD8+ T cells in HBV infection,(39) 
and it has been shown that NK-cell depletion, as well 
as TRAIL and NKG2D (NK group 2, member D) 
pathway blockade, induced a significant improvement 
of the HBV-specific T-cell function.(40) However, 
TRAIL expression on NK cells and soluble TRAIL 
level in the blood may not be related. It could also be 
an indicator of more apoptosis and control of HBV-
infected hepatocytes. However, SIM levels were not 
distinctly different, and the balance and network with 
other SIM might be more relevant.

It is important to note that the supervised ML 
algorithm is looking for the highest predictive power 
for a SIM and may not necessarily identify SIMs that 
are biologically active themselves, but are strongly 
correlated with active cytokines, indicated by the 
strong predictive power. Several other cytokines pre-
viously linked with control of HBV infection, such 
IL-6, IL-1β, IP-10/CXCL10 and MIP-1α/CCL3, 
have emerged as being associated with early VR in 
the present cohort, but they failed to reach the most 
significant niveau and were therefore not included 

as predictive markers, but might still be biologically 
active in vivo.

Importantly, our results could be validated to some 
degree in an independent cohort (0.63 [0.10-0.99]). 
Although the AUC is weak and the CI is high, it 
delivers results that are comparable to current viral 
markers, such as HBcAg and HBsAg. Differences in 
the AUC may be caused by differences between the 
cohorts. The patients from the validation cohort were 
more likely to be male, have higher HBcAg levels, 
and be nonrelapsers. In addition, we may have missed 
cofounders that were not assessed, such as HBV gen-
otype, treatment duration, and type of infection. It 
should be noted that the frequency of relapse may 
align on further follow-up, and that the overall level 
of HBcAg of log 2.8 and log 3.1 U/mL is very low. 
It is also important to note that despite similar AUC, 
the addition of the viral marker HBcAg improved the 
CI when added to the SIMs, thus strengthening its 
reliability, which is poor if only the SIMs are consid-
ered (0.63, 0.1-0.99 and 0.67, 0.42-0.85, respectively).

Our study has some important limitations. First, 
the design of the study and the predefined follow-up 
of 24 weeks did not allow us to assess clinical relapse 
and long-term effects such as HBsAg loss. Although 
most patients experience early VR within 6  months, 
a certain number of patients relapse between 6 and 
12  months or even between 12 and 24  months. 
However, the aim of this pilot trial was to show the 
general feasibility of ML in using SIMs as a predic-
tor for early VR in HBeAg-negative patients who 
discontinue NA therapy. It also might be important 
to identify the patients who experience early VR, 
as it may subsequently lead to early clinical relapse 
for which a follow-up strategy could be tailored, for 
safety concerns. Recently, it has been shown that 
19%-39% of patients may achieve HBsAg loss several 
months or years after stopping NA therapy.(19,41,42) In 
future studies, it would be very interesting to investi-
gate whether a combination of SIMs could not only 
work in a long-term follow-up cohort, but also help 
to predict HBsAg loss after stopping NA therapy. 
Second, the handling of the serum samples between 
the derivation (frozen and shipped to Europe) and the 
validation cohort (measured locally) were different, 
possibly influencing cytokine levels. Additionally, the 
derivation cohort is based on a multicenter study that 
included patients across Southeast Asia and Oceania, 
whereas the validation cohort is from Taiwan and 

TABLE 2. BASELINE CHARACTERISTICS OF 
THE DERIVATION COHORT (MHH COHORT; 

n = 28) AND THE VALIDATION COHORT (CGMH 
COHORT; n = 49) AT THE TIME POINT OF NA 

DISCONTINUATION

Parameters
ABX Cohort 

(Derivation Cohort)
CGMH Cohort 

(Validation Cohort) P Value

No. of patients 28 49

Relapsers (until 
week 24)

14 (50%) 13 (26.5%) 0.038

Age (years) 58 (42-65) 57 (34-72) 0.836

Sex 0.036

Female 12 (42.9%) 10 (20.4%)

Male 26 (57.1%) 39 (79.6%)

ALT (U/L) 20 (12-38) 20 (12-44) 0.679

HBcAg log (U/mL) 2.8 (2.0-4.4) 3.1 (2.0-5.4) 0.015

HBsAg (U/L) 838 (6-12,971) 847 (4-19,382) 0.894

Platelets (/nL) 201.5 (105-385) 187 (117-317) 0.838

Note: Continuous data are presented as the median plus range. VR 
is defined as HBV DNA increase ≥ 2,000 IU/mL within 24 weeks 
after NA cessation.
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reflects a possibly more homogenous study group. 
HBV genotypes were not assessed and may be dif-
ferent. Also, data on antiviral resistance to ETV or 
TDF are not available. Differences in HBV geno-
types, type of infection (perinatal vs. acquired), and 
duration of NA therapy might be the reason for dif-
ferent relapse rates between the derivation and valida-
tion cohorts. Third, the data are derived from the Asia 
Pacific region; therefore, transferability of the results 
to other populations is limited. Genetic and environ-
mental factors may influence immune responses(43,44); 
thus, our set of SIMs may not be predictive in other 
settings.  Given the AUC, the CI and potential dif-
ferences between the derivation and validation cohort 
generalizability needs to be proved in further studies. 
Nevertheless, we clearly show that the approach to 
identifying a host biomarker based on a ML approach 
is possible. Importantly, we show that key SIMs and 
the predictive power of the identified SIM panel 
remain relatively stable 24 and 12 weeks before NA 
withdrawal, despite presumably changing cytokine 
levels in response to other environmental challenges, 
such as seasonal viral infections. Another important 
result of our study is that SIMs may have a better per-
formance in predicting early VR than the viral mark-
ers HBsAg or HBcAg alone. However, a combination 
of SIMs and viral markers may be more reliable when 
comparing different cohorts.

In summary, we demonstrate that a combina-
tion of five SIMs as host markers is well-predictive 
of early VR, defined as HBV DNA > 2,000  IU/mL 
until week 24 after NA discontinuation in HBeAg-
negative patients with chronic hepatitis B, and may be 
a useful addition to the viral predictors HBsAg and 
HBcAg. Supervised ML is helpful in deciphering the 
complex network of SIMs for the identification of an 
individual biomarker panel. Further studies should 
investigate the host immune marker as a biomarker 
for the individualized management of patients with 
chronic hepatitis B. Artificial intelligence will aid in 
identifying biomarkers in an unbiased approach.
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