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Abstract

The topological characteristics of biological networks enable us to identify the key nodes in

terms of modularity. However, due to a large size of the biological networks with many hubs

and functional modules across intertwined layers within the network, it often becomes diffi-

cult to accomplish the task of identifying potential key regulators. We use for the first time a

generalized formalism of Hamiltonian Energy (HE) with a recursive approach. The concept,

when applied to the Apoptosis Regulatory Gene Network (ARGN), helped us identify 11

Motif hubs (MHs), which influenced the network up to motif levels. The approach adopted

allowed to classify MHs into 5 significant motif hubs (S-MHs) and 6 non-significant motif

hubs (NS-MHs). The significant motif hubs had a higher HE value and were considered as

high-active key regulators; while the non-significant motif hubs had a relatively lower HE

value and were considered as low-active key regulators, in network control mechanism. Fur-

ther, we compared the results of the HE analyses with the topological characterization, after

subjecting to the three conditions independently: (i) removing all MHs, (ii) removing only S-

MHs, and (iii) removing only NS-MHs from the ARGN. This procedure allowed us to cross-

validate the role of 5 S-MHs, NFk-B1, BRCA1, CEBPB, AR, and POU2F1 as the potential

key regulators. The changes in HE calculations further showed that the removal of 5 S-MHs

could cause perturbation at all levels of the network, a feature not discernible by topological

analysis alone.

Introduction

Biological networks, embedded with fundamental information of the biological systems, are a

part of the family of complex networks [1], which deal with the behavior of the components

cross-talks and information processing [2], mechanisms of the governance of the systems and

decision-making [3], design principles and architecture of the systems [4], and various other
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system-wide properties. Complex network theory is considered as one of the most useful

mathematical techniques to understand the static [5] as well as dynamic [6] properties of com-

plex biological systems [7]. In our previous work [8], we applied the tools of hierarchical net-

works and characterized the topological properties of a biological network associated with

apoptosis, where the importance of hubs and constituting modules were reported. Hierarchical

networks are of special interest because of their important structural properties (emergence of

modules/communities and sparsely distributed hubs) [2, 9, 10] and self-organized working

principle [11]. The studies of various parameters, e.g., probabilities of signal propagation, were

able to provide mechanisms for establishing inherent properties of the system at various levels

of the organization and identify hubs with significant biological roles. However, those topolog-

ical parameters were unable to quantify the changes in the signal propagation as encountered

by the hubs, when the network was subject to external or internal perturbations. Further, the

topological analyses of the networks could not capture the amount of the perturbation. There

have been methods proposed to study signal propagation, based on various techniques to iden-

tify disease genes with associated modules, which are applied to various disease-associated net-

works [12, 13]. Here, we adopted a different route, where we generalize the Constant Potts

model (CPM) [14] and referred it as a method of HE.

In statistical physics literature, the Potts model [15] assumes a special Hamiltonian feature

for a many-particle system on a lattice. The Hamiltonian is the sum of potential and kinetic

energy at each lattice point of the system. The Potts model on a lattice structure was adopted

to one on a network structure, by simply considering the positive links only in the configura-

tion of well-defined communities [16]. It was generalized by considering internal links as posi-

tive and missing links as negative. The model was further simplified to the CPM and used for

detecting communities in the complex networks [17]. The HE method based on this CPM was

proposed with a further extension to system level organization in hierarchical networks [11].

The algorithm has already been applied to other networks involving breast cancer [17, 18] and

turner syndrome networks [19]. It has been confirmed that the proposed HE method works

very well and is sensitive to the identification of key regulators and corresponding pathways.

There have been recent efforts in the analysis of networks focused on finding functional

dependencies between the so-called hubs and their topological roles in the network [20]. How-

ever, hubs are not sufficient to control or regulate multi-functional or complex systems, such

as any disease associated biological system. In such a system, modules are tightly interconnec-

ted and control the overall network organization by maintaining the network properties [21].

Each module has its own organization, cross-talking with its sub-modules at internal levels of

the organization, which is minimally affected by neighboring sub-modules of other remaining

modules. Considering the modules and hubs together along with the energy calculation could

reveal potent regulators within any biological systems. Here, we applied HE method in the

complex biological network system, which had the capability of distinguishing the significantly

high-active and low-active regulators from the interacting nodes within the network. The key

regulators that had higher HE value, were designated as significantly high-active, while the key

regulators with a relatively lower HE value as compared to high-active regulators, were

referred to as low-active key regulators. We propose that these high-active key regulators are

significant motif hubs as compared to low-active key regulators because they play main and

important role in network control mechanisms (as also known experimentally)[22]. Moreover,

the HE approach helped us to quantity the perturbation caused by the removal of hubs. Thus,

allowing us to filter out the most significant hubs out of a list of potential hubs within the net-

work, which cause maximum perturbation. The HE approach, unlike Network topological

Analysis (NTA) [23], turned out to be a simple and quick method to quantify the perturbation

caused by the removal of hubs. The NTA, incidentally, had been proposed to be an important

Hamiltonian energy in biological networks
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technique to understand topological properties of complex networks and their dynamics[20].

Most of the real networks fall within scale-free type [24], small world [25], random [26] and

hierarchical [10] types. Hierarchical network is of special interest because of its important

structural properties (emergence of modules/communities and sparsely distributed hubs) [2,

9, 10] and self-organized working principle [10, 11]. The emergence of modules/communities

in this network type is of specific interest because they are believed to be corresponding to

independent functions obeying their own laws [10] and their individual activities are nonlinear

in nature [20]. The sparsely distributed hubs are supposed to interfere and control network

stability [27] as well as other communities. Although network analyzer predicts the overall

topology, the HE used in the present study provided not only global topology of the network

but also obtained module-based topology at each level, which is the signature of the self-orga-

nization of the biological system. Among the hubs in the network, it is necessary to find the

fundamental regulators, which perturb the network significantly. The fundamental regulators

could influence the system even at modular level (network motif level). The motifs referred to

here are by definition the 3-nodes or 4-nodes subgraphs, which cannot be further disintegrated

[28]; and the motif level was defined as the level below which further breakup of the modules

do not provide significant information of the network (cannot be achieved). The node that

was present at all the levels of the systems, would significantly act as a fundamental regulator

of the biological system, and could perturb the system drastically. Since the constructed net-

work is a hierarchical modular, emergence of modules along with their functions is more

prominent than the sparsely distributed hubs. Hence, removing of hubs do not cause break-

down of the network, which is seen in traditional scale-free networks. So, it does not obey

“centrality-lethality rule” as in other scale-free networks, e.g. airport connections network. In

our case, the hubs may significantly perturb the network “locally”, but at the global level the

propagation of the signals may or may not be perturbed significantly. Therefore, developing

the HE based method to recognize a potential key regulator in a biological system was crucial.

Systems Biology studies have a major impact on complex diseases, like cancer. The well-

known biological process which in cancer is compromised effectively is apoptosis [29]. By

using the experimental evidence involving a select set of apoptosis-regulatory genes (ARG) (S1

Table) [8, 30–35], we identified modules and sub-modules, which corresponded to indepen-

dent functions, obeying the laws of modularity [10] and identified that their activities are non-

linear in nature [20]. Therefore, quantifying their role as key ARG at the level of systems biol-

ogy was essential, which we provide by using HE analysis of the biological networks.

Methods

Construction of apoptosis regulatory gene network

The select set of apoptosis regulatory genes were based on previous experimental studies (S1

Table). In order to construct the AGRN, we subjected 182 ARGs for computational analysis

and predicted the relationship between TFs (using three transcription factor binding data-

bases: ENCODE [36], JASPAR [37] and TRANSFAC [38] and miRNAs (miRNA target predic-

tion programs: PICTAR[39], miRanda[40], PITA[41] and TargetScan[42]. Experimentally

validated miRNA targets for 182 genes from miRTarBase [43] and miRecords [44] databases

were also retrieved (Fig 1A). Further, we also predicted the interacting partners of these 182

apoptosis regulatory proteins using various PPI (Protein-Protein Interaction) databases like

DIP [45], IntAct [46], MINT [47], BioGRID [48], STRING [49] and HPRD [50]. Based on the

relationships between TFs, miRNAs and Proteins we constructed and visualized network-

using Cytoscape (V2.8.3) (S2 File) [51] (Fig 1B).

Hamiltonian energy in biological networks
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Hub, modules, and sub-modules in the network

We applied the HE analysis to the network constructed on ARGN [8, 52]. Hubs and Modules

in the network were identified using Network Analyzer [23] and MCODE (V1.32) [53],

respectively. Further, modules were subject to MCODE for identification of sub-modules and

sub-sub-modules. We considered all the modules, sub-modules and sub-sub-modules whose

clustering coefficient values were less than or equal to unity (�1). In the present study, all the

modules, sub-modules and sub-sub-modules reflected as level-1, level-2, and level-3, respec-

tively. These levels were used to compute the HE.

Fig 1. Regulatory relationship of apoptotic genes. (A) Relationship between ARGs, miRNA and TFs in the Apoptosis gene regulatory

network. (B) Selection of apoptotic genes and their regulatory interactions.

https://doi.org/10.1371/journal.pone.0221463.g001
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Hamiltonian energy analyses

We considered a network given by a graph, G = G (E,V), with sets of constituting nodes N =

{k},k = 1,2,. . ...,N, and edges E = {eij},8i,j2N. The network was represented by the adjacency

matrix Aij,8i,j2N, such that Aij = 1 if ith and jth nodes are connected, otherwise zero. The Potts

model [54, 55] was used to analyze properties of complex network [14]; and its simplified

form, known as CPM or HE method, was used as a technique to detect communities in com-

plex network [54]. If the network is hierarchical, which is constructed by systems level organi-

zation, then G at level−1 network is organized bym modules defined by graphs g1,g2,. . ...,gm,

such that g1�G, g2�G,. . .,gm�G which was at level-2. Similarly, each module in level-2 was

organized by set of sub-modules at level-3, and so on.

The Potts model, which has successfully been applied to spin system in Statistical Mechan-

ics, showed possibilities of the emergence of clusters of spins in the spin systems [56]. This

concept of spin clusters reflected in the q-state Potts model was used by Reichardt and Born-

holdt (RB model) to detect community structures in the complex network of spins by consid-

ering the properties of spin communities at ground state [57]. This allowed to estimate a

resolution parameter σ of the emergence of communities in the network at various local min-

ima. Then considering unweighted and undirected network, the Hamiltonian of a complex

network [14, 54, 58, 59] is given by,

Hðc; sÞ ¼ �
X

i;j
ðAi;j � sÞ d ðci:cjÞ

¼ �
P

cðEc � sNcÞ
ð1Þ

where ci and cj are the communities of the network to which ith and jth nodes belong. A =

[Ai,j] is the adjacency matrix of the nodes in the complex network. IfH[1] is the Hamiltonian at

level-1, then H½1� ¼ � ðE½1� � sN1Þ with E½1� ¼
P

ijA
½1�

ij and N ½1� ¼ N � N. N[1] is the total num-

ber of nodes in the level 1 of the networks. Similarly, for level-2 of the network, we have, H½2� ¼

� S
m½2�c0
c1¼1ðE½2�c1 � sN

½2�
c1
Þ with E½2� ¼ S

m½2�c0
c1¼1E½2�c1 ;N

½2� ¼ S
m½2�c0
c1¼1N ½2�c1 and N ½2�c1 ¼ nc1 � nc1 , and so on,

exhibiting formalism of systems level organization of complex hierarchical network.m½2�c0 is the

number of communities which belong to level number 2.

Centrality-lethality rule of hub removal and its Hamiltonian energy

The centrality-lethality rule is widely believed to reflect the significance of network architec-

ture in determining network function, a key notion of systems biology [60]. Hub node can also

be present in a strongly interacting cluster of nodes (modules). HE based calculation were car-

ried out for the network or modules by adopting two approaches. The first approach consid-

ered hubs, having interacting partners in the modules at different levels of the network and

identified the modules where a particular hub has had maximum interaction at each level.

Whereas, the second approach considered only the modules or sub-modules in which a partic-

ular hub was present. The hubs were removed in both the approaches to understand the signif-

icant changes in the HE of the system.

Fundamental key regulatory hubs identification

In the ARGN, the hub nodes which communicate with other nodes involved in various biolog-

ical processes were identified using Network Analyzer [61]. Even though all the hubs are

important regulators, only those hubs, which regulate the network from top to bottom (motif

level), were considered as the most significant hubs. These hubs were termed as “fundamental”

Hamiltonian energy in biological networks
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because they were deeply rooted in the network, served as the backbone of the network, and

acted as basic information processors; known as signaling molecules throughout the network.

Therefore, we ranked the top 100 hubs according to the number of degrees and identified the

hubs, which presented up to the last level (motif level) of the apoptosis network. These identi-

fied hubs were referred to as MHs (Fig 2A) (Table 1) reconnoitering as potential key regulators

in ARGN [17]. The MHs were subjected to HE calculation at different levels.

Level-0 (Complete Network): Fx = Kx /H0

Level-1 (Modules): Fx = Kx /H1

Level-2 (Sub-Modules): Fx = Kx /H2

Level-3 (Sub-Sub-Modules): Fx = Kx /H3

Fx = the ratio of degree of node x to the respective Hamiltonian energy

Kx = Degree of node

H(0–3) = Hamiltonian energy at the level of 0,1,2 and 3

Based on the HE of 11 MHs, we categorized MHs into S-MHs and NS-MHs. The identifica-

tion of significant/non-significant motif hubs was done in the following way. We took the

maximum Hamiltonian energy of the MHs just before the motif level was taken as the thresh-

old value of HE as a reference. A particular MH becomes significant if the HE calculated at the

motif level is larger than this threshold Hamiltonian Energy (HET) because the MH becomes

significant and active till the last level of the network. Thus,

If HEMH > HET, then it is S-MH;

If HEMH < HET, then it is NS-MH;

Where, HEMH = Hamiltonian Energy of Motif Hub, HET = Threshold Hamiltonian

Energy.

Further, to validate the HE method, we constructed three different ARG-networks, which

involved: (i) removal of S-MH nodes and their edges (S-MHs network), (ii) removal of

NS-MHs nodes and their edges (NS-MHs network), and (iii) removal of both S-MHs and

NS-MHs nodes and their edges (MHs network). These three different ARG-networks were

subjected to module prediction, using MCODE. Each module at each level was subjected to

NTA and HE calculation.

Topological analyses of network and calculation of Δ HE

The statistical and functional significance of the ARGNs and HE based constructed network

was calculated using Network Analyzer.

The probability of degree distribution, P(k), of a network is defined as the probability a par-

ticular node has degrees between ˈkˈ and ‘k+dk,’ which can be used to calculate for example,

how many degrees on an average a node may have. Another definition of P(k) in discrete net-

work is the ratio of the number of nodes having k degree (nK) to the total number of nodes in

the network, PK ¼
nK
N . It can be used to capture the network structure, identification of hubs

and modular organization of the network [62]. The network constructed was found to obey

power-law degree distribution P(k)~k−γ, indicating the scale-free nature of the network [24,

27] where γ is a parameter that can identify the different topological structures of a scale-free

network: (a) if γ is 2�γ�3, few large hubs hold a number of smaller hubs and large number of

individual nodes together [24], (b) if γ�2, inherent modular structure in the network emerge,

known as hierarchical network where the role of modules is more important [10], and (c) if

Hamiltonian energy in biological networks
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Fig 2. The Level in ARG network with Hamiltonian energy and probability of signal transduction of each hub. (A) The descendants of ARG network in the

basic levels of the network, showing the significant existence of modules with their corresponding sub-modules and sub-sub-modules in the network. Zoom in

of ARG network, modules with their corresponding sub-modules and sub-sub-modules in the network are indicated in dotted line. Hubs, which present up to

the last level (motif level) of the apoptosis network, referred to as motif hub node, are shown in cyan color. (B) The Hamiltonian energy of the network

calculated shows a decrease in its value as levels of the network (U) increases indicating faster information processing in the ARG network. (C) Hamiltonian

energy, based on hub interacting partners in modules also show similar behaviour as in (B) indicatingNFk-B1 as a potential key regulator in the ARG network.

(D) Hamiltonian energy based on the module having the particular hub indicatingNFk-B1 as a potential key regulator in the ARG network.

https://doi.org/10.1371/journal.pone.0221463.g002
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γ>3, the hubs are irrelevant, losing various scale-free features in the network, qualifying the

network as random network [11].

Clustering coefficient of a network characterize how strongly node(s) neighborhood(s) are

connected internally. It is defined as the ratio of the number of triangular motifs a node has

with its nearest neighbor to the maximum possible number of such motifs. For an undirected

network, clustering co-efficient of ith node can be obtained by CðKiÞ ¼
2Ei

KiðKi � 1Þ
, where, Ei is the

number of connected pairs of nearest neighbor of ith node, and Ki is the degree of the respec-

tive node. For scale free networks C(K) ~ constant, whereas, for hierarchical network it follows

a power law, C(k) ~ k−α, with α ~1 [10, 11, 25, 63]. The average clustering coefficient hC(k)i

identifies the overall organization of clusters formation in the network. Similar to P(k), hC(k)i

may depend on network size [24] and characterizes various properties of the network: (i) for

scale free and random networks where hC(k)i is independent of k hC(k)~constanti, [11] and

(ii) for hierarchical networks where hC(k)i follows power law scaling behavior, C(k)~k−β with

β ~ 1 [10].

The neighborhood connectivity of a node is the number of connected neighbors with it and

characterizes the correlation pattern of connectivity of interacting nodes in the network [27].

This connectivity correlation measured by defining a conditional probability P(k0n|kn) which is

the probability of making a link from a node having degree kn to another node of degree kn

[64]. Then the average neighborhood connectivity of nodes with connectivity kn is given by,

CnðknÞ ¼
P

k0n
k0nPðk0njknÞek� /n , [65] following a power law scaling behavior with α<1 for

most of the real networks [27, 64]. If Cn(kn) is an increasing function of kn (for negative values

of α) then the topology of the network show assortative mixing [65] where high degree (the

number of edges per node) nodes have the affinity to connect to other high degree nodes in

Table 1. The 20 hubs with degrees (number of edges, or connections) at Level 0–3 are analysed. The above 11 identified hubs, which are present until the last level

(motif level) of the apoptosis network, termed as MHs. While the remaining 09 hubs have very high degrees at Level 0, but subsequently their degrees are decreasing with

the levels, with eventual absence at Level 3.

S.No. Hubs Degrees: L0 Degrees: L1 Degrees: L2 Degrees: L3

1 GATA3 276 24 7 6

2 NFk-B1 651 10 6 5

3 POU2F1 477 16 3 4

4 CEBPB 392 8 5 4

5 AR 390 9 4 4

6 BRCA1 276 9 4 3

7 TFAP2A 436 51 4 2

8 ZEB1 374 60 7 2

9 hsa-miR-590 294 31 2 2

10 hsa-miR-20a 288 31 3 2

11 MEF2A 318 43 2 2

12 SP1 714 15 4 0

13 HNF4A 711 89 23 0

14 CDX2 645 15 0 0

15 MAX 638 102 36 0

16 JUND 620 14 0 0

17 TCF7L2 620 114 0 0

18 E2F1 610 16 0 0

19 EBF1 587 103 0 0

20 ETS1 586 13 3 0

https://doi.org/10.1371/journal.pone.0221463.t001
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the network. However, Cn(kn)~kn−α with positive values of α, is the signature of the network

having hierarchical structure [64], where low degree nodes tend to connect high degree hubs

[65], and the few high degree hubs present in the network try to control the low degree nodes.

The statistical analysis for these networks was carried out through two methods:

Method 1: By removing the MHs nodes and their edges from the ARGN at all levels. The

removing of MHs carried out in three different ways: removing (i) S-MHs, (ii) NS-MHs and

(iii) both S-MHs and NS-MHs. Each module thus was subjected thrice for network analyses

like calculating in-degree and out-degree distribution, all-neighborhood connectivity, in-

neighborhood connectivity, out-neighborhood connectivity and average clustering coefficient.

Method 2: After the removal of (i) S-MHs nodes and their edges, (ii) NS-MHs nodes and

their edges and (iii) both S-MHs and NS-MHs nodes and their edges, the networks were

reconstructed. These three networks were subject to module prediction, using MCODE and

predicted modules at each level analyzed using a Network Analyzer. The average values were

calculated for, in-degree and out-degree distribution, all-neighborhood connectivity, in-neigh-

borhood connectivity, out-neighborhood connectivity and average clustering coefficient of

each module, sub-modules, and sub-sub-modules of the three networks at different levels.

HE calculation of fundamental hub removed apoptosis network

The HE of network/modules/sub-modules/sub-sub-modules at each level after removing fun-

damental regulators from the network was calculated, based on the steps mentioned above in

section “Hamiltonian energy analysis.” To calculate the perturbation in the fundamental hub

removed apoptosis network, we compared its HE with the HE of ARGs Network. The differ-

ence in the HE of the ARGs network and the fundamental hub removed apoptosis network

measures the perturbation caused by the fundamental regulators.

DHEL0 ¼ HEL0 � HEL0

b

DHEL1 ¼ HEL1 � HEL1

b

DHEL2 ¼ HEL2 � HEL2

b

DHEL3 ¼ HEL3 � HEL3

b

Here,

L = Levels in the network; β = Fundamental hub removed network

Results

Hamiltonian energy of hubs

Complex natural networks are self-organized [66, 67] and have various levels of organization,

which have a self-similar constitution at each level of organization [68], down to the funda-

mental level where basic organizational units are motifs [69]. The complete network (level-0)

constructed by the interaction of communities at level-1; the sub-communities of all commu-

nities, building the level-1 network at level-2, and so on. If [ levels of organization organize

the network, the properties of the complex network are due to coordinated behaviors of the

networks at various levels. Hence, the Hamiltonian of the complete network H[1] can be

derived from the Hamiltonians at the lower levels,level−1,level 2,. . .,level−[. Proceeding in the

Hamiltonian energy in biological networks
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same way as in equation (Eq 1, described in the methods), we have,

H½[� ¼ �
X
m½2�c0

c1¼1

Xm
½3�
c1

c2¼1

Xm
½4�
c2

c3¼1

. . . :
X
m½[�c[� 2

c[� 1¼1

H½[�c1c2...:c[� 1

H½[�c1c1...:c[� 1
¼ E½[�c1c2...:c[� 1

� sN ½[�c1c2...:c[� 1

ð2Þ

Here, m½2�c0 ;m
½3�
c1
; . . . :;m½[�c[� 2

are numbers of communities/sub-communities/sub-sub-com-

munities. . .at level−1,level 2,. . ..,level−[ respectively. The negative H½[�c1c2...::c[� 1
gives Hamilto-

nian function of c[−1th community of level−[ constructed from c[−2th community at level

−([−1). . . constructed from the c1th community. Thus, from Fig 2A, we have for our ARGs

network,

Hamiltonian energy

H½4� ¼ �
X
m½2�c0¼15

c1¼1

Xm
½3�
c1
¼36

c2¼1

Xm
½4�
c2
¼12

c3¼1

H½4�c1c2c3

H½4�c1c2c3 ¼ E½4�c1c2c3 � sN
½4�

c1c2c3

where the constant; s ¼ 0:8 ðthe results are robust w:r:t:this parameter valueÞ

The HE calculation for a network within the formalism of CPM considers contributions

from the organization of nodes and edges in a competitive manner, and this energy is used in

organizing or re-organizing the network at various levels. This approach can also magnify the

significant changes in the network organization when it goes down to various levels of organi-

zation, which capture the importance of hubs in the network as well as at the modular level.

Therefore, HE formalism proves to be a useful technique for considering variations in the net-

work organization.

The HE was calculated for hubs at each level of all possible modules in the network (Fig

2A). The HE of the ARGs network are plotted as a function of network levels, U (Fig 2B, 2C

and 2D). We found that the energy distribution in the primary network is highest and starts

decreasing as the level of organization increases (Fig 2B). Since HE is dependent on the com-

petition between nodes and the edges for a fixed resolution parameter value (gamma symbol),

the decrease in HE indicates the dominance of the interacting edges over the network size,

indicating fast information processing. Similarly the behaviour of the HE calculated using first

approach and second approach (as discussed above in methods) (Fig 2C and 2D) were found

to be similar nature as in Fig 2B. From the Fig 2C and 2D, it is found that NFk-B1 participated

till the last level, which indicated the importance of this key regulator. We found that the regu-

lators were tightly interconnected and could pass signals quickly. The nodes in a tight cluster

generally have large number of edges (high degree nodes). Since strength of information prop-

agation in the network depends on the number of edges, the tight cluster could propagate/

receive faster information; for example, triangular motifs considered to be controlling compo-

nents of a network [8]. The calculated HE of NFk-B1 (First approach: by considering the hub

and its highly interacting modules at each level) showed a sudden decrease in its value after

level-2 and maintained stable behaviour (Fig 2C). The same was true when hubs HE calculated

only with its associated modules (Second approach) (Fig 2D). Thus, indicating that NFk-B1 is

a potential key molecule regulating the apoptosis network system [52]. The hubs that present
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from primary to the last level of the network are potential key regulators of the network. The

S1 File includes the list of all the hubs that are not potential key regulators. We propose to per-

form a clinical trial on the predicted key regulators for potential drug targets. It proved that

not all hubs could regulate the network; and the hub that is present until the last level may

have the capability to regulate the network. Our results suggest it is necessary to identify the

hubs present until the motif level, known as MHs.

Identification of motif hubs and their HE analysis

From the ARGs network, we found 15 modules, which further divided into sub-modules, and

sub-sub-modules up to 3rd levels. The topological structure of the network manifested the

presence of various functional modules or sub-networks and its organization [10]. All hubs

may be important, but it is essential to understand their significance. The hub nodes, which

regulate the network from the top (complete network) to bottom level (motif level), are the

fundamental regulators. To analyze this in the present study, among the100 hubs with highest

degrees (number of edges, or connections) (S3 File) we identified 11 hubs, which are present

until the last level (motif level) of the apoptosis network (Table 1) (Fig 3A). These 11 funda-

mental regulators (GATA3, NFk-B1, POU2F1, CEBPB, AR, BRCA1, TFAP2A, ZEB1, hsa-miR-
590, hsa-miR-20a, and MEF2A) were termed as MHs. It is not necessary that all MHs should

regulate the network positively. The NTA could not differentiate the high-active and low-

active regulator in the filtered hubs. Even though we could apply permutation and combina-

tion of centrality-lethality rule of hub removal to provide a nonspecific classification of the reg-

ulators, but it is computationally complex or laborious. The “centrality-lethality rule” generally

observed in scale-free networks, where removing hub/hubs cause network breakdown. In our

case, the ARG network followed a hierarchical structure, where functions of the emerged mod-

ules were more significant than those of the hubs do. Hence, the network does not collapse on

the removal of hub/hubs. A plausible reason could be self-organization property of the net-

work, where a central control system is not present. We have done “hub knockout” experi-

ment, where we found changes in the topological properties of the network, but we did not get

network collapse upon removal of the hub/hubs [52]. Therefore, HE was calculated to distin-

guish the high-active and low-active regulators (Fig 3B) based on their HE values. The key reg-

ulators were high-active, which had high HE value, and were considered as significantly high-

active. The key regulators having significantly low HE values as compared to high-active regu-

lators were turned as low-key regulators. We claim that these high-active key regulators are

significant motif hubs as compared to low-active key regulators because they play main and

important role in the network control mechanisms. HE proved to be a simpler and easier way

to quantify and classify the MHs than topological analysis. Out of these 11 MHs, we identified

only 5 S-MHs (NFk-B1, CEBPB, AR, BRCA1 and POU2F1) having significantly high HE score;

whereas 6 NS-MHs (GATA3, MEF2A, TFAP2A, ZEB1, hsa-miR-590 and hsa-miR-20a) showed

very low HE score. Out of the 5 S-MHs (high-active regulators) predicted by HE method, NFk-
B1 was found to be a potential key regulator and we propose to verify experimentally the rest

of the key regulators.

Critical comparison of HE approaches and NTA

We constructed four networks (ARGs, MHs, S-MHs and NS-MHs) which further were sub-

jected to network topological and HE analysis. The network topological properties like, in-

degree, out-degree, clustering coefficient, All-neighborhood, In-neighborhood, and Out-

neighborhood were calculated for each network. In level-0, both the HE analysis and NTA

failed to show the effect of key regulators significantly, which could be achieved in our HE
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method by incorporating signal propagation method proposed in Nature Physics [20]. In pre-

vious works [8], we had found using this method that the signal propagated up to a maximum

of level 3 (threshold could be 3) beyond which the propagation reduced as the level increased.

In NTA, two parameters, namely, the clustering coefficient and all-neighborhood connectivity,

showed insignificant marginal perturbations in the network (Fig 3C). In case of HE, since we

considered different levels of the network (which were not considered in NTA) and computed

the HE values, we could find out the significant key regulators (Fig 3B).

The HE and network topological analysis were carried out in two different ways as

explained in method section (method-1 & 2) to quantify the perturbation at each level of the

networks. Using method-1, out of 5 S-MHs, 4 MHs (NFk-B1, BRCA1, CEBPB, and AR)

Fig 3. Analysis of the different levels in the ARG network. (A) The degree of top 100 hubs at each level of the ARG network (see S3 File for details). The color

bar represents the strength of the degree at each level. (B) The Hamiltonian energy of the motif hubs at each level of the network. Each motif hub is highlighted

with different color code. (C) Statistical topological properties in comparison to the complete and motif hub removed network. (D) The 5 significant motif

hubs and 6 non-significant motif hubs are present in 7 sub-sub-modules of the ARG network. They are represented with the same color scheme as in (B).

https://doi.org/10.1371/journal.pone.0221463.g003
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clustered in module-6 and 1MHs (POU2F1) present in module-7. In the case of 6 NS-MHs, 4

MHs (miR-20a, ZEB1,MEF2A, and miR-590) appeared in module-1 and 2 MHs (GATA3 and

TFAP2A) in module-3 (Fig 4A). Removal of NS-MHs like TFAP2A, ZEB1, and miR20a

Fig 4. Influence of significant and non-significant motif hubs in the network. (A) Network representation of each level and effect of 6-MHs (nodes filled

with orange) and 5-MHs (nodes filled with purple). The graphical representation showed loss of levels after removal of MHs from the network. Illustration to

show what happens to the sub-sub-modules when the MHs are deleted/knocked-off; out of the 7 sub-sub-modules, 5 of them are severely perturbed (modular

structure breaks down), but the remaining 2 have partly intact modular structure. (B) Network topological analysis on complete, motif hubs, significant and

non-significant motif hubs. The analysis was carried out at all the three levels.

https://doi.org/10.1371/journal.pone.0221463.g004
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resulted in the nonexistence of three modules at the 3rd level. Removal of four S-MHs from

module-6 leads to the nonexistence of a module at 2nd level itself which also affected the 3rd

level. This analysis showed that removal of S-MHs could disturb the network in the very first

(few) levels, compared to NS-MHs. Thus, it proved that HE method could effectively distin-

guish the high-active/low-active regulator, or significant/non-significant regulators through

HE values. In NTA, we found that the S-MHs network showed a slight perturbation only at

the third level with an increase in in-degree and out-degree compared to other three networks

(Fig 4B). It also showed a decrease in in-neighborhood and out neighborhood; whereas

NS-MHs network showed the visa-versa result.

Through HE calculation, we found S-MHs perturbed the network effectively. Although

method-1 suggested the importance of S-MHs, the network used for the analysis was not able

to reconstruct after removing the motif-hubs and their edges. Therefore, to understand which

of the 11 MHs is most important, we reorganized and reconstructed the network using

method-2 (described in the methods section), by removing these MHs (11 MHs, 5 S-MHs, and

6 NS-MHs) and further subjected to module prediction using MCODE (Fig 5A). The NTA

showed significant differences in the network properties between control and reconstructed

networks with higher values in most of the network topological parameters namely (in-degree,

out-degree, clustering coefficient, All-neighborhood, In-neighborhood, and Out-neighbor-

hood) at all levels (Fig 5B). However, the NTA failed to distinguish the significant/non-signifi-

cant regulators. In the case of neighborhood connectivity, the removal of MHs, S-MHs, and

NS-MHs disturbed the networks effectively at level-2 and 3.

The network topological analysis depicted that MHs were important for network pertur-

bation, but it was not possible to quantify. NTA when applied in a recursive or non-recur-

sive manner, it could only identify the hub in the network and its role; whereas HE could

identify the key regulator in any biological network, in a recursive, easy and quick manner

(Table 2) because of the fact that the network analysis was carried out within the framework

of Potts model and formulation, and the network analysis algorithms have low orders of

complexity.

Hamiltonian energy calculation of motif hubs networks

The HE was calculated for each level in the complete network (control/ARGN), MHs network,

S-MHs network and NS-MHs network. The delta HE calculated at each level, which is the dif-

ference in energy compared to the control network/AGRN (Fig 6). At level-0, MHs network

showed a slightly higher perturbation compared to S-MHs and NS-MHs network. In the

Level-1, 2 and 3 S-MHs network showed higher perturbation as compared to other networks.

This analysis proved that S-MHs were the fundamental key regulators; in comparison to the

NS-MHs network, where the removal of six hubs did not significantly affect the network. HE

calculation helped us in deducing a small number of hubs, which played a critical role in the

complex network. Thus, the HE method could identify potential key regulators within high

degree hubs in a biological network; providing a novel approach to quantify the significant

(high-active) and non-significant (low-active) regulators within a biological network. We have

also done hub removal experiment in order to understand the sensitivity of the perturbing the

network and their organization (Fig 6). We showed that the calculated HE gets changed signif-

icantly when the few hubs are removed that is the network is perturb indicating sensitivity of

the network to the perturbation. However, the network does not breakdown and retains its

organization keeping hierarchical features. This indicates that the network is sensitivity to the

perturbation but try to retains its network organization and the properties, which is pretty

robusts property.
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Fig 5. Reconstruction of modules and levels based on motif hubs. (A) Network representation of modules and levels based on the removal of 11-MHs, 6-MHs, and

5-MHs. Each level is represented in different color and node represent each module. (B) Network topological analysis on reconstructed modules and levels based on the

removal of 11-MHs, 6-MHs, and 5-MHs. The comparison of complete, motif hubs, significant and non-significant motif hubs networks. The analysis is carried out at all

the three levels.

https://doi.org/10.1371/journal.pone.0221463.g005
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Discussion

Hamiltonian energy in a complex network is a measure of the total energy in the system, and

as the network structure changes, the value of the HE also changes. In this paper, the HE was

used to compute for different distributions and organizations of edges (wiring/rewiring of

edges) with specified weights and directions among the constituting nodes in the network. The

sub-modules and sub-sub-modules in a network have their organization at different levels [10,

63]. HE based analysis provided an assessment tool to learn about the behavior of the network

in the context of the modules. Thus, the self-organization of the system was based on the

energy distribution, suggesting to study the HE [70] of the network at different levels.

In one of our previous study [8, 52], we identified hubs in the ARGs based on topological

properties; but could not measure the perturbation caused by them in the network. The

removal of main hub NFk-B1 or its combination failed to provide the qualitative and quantita-

tive information on perturbation, using topological analysis. In order to understand the per-

turbation and find out the importance of hub qualitatively and quantitatively, we adopted HE

method. Both modules and degrees were considered in the HE analysis, which involved less

computation. In NTA, the removal of hubs is carried out at the complete network or level-0

and any perturbation caused due to this removal of one or more hubs is not discernable.

Whereas, in HE the hubs present up-to the last level allowed a recursive approach to reduce

the number of hubs and facilitate quick analysis, as well as attach importance to the significant

hubs. In all filtered hubs, there are limitations within topological properties to differentiate the

Table 2. Comparison of Hamiltonian energy and network topological analysis calculation.

S.

No.

Hamiltonian Energy Network Topological Analysis

1. It gives both qualitative and quantitative approach to

understanding the perturbation in a network.

It gives a qualitative approach to understand the

perturbation [8, 52, 54].

3. It is a recursive way of identification of hubs. It is

simpler, straightforward and meaningful.

This approach is recursive as well as non-recursive [8,

52, 54].

4. The hubs can classify as significant and non-

significant regulators.

Cannot be used to classify the significant and non-

significant regulators [8, 52, 54].

5. A single value of the HE helps in finding the key

regulators in the network.

Several parameters/ characteristics (degree

distribution, neighborhood connectivity, Centrality,

and clustering) should be computed and analyzed to

find the important regulators [8, 52, 54].

6. No ambiguity or arbitrariness as a single parameter

value of HE differentiates the importance of

regulators.

Hard to rank the relative importance of the regulators

as several parameters/characteristics may turn out to

be difficult to compare [8, 52, 54].

7. Less cumbersome to find key regulators; it can be

made easy at first step rather than going to a different

combination of hub removal.

It is a cumbersome method to find the key regulator

which also requires permutation combination of hub

removal [8, 52, 54].

8. Reduces the complexity of filtering key regulators. It

reduces the number of hubs and facilitates a quick

analysis of the importance of significant hubs.

It is very cumbersome computationally to compare

and find the key regulators [8, 52, 54].

9. HE analysis splits the network into its subsequent

sub-networks and calculates energy.

Network topological analysis considers the complete

network in all the parameter/characteristics

calculation [8, 52, 54].

10. The identified key regulators through HE can be

validated using ΔHE calculation, which is quick and

effective.

Validation of key regulators identified using Network

properties/characteristics needs a different

combination of hub removal and calculation of

several parameters, which can be laborious and

elaborate [8, 52, 54].

In classical mechanics, the Hamiltonian gives the total energy of the system (under certain constraints).

https://doi.org/10.1371/journal.pone.0221463.t002
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significant (high-active) and non-significant (low-active) regulators. The HE approach proved

to be a recursive way to identify fundamental key regulators of the network after reducing the

number of hubs; and finally establish an important one. We applied HE method for the first

time in a biological system and found it was better than topological analysis to identify self-

organization of the system. Additionally, this approach helps validate the possibility of self-

organization of the system derived from the topological analysis. Network analyzer provides

information about nodes and edges, degree distribution properties that follow a power-law dis-

tribution, suggesting that the network is stable and self-organized with the limitation of inclu-

sion of both nodes and edges. However, in the HE approach, we noticed that such a

redundancy is taken care of, using modules, which were strongly interconnected. Network

analyzer property provided the information of key regulators (hubs) in a network. Whereas

HE approach clearly stated the importance with respect to the stability and regulation of self-

organization of the network, viz. a viz., the key regulatory molecules. In our study, we have

demonstrated the utility of both these approaches in establishing the role of key regulators in

the stable and self-organized network. The method of HE provides a novel approach not only

to validate the assumed self-organization of a network through the network analyzer analysis;

but also to provide a better understanding of the qualitative and quantitative perturbation in

Fig 6. Delta Hamiltonian energy calculation of motif hub networks. The difference in Hamiltonian energy calculated for each levels of the three different networks

(MHs, S-MHs & NS-MHs), along with control network.

https://doi.org/10.1371/journal.pone.0221463.g006
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the network. Following Kauffmann definition of self-organization in which fractality in the

system and absence of central control mechanism are the ingredients to establish self-organi-

zation in a system [67, 69]. The power law behaviour in the network is the signature of fractal

nature in the network, which is the indicator of self-organized behaviour. Further, the network

follows hierarchical properties there is no central control system where removal of hubs do not

cause network breakdown. Gene network is self-organized in the sense that the network tries

to maintain the two properties mentioned above despite any perturbation is given to the

network.

In summary, we have used for the first time a generalized formalism of HE with a recursive

approach for the identification of potential regulators in a biological network. The concept,

when applied to ARGN, it helped us to identify 11 Motif hubs (MHs), which influenced the

network until motif levels. The approach further classified them into 5 significant motif hubs

(S-MHs) and 6 non-significant motif hubs (NS-MHs); where the significant motif hubs had

high HE values and were considered as high-active key regulators in network control mecha-

nism; while the non-significant motif hubs had relatively low HE values and were considered

as the low-active key regulators in network control mechanism. Further, we compared the

results of the HE analyses with respect to the topological characterization, for three conditions

after: (i) removing all MHs, (ii) removing only S-MHs, and (iii) removing only NS-MHs from

the ARGN, independently. This procedure allowed us to cross-validate the presence of 5

S-MHs, NFk-B1, BRCA1, CEBPB, AR, and POU2F1 as potential key regulators. We found that

NFk-B1 was the most significant among the five. The changes in HE calculations showed that

the removal of 5 S-MHs could perturb the network at all levels of the network, which was not

discernible by topological analysis alone. In this manner, HE may be useful in identifying the

significant fundamental key molecule in any other biological network as well.
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