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Abstract

We developed a two-stream, Apache Solr-based information retrieval system in response to

the bioCADDIE 2016 Dataset Retrieval Challenge. One stream was based on the principle of

word embeddings, the other was rooted in ontology based indexing. Despite encountering

several issues in the data, the evaluation procedure and the technologies used, the system

performed quite well. We provide some pointers towards future work: in particular, we

suggest that more work in query expansion could benefit future biomedical search engines.

Database URL: https://data.mendeley.com/datasets/zd9dxpyybg/1

Introduction

Our team at Elsevier is working on several information re-

trieval projects, including Elsevier DataSearch, a search en-

gine for research data that is currently in beta (http://

datasearch.elsevier.com). The bioCADDIE 2016 Dataset

Retrieval Challenge (https://biocaddie.org/biocaddie--data

set-retrieval-challenge-registration) offered us a rare and

exciting opportunity to evaluate and understand search

strategies and techniques to help researchers find relevant

biomedical research data.

The bioCADDIE Challenge was conducted using a col-

lection of (structured and unstructured) metadata from

biomedical datasets, generated from a set of 20 individual

repositories. A set of representative example queries for

biomedical data that were determined by domain experts,

were provided for system development. An evaluation was

conducted, using a manually annotated benchmark data-

set, that consisted of a held-out set of queries, with rele-

vance judgments for datasets in the provided collection.

The datasets were annotated as ‘relevant’, ‘partially rele-

vant’ and ‘not relevant’ to the query (1, 2). The

bioCADDIE Challenge presented two unexpected subse-

quent challenges, namely, the need to parse natural lan-

guage queries, and judgment sets that were sparsely

populated.

For this effort, we developed two parallel approaches:

one involved word embeddings; the second centered on

tagging both the queries and the data sources with named

entities. These entities originated from the National

Library of Medicine’s controlled vocabulary thesaurus,

Medical Subject Headings (MeSH; https://www.nlm.nih.

gov/mesh/) and the National Center for Biotechnology

VC The Author(s) 2017. Published by Oxford University Press. Page 1 of 12

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2017, 1–12

doi: 10.1093/database/bax056

Original article

https://data.mendeley.com/datasets/zd9dxpyybg/1
http://datasearch.elsevier.com
http://datasearch.elsevier.com
https://biocaddie.org/biocaddie--dataset-retrieval-challenge-registration
https://biocaddie.org/biocaddie--dataset-retrieval-challenge-registration
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
https://www.nlm.nih.gov/mesh/
https://www.nlm.nih.gov/mesh/
Deleted Text: ,
https://academic.oup.com/


Information’s database for gene-specific information,

Entrez Gene (https://www.ncbi.nlm.nih.gov/gene). For our

submission, we combined the various aspects of the two

approaches, compared the results and drew conclusions. In

order to improve the assessment of our results, we engaged

domain experts to judge the datasets. In this paper, we de-

scribe what we did to develop our submission.

Related work

An important resource in locating biomedical information

online is through search engines (3). Vocabulary mismatch

is a well-studied problem in the field of information re-

trieval, i.e. the words in a query do not match the words in

the data stored in the underlying search engine. In informa-

tion retrieval (4), query expansion involves adding new

query terms to the initial query in order to enhance its match

to the dataset. Candidate terms for expansion are either ex-

tracted from external resources, such as ontologies or lexical

resources, or from the documents themselves, based on the

associations with the initial query words (5–10).

In earlier efforts, Bhogal et al. (5) provide a review on

the performance of ontology based query expansion that

uses external human curated knowledge, whereas D�ıaz-

Galiano et al. (6) describe the performance in a specific sci-

entific domain. Pseudo-relevance feedback is one of the

earliest methods of query expansion by leveraging the

dataset itself (11, 12). Abdul-Jaleel et al. (13) describe their

pseudo-relevance feedback approach using language mod-

eling and feedback, which achieves the best performance.

Word embedding (i.e. mapping of words in natural lan-

guage to continuous vectors, which encode the semantic

and syntactic regularities between words) has been

explored in detail (5, 10, 14–17). These vectors are dense,

low-dimensional and real-valued: each dimension repre-

sents a latent feature of the word, and the vector is induced

using neural networks. Recent work has been successful in

using word embeddings to derive similar words to query

words, for a given dataset (10, 16, 18, 19).

Methodology

Overview

As an overall development environment, we decided to

work with Apache Solr and open source software develop-

ment frameworks, because of familiarity with these systems

within our team. We indexed each record, preserving the

full set of fields provided, and created a single text field with

all values in each document. We produced alternative

indexes of the data using basic stop word filters and English

stemmer and lemma filters. At the last moment, we noticed

that there was some non-English material present in the ma-

terial: this was not taken into account for our submission.

In our submission to the bioCADDIE Challenge, we de-

veloped two parallel streams: one that focused on ontolo-

gies or knowledge based techniques, and another that

leveraged word embedding, as described in related work.

Since we decided to pursue these two directions in parallel,

we developed the different components as microservices to

allow them to be easily integrated within each stream.

An overview of our architecture, which illustrates the

two parallel streams, can be seen in Figure 1. The left-hand

stream (A–C) indicates the workflow focused on word

embeddings: which is described in Section 1 of the

Methodology. The right-hand stream (D–F), indicates the

workflow focused on concept indexing, and corresponds to

Section 2. In Section 3 of this Methodology, we describe the

judging process (B, E). Table 1 describes the match between

the sections and the parts of the figure in more detail.

Our primary focus was not on execution time, and we

did not investigate optimizing the implementation.

However, from observation of this implementation and

other production solutions, the inclusion of query expansion

is not likely to add significant time: no more than a delay in

the order of tens of milliseconds. Depending on the user

query and the degree and type of expansion, the submitted

query maybe somewhat larger; however, this falls to the

search engine to optimally execute and we would not expect

there to be any significant increase in time. The most likely

increase would arise from using phrase queries resulting

from word embedding expansions. This may also be ad-

dressed following the gazetteer approach, by indexing spe-

cific concept tokens from a precomputed lexicon, which can

then be searched for as a single query term. Attention to the

tradeoffs between index time versus query time flexibility

can also be adapted to any deployment needs.

The other element that could have an impact is the multi-

phase execution plan. Provided the appropriate level of cap-

acity is used to accommodate executing additional searches

along with caching, applying them in the order chosen

would be able to serve the immediate responses, from the

earliest query first. Any overly constrained queries would

fail fast, with zero results allowing you to move to the next

query without severely impacting the overall response time.

We now describe each of the components of Figure 1, in

turn.

Word embedding and dictionary tagging (a, C)

Word embedding (a)

Word embeddings are distributed word representations,

based on a neural probabilistic language model, where
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words in a vocabulary are represented as dense real-valued

vectors (17). When trained on large text corpora, these

models can quantify semantic and syntactic similarities be-

tween different words and phrases. For example, the

phrases ‘cancer’, and ‘carcinoma’ might be different, yet

they are semantically similar, as they occur frequently in a

similar context. Word embeddings help capture these

similarities.

In this work stream, we evaluated three available libra-

ries for word embeddings [word2Vec, GloVe, fastText,

(20–22)] to find a ranked list of similar words and phrases

for the purpose of query expansion. The intent was to in-

crease the recall of the search results, by expanding the

query with words and phrases that are highly related to the

original query words. One characteristic of using word

embeddings for query expansion (over a manual dictionary

or ontology) is that this allows one to find semantically

similar words from the same corpus. To do this, we took

the top five phrases related to each phrase given by our

word embedding model, and searched for them in the in-

formation retrieval index.

Initially, we observed that results obtained by training

neural word embedding from word2Vec and GloVe did not

improve the normalized discounted cumulative gain (NDCG)

metric, compared to the NDCG obtained by using lexicons

(20, 21, 23). These models were supposed to give ‘similar’

phrases and words but in fact, they diverged from the main

topic of the query. For example, when looking for the top

three most similar phrases to ‘glycolysis’, the word2Vec

model returned: ‘tca_cycle’, ‘mitochondria_remodelling’ and

‘reroute’, because they occurred in similar contexts in the

corpus.

To deal with this problem, we used a recently published

technique, ‘fastText’ (22) (https://github.com/facebookre

search/fastText), a library for the efficient learning of word

representations and sentence classification based on

Facebook research. Instead of training a vector for every

distinct word in the corpus, this new approach is based on

the skip-gram model, where each word is represented as a

bag of character n-grams. A vector representation is associ-

ated to each character n-gram, and words are represented

as the sum of these representations. This model gave more

useful results than word2Vec and GLoVe, and was incor-

porated into our query expansion.

For example, for the phrase ‘glycolysis’, the top three

similar phrases returned by fastText were: ‘gluconeogenesis’,

‘glycolytic’ and ‘glycolytic_pathway’, which are much more

satisfactory.

As a further example, if we start with the following ex-

ample query:

‘regulation of DNA repair related to the estrogen signal-

ing pathway in breast cancer patients’

The following tokens were used for expansion:

regulation, dna, repair, estrogen, signaling, pathway,

breast, cancer, patients

Figure 1. Overview of the two-stream process.

Table 1. Mapping from the sections of the Methodology to

the elements in Figure 1

Element Sections

A 1.1, 1.2,

B 3

C 1.3

D 2.1, 2.2

E 3

F 2.3
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The Word2Vec Model returns these related phrases:

{‘cancer_drug_resistance’(0.6853), ‘nontransformed’

(0.6726), ‘endocrine_cancers’(0.6661), ‘hormone_res

ponsiveness’(0.6610), ‘metastatic_processes’(0.6595),

‘shortterm’(0.6558), ‘lung_cancer_stem_cells’(0.6529),

‘molecular_signature’(0.6518), ‘epidural_anesthesia’

(0.6507), ‘adjuvant_treatments’(0.6504)}

The fastText Model returns:

{‘breast_cancer_cell_proliferation’(0.7642), ‘breast_-

cancer_oncogenesis’(0.7614), ‘tumour_cell_prolifer-

ation’(0.7599), ‘ijb’(0.7493613362312317), ‘wilms_

tumor_cell_proliferation’(0.7478), ‘breast_cancer_cell_

survival’(0.7469), ‘ijba’(0.745184063911438), ‘breast

_cancer_cell_migration’(0.7390), ‘cancer_pathways’

(0.7356), ‘breast_cancer_tumorigenesis’(0.7347)}

We observed that character n-grams and smaller win-

dow sizes provided better word embeddings for search

query expansion. This is similar to the finding by Chiu

et al. (24) in which intrinsic and extrinsic evaluation of

word embeddings were compared. Intrinsic evaluation of

word embeddings are compared to human annotations,

and extrinsic evaluation uses word embedding as an inter-

mediate step, to evaluate a downstream NLP task like

POS, NER, etc. that uses the word vectors. These results

reinforce previous findings by Turney (25), conforming

that a larger window not only reduces sparsity by introduc-

ing more contexts for each word, but is also known to af-

fect the tradeoff between capturing domain similarity

versus functional similarity.

Window size 1 gave the best results for extrinsic evalu-

ation while increasing window size to 30 and 50 gave bet-

ter results for intrinsic evaluation. Window size 1 truly

models the word function while increasing the window

size trains the word topic function. Essentially, increasing

the window size trains association, rather than relatedness.

In general, our observations agree with previous work (26)

on word space models based on the distributional hypoth-

esis of meaning, though their implementation used a differ-

ent set of algorithms (LSA and Random Indexing) to derive

the context vectors.

Dictionary tagging queries (a)

The bioCADDIE dataset provided semi-structured data

that was already tagged with important concepts like dis-

eases, genes, organisms, etc. We leveraged the availability

of this tagged data to build dictionaries of entity types,

based on individual fields in the dataset. This allowed us to

detect the set of entity types that matched a phrase in the

user query, by running an exact match against this

dictionary.

Phrase query processing (C)

In this stream, we processed the queries to detect chunks of

words or phrases, and used a word embedding API to fetch

a list of the top five similar words and phrases. These were

then used to generate two variants of physical queries that

were matched to the index. This process involved segment-

ing the query in various aspects, as detailed in the follow-

ing three subsections.

Query parsing (C)

The user query was tokenized and passed through a stop

word filter. The stop word list was customized with terms

taken from the common words found across all queries.

The stream of tokens was then passed to a segmenter that

looked for prepositions, conjunctions and determiners.

The resultant chunks from the user query were then used

to find expansions. This involved removing the head and

tail of the questions, leaving only the core concepts and

interstitial elements to be processed further.

Field value tagging (C)

We used the field level information (both values and field

names) present in the bioCADDIE dataset to derive custom

dictionaries. These dictionaries were then used to tag

words and phrases in the query.

Query construction (C)

Filtering queries, segmenting and tagging them enabled us

to construct three variant forms of the query by applying

the following:

• Phrase searching for known sequences of words (derived

from field value tagging);

• Expanding words and phrases based on the Word

Embedding model trained over the dataset;

• Field based searching based on field value tagging.

The resulting three query forms used were:

Unigram query (C)

A unigram query is a simple word-based Solr query with-

out expansion. For this step, we simply took the results of

the initial parsing to remove unwanted phrases, and con-

structed a query with the resulting tokens. The search was

based on the aggregated text field.

Field value tagged query (C)

Taking the tagged phrases based on values taken from

the data, queries were constructed to look for those

phrases in specific fields. This improves the previous model

by applying phrase searches and field restrictions.

Field term and embedding expanded query (C)

In addition to tagging the phrases for querying in spe-

cific fields, synonym expansion was incorporated using the

fastText word embedding method (22).
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As an example, let us consider the following user query:

‘regulation of DNA repair related to the estrogen signal-

ing pathway in breast cancer patients’

Running the query through our Query processor filters

out stop words, based on a customized list, and then de-

tects phrase chunks within the query.

The unigram query represents the tokens in the query

after stop word removal and becomes:

Query syntax: OR (<unigrams>)

Example query: (value: ((‘regulation’) (‘DNA’) (‘repair’)

(‘estrogen’) (‘signaling’) (‘pathway’) (‘breast’) (‘cancer’)

(‘patients’)) )

The field value tagged query finds field associations

from the schema for each phrase in the query, and

becomes:

Query syntax: OR (<Field:Value>) leads to a reformu-

lation of the example query to:

((METADATA.keywords_sField:‘regulation’)^0.5)

OR ((METADATA.citation.journal_sField:‘DNA re-

pair’) ^0.2

OR (METADATA.keywords_sField:‘DNA repair’)^0.5)

OR

((METADATA.StudyGroup.name_sField:‘estrogen’)

^0.2

OR

(METADATA.Treatment.agent_sField:‘estrogen’)^0.2)

OR ((METADATA.keywords_sField:‘signaling’)^0.5)

OR

((METADATA.StudyGroup.name_sField:‘pathway’)

^0.2)

OR ((METADATA.StudyGroup.name_sField:‘breast

cancer patients’)^0.2

OR (METADATA.Disease.name_sField:‘breast cancer

patients’))

Ontology based tagging and concept
indexing (D, F)

For the second indexing stream, we ingested the National

Library of Medicine’s controlled vocabulary thesaurus,

Medical Subject Headings (MeSH), and the National

Center for Biotechnology Information’s database for gene-

specific information, Entrez Gene.

We briefly investigated other potential solutions for tag-

ging concepts. One challenge was the breadth and depth of

the domain and the accuracy of any solution with respect

to recall and precision, and, in particular, handling cases of

semantic ambiguity. Given the breadth of the domain

coverage, and likely depth, in terms of the concepts ex-

pressed, this would require extensive reviewing accompa-

nied by the understanding of the full capabilities and

nuances of each solution. It would have likely led to an en-

semble approach, adding to the complexity of the solution,

which was difficult given the time constraints. Also, lever-

aging online services rather than embeddable processes

would have negatively impacted processing times and the

turn around times for indexing. We were interested in

embedding the concept indexing into the indexing process,

which required offset level annotations (as opposed to

summary annotations). For simplicity’s sake, we therefore

chose to incorporate our own solution, knowing its par-

ticular strengths and weaknesses (in particular the domain

coverage) to allow us to appropriately use it and assess its

impact.

Ontology based gazetteers (D)

Entity extraction was performed by generating a token

stream, and then examining the tokens as they pass through,

to see if they matched any of the words and phrases in the

MeSH and Entrez Gene dictionaries. Named Entity Tagging

was done by taking the respective fields containing primary

names, labels, symbols and any alternatives from the ontol-

ogy sources (MeSH and Entrez) and building gazetteers

from them. Commas in the MeSH content were removed,

and combinations of terms were added as additional terms.

An example of an entry with a comma is ‘Muscle,

Abdominal’, which was transformed to ‘Abdominal

Muscle’. This increased the chances of correctly matching

the phrase in the document text or queries in subsequent ap-

plications. Entries with multiple commas were left un-

treated, as the occurrence of these was rare; all other

punctuation, such as parentheses, were left untreated.

Extraction was performed with the following

considerations:

• The longest phrase took precedence;

• For MeSH and the case insensitive Entrez Gene terms,

the tokens were converted into lowercase before being

checked against the dictionaries;

• For the case sensitive Entrez Gene terms, the tokens were

kept in their original case;

• No punctuation filters or stemming were applied;

• If a term included a dash in the dictionary, then it

required the dash to exist in the JavaScript Object

Notation (JSON) document, for it to be recognized.

The longest match precedence rule allowed us to take the

most specific form concept mentioned; however, there were

still instances where a longer surrounding concept existed,

that had not been captured in the dictionaries. Another way

to identify classes of entities would be to supplement this

dictionary tagging with statistical entity detection, which

could then be used to target these concepts as a phrase.
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The MeSH dictionary included the majority of the vari-

ations, which could be normalized via stemming, so lack of

stemming was not an obstacle. However, further improve-

ments could be made by introducing stemming and punc-

tuation filters (hyphenation being a common one) on the

JSON text and the dictionary terms.

Concept indexing (D)

To achieve better retrieval results, we applied a concept

indexing scheme, based on named entity tagging. When a

MeSH concept or gene was identified within the document

text, its concept ID (derived from the source ontology) was

then embedded into the text immediately following the

relevant term. A custom Solr token filter was used to index

the IDs in the same word position as the preceding token

in the index. Embedding IDs in this way, rather than just

adding them to a specific field, allowed for proximity

searches to be applied. It also allowed us to use their fre-

quency with respect to relevancy scoring to enable term

frequency–inverse document frequency (tf-idf) techniques.

In addition to adding the IDs of the matched concepts,

ancestor concepts (parent, grandparent, etc.) were also

embedded, but to differentiate them from the explicit men-

tions they were marked as implicit concepts. Only MeSH

had such hierarchical information: we assumed that the ex-

istence of a MeSH concept implicitly meant that it is also

related to a parent concept.

There is more work to be done on the use of ontologies

to improve the accuracy of the tagging to handle other

variations, and provide better semantic disambiguation.

We mention a few: abbreviations; spelling variations and

special tokens.

Abbreviations

We noted that MeSH does not include abbreviated species

names (such as ‘M. musculus’), which will therefore be

missed. Some of this can be done by word embedding simi-

larity matching, by first processing phrases to look for

similar phrases: if we tag ‘M. musculus’ to ‘Mus musculus’

this would yield a match, which would have been a logical

next step. This is an example of our trying to strike a bal-

ance between curating knowledge and applying machine

learning models, to achieve the best result with the re-

sources we had available.

Spelling variations and special tokens

Another issue was that ontologies do not always capture

spelling variations, such as American English versus British

English. Similar issues occur with the use of Greek charac-

ters and names (b versus beta) as well as concepts such as

‘stage II breast cancer’, causing problems due to the

variation between Roman numerals and decimal numbers

(III versus 3). Some of these issues were accommodated by

appropriate normalization with character/token mapping

in the dictionaries, or the sources being processed.

Absence of concepts

Other concepts were not captured in ontologies at all. For

example, Entrez Gene does not identify gene collections

such as the common BRCA genes, this therefore does not

allow for this to be detected and expanded to group

BRCA1 and BRCA2 mentions.

A further concern was the difficulty to match passing

references to concepts that were not directly related to the

data item. This issue can arise simply because one is mak-

ing a comparison with something else, or more often when

one is citing related work. Both situations should not con-

stitute a relevant match. Rather than specifically aiming to

identify these through deeper analysis of the text, we hoped

to avoid the issue by the looking at the explicit mentions in

the specific fields aligned with those concepts and their

general frequencies in the records. This method was based

on the assumption that there would be more instances that

were directly applicable than a passing reference.

Further care in selection ontologies could have yielded

more accurate and comprehensive matches; we cannot

state for sure that this would have provided any clear

benefits.

Query processing (F)

Taking the natural language queries and constructing a

query for the search engine involved removing unwanted

segments, identifying and preserving key concepts from the

rest. This largely involved segmenting the query based on

various annotators:

• Field word matching;

• Exact field value matching;

• Ontology based tagging;

• Dependency parser chunking.

We will discuss the various steps we used in query pro-

cessing, in turn.

Query parsing (F)

As a first step, the user query was tokenized and passed

through a stop word filter and parsed against a grammar.

The stop word list was customized with terms taken from

the common words found across all queries. The stream of

tokens was then passed to a segmenter that used grammar

to derive common patterns in the queries. The resultant

chunks from the user query were then passed on, to find

synonyms. This took care of removing the head and tail of
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the questions leaving the core concepts and interstitial

elements to be processed.

Named entity tagging (F)

Next, the Named Entity Gazetteers described in 2.1 were

used to identify MeSH concepts and genes within the

query. The output of the query pre-parsing phase is a list of

tagged query elements, which is ordered as follows:

• MeSH concepts annotated with the MeSH concept ID

and the IDs of the descendant MeSH concepts;

• Genes annotated with the gene ID;

• Words and phrases identified via field value tagging and

annotated with the relevant fields;

• All remaining query terms.

Query construction (F)

Next, parsing user queries by segmenting, filtering and tag-

ging them enabled us to construct various forms of the Solr

query by taking the following steps:

• Phrase searching for known sequences of words (derived

from field value tagging);

• Concept ID searching from named entity tagging and

indexing;

• Field/term boosting.

We also conducted some experiments where we applied

standard Solr Extended DisMax (eDisMax) query parser,

with varying results.

Concept Expanded Query (F)

The final method of query processing used named entity

tagging. This meant that not only did we have the original

and additional similar phrases from word embeddings, we

also had the recognized concepts, including inferred con-

cepts based on ontological relations. The component pro-

vided a great deal of flexibility in how the various tagged

elements could be combined, as well as control over the be-

havior of the constructed query. This offered many vari-

ations which, given a comprehensive judgment set, could

have been further explored to find optimal configuration.

We targeted a few different combinations which appeared

to make the most improvements.

Expansion Rules

At a high level, the query consists of a Boolean AND

over two main parts: the MeSH and gene concepts in one

part, and everything else in the second part. The MeSH

and gene part of the query is a Boolean OR across each

MeSH or gene identified within the query:

• The MeSH concepts are searched for as a Boolean OR

on the following:

• Original query word(s) as a Boolean AND;

• Original query words as a phrase (if there are multiple

words);

• The MeSH ID;

• The MeSH ID (implicit instances);

• The MeSH ID of each of the descendants in the

hierarchy;

• The MeSH ID of each of the descendants in the hier-

archy (implicit instances).

• The genes are searched for as a Boolean OR on the

following:

• Original query word(s) as a Boolean AND;

• Original query words as a phrase (if there are multiple

words);

• The gene ID.

The remaining part of the query is a Boolean OR across

each word or phrase identified through Field Value

Tagging plus all other words within the query (other than

stop words and natural language elements). If the term is a

phrase then it is searched for as a Boolean OR across:

• Original query word(s) as a Boolean AND;

• Original query words as a phrase (if there are multiple

words).

The precision of the query was controlled via an API by

applying ‘minimum should match’ restrictions to each of

the two parts. Additional features which could be con-

trolled via the API include:

• Whether to check for MeSH concepts;

• Whether to include implicit MeSH concept IDs in the

query;

• Whether to include descendant MeSH concept IDs in the

query;

• Whether to check for gene IDs;

• Boosts to apply to different parts of the query. Different

boosts can be applied to each different type of query

clause (MeSH ID, MeSH phrase, gene ID, gene phrase,

other phrase, Boolean AND of individual phrase words

for MeSH, gene or other).

An example would look as follows.

Given the following example user query:

‘Regulation of DNA repair related to the estrogen sig-

naling pathway in breast cancer patients’

The following SOLR query components were created:

1. We used the query parser to identify MeSH con-

cepts and Genes and any other key terms. This

query contains no Genes but does contain 5 MeSH

concepts.

2. We created a sub-query for each of the MeSH concepts,

plus for the other key terms:

• MeSH Concepts
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• regulation

• Regulation_Query¼ (regulation)^20 OR

(Explicit MeSH Concepts) OR (Implicit MeSH

Concepts)^0.5

• DNA repair

• DNA_Repair_Query¼ (dna AND repair)^0.5

OR (‘dna repair’)^20 OR (Explicit MeSH

Concepts) OR (Implicit MeSH Concepts)^0.5

• estrogen

• Estrogen_Query¼ (estrogen)^20 OR (Explicit

MeSH Concepts) OR (Implicit MeSH

Concepts)^0.5

• signaling pathway

• Signaling_Pathway_Query¼ (signaling AND

pathway)^0.5 OR (‘signaling pathway’)^20 OR

(Explicit MeSH Concepts) OR (Implicit MeSH

Concepts)^0.5

• breast cancer

• Breast_Cancer_Query¼ (breast AND can-

cer)^0.5 OR (‘breast cancer’)^20 OR (Explicit

MeSH Concepts) OR (Implicit MeSH

Concepts)^0.5

• Other key terms

• patients

• Patients_Query ¼ patients^2

• The following words are ignored:

• of

• related

• to

• the

• in

3. We created the final query by combining the different

query elements as an Boolean OR with a minimum

should match parameter to control the precision, lead-

ing to the following query:

Regulation_Query OR DNA_Repair_Query OR

Estrogen_Query OR Signaling_Pathway_Query OR

Breast_Cancer_Query OR Patients_Query

The most precise query requires all sub-queries to be

satisfied. Subsequent queries, for the lower parts of the re-

sults list, would use a progressively lower minimum match

parameter.

Multiphase query execution (F)

One area of concern was maximizing the precision of the

results. To achieve this, we tried to locate records with all

query concepts matched first, followed by series of queries

with varying degrees of relaxation (generalization of con-

cepts, specificity of fields to use, relaxing of Solr slop factor

on phrases, numbers of clauses which must match, etc.).

Each response set was then placed before any subsequent

queries, removing results from earlier queries, using a cus-

tom service that sends multiple queries to Solr to be pro-

cessed. Each query gets progressively more relaxed, using

various configurable parameters. The aim is to make the

most precise results appear at the top of the results list.

Queries are sent in parallel to achieve performance. By

doing this, we can aggregate the top 1000 results from

multiple queries in under a second.

Indexing the dataset (B, E)

To collect, manage and use human judgment data against re-

sults from our search system, we custom-built a web applica-

tion that has numerous features to capture human annotation

of search results. The web app also allowed us to highlight

conflicts between users, merge data and automate the compu-

tation of the evaluation metrics, including normalized dis-

counted cumulative gain (NDCG) and precision (23), and

integrate our key components. It generates a set of variant set

of queries, allows users to edit the generated Solr query, and

easily compare evaluation metrics for the changed query

against previous variants, for a user query. A team of domain

experts was hired to provide input into the system, by judging

results as ‘relevant’, ‘partially relevant’ or ‘not relevant’.

Overall, we selected 15 queries as our evaluation set.

This included the six queries that were provided as part of

the bioCADDIE Challenge along with the corresponding

judgment data. The rest of the queries were taken from the

larger set of initial sample queries provided and two add-

itional queries were created to better suit the expertise of

internal judges. Results for each of the queries were judged

by internal judges. Judgments were made based on the def-

initions of ‘relevant’, ‘partially relevant’ and ‘not relevant’

as specified in the challenge.

We asked the domain experts to consider synonyms or

alternative expressions which constituted the same concept

in the query, so they would not limit themselves to what a

baseline system would be able to match. For example, they

should include more specific forms of a concept, i.e. ‘dia-

betes type ii’ in a record for a query on ‘diabetes’ but not

more generic forms, i.e. ‘diabetes’ in a record for a query

on ‘diabetes type ii’.

Based on the data present in the display, duplicate re-

cords were judged individually. Some records had fewer

fields or truncated values; if insufficient data was present,

they could be judged in the same way as a more complete

record. Our final judgment set contained 1532 judgments

across 15 queries. However, the largest set per query was

only 163. We did find several queries for which no relevant

documents were identified; this raised the question of

whether this was intentional, if we had missed data, or if

there was another issue with the query itself.
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We were able to run continuous assessments against the

judgment data as we progressed, but the breadth and depth

of the coverage we were able to achieve did not provide

satisfactorily stable results. Given more time and effort, we

would be able to provide a more useful corpus, for future

evaluations.

Results

For our submissions, we ran the end-to-end system, start-

ing from the full natural language queries, to provide auto-

matic runs through two different setups. To improve the

results, we then modified the queries in different ways,

notably:

1. By expanding abbreviated species names, e.g. ‘M. mus-

culus’ to ‘Mus musculus’, and ‘D. melanogaster’ to

‘Drosophila melanogaster’;

2. By replacing Greek characters, e.g. ‘b’ to ‘beta’ and ‘j’

to ‘kappa’;

3. By removing additional stop words, and interstitial

phrases and trailing ‘s’.

In retrospect, these issues could have been dealt with as

follows:

1. If we had augmented the ontological data sources to in-

corporate the necessary variations we could have dealt

with these issues automatically. Although we spotted

these issues early on, resolving them would have meant

incorporating full ontologies, not just individual cases,

as we did not know which instances would occur in the

final test queries. We therefore chose to address these

by modifying the queries as necessary;

2. Greek characters could also have been handled with

mapping files;

3. The removal of additional terms aimed to reduce some

noise observed in other elements of our components;

this could have been done automatically, as well, but

the effort would have been more than treating this on a

case by case basis.

We uploaded five runs in our submission. The definitions,

components and ordering of runs 1–5 were as follows:

1. Using full queries as provided with the natural language

query processor followed by unigram query construc-

tion against an un-stemmed/lemmatized index, using

the single aggregated text field (automatic);

2. Using full queries with slight modification (abbrevi-

ation expansion on species names and replacing of

kappa character with letter k) and with field value

tagged plus embedding expansion query, against the

un-stemmed/lemmatized index (manual);

3. Using the full queries, applying a default configuration

of the concept expanded query and multiphase query

execution against a stemmed index (automatic);

4. Using modified queries (extra terms removed, abbrevi-

ated species names expanded, kappa character replaced

with k) applying the concept expanded query and

multiphase query execution against a stemmed index

(manual);

5. Using modified queries (same as 4) and concept ex-

panded queries but with no descendants included and

setting term boosts to 1, and without multiphase query

execution against a stemmed index (manual).

The results for our submission are shown in Table 2.

Our submission was scored along with all other partici-

pants using metrics that were defined by bioCADDIE. In

all ten groups submitted, up to five runs covered all 15 test

queries. Our fourth run achieved first place for both

P@10 6 partial measures and NDCG@10 measure, and

this is likely attributed to the use of the multiphase

query.execution. It scored eighth out of all runs (fourth in

terms of top runs from each group) for infNDCG and

eighth for infAP. Our fifth submission did slightly better

on infAP, scoring third in all runs (second in terms of top

runs from each group).

Table 2 only shows the final submission runs and their

subsequent evaluation scores as produced by the final judg-

ing rounds. We ran several additional configurations, the

numbers based on the limited judgment data we had at the

time and only gave general trends largely based on the two

approaches. We were unable to select the final configur-

ations purely on those numbers, so we had to also rely on a

degree of intuition based on observations. Of course, this

leaves open the opportunity for additional work to explore

Table 2. Results for our submissions as calculated by bioCADDIE using the inferred scoring scheme (27)

Run Submission infAP infNDCG NDCG@10 P@10 (þpartial) P@10 (-partial)

1 elsevier1.txt 0.2789 0.4292 0.5271 0.7 0.2667

2 elsevier2.txt 0.2963 0.3925 0.5242 0.7067 0.2667

3 elsevier3.txt 0.281 0.4219 0.5514 0.7133 0.3667

4 elsevier4.txt 0.3049 0.4368 0.6861 0.8267 0.4267

5 elsevier5.txt 0.3283 0.4235 0.6011 0.7133 0.34
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the parameter space. Unfortunately, we did not have time

to retrospectively score those runs using the final judgment

data made available and are therefore unable to include

any additional data, at this time.

We did not observe an improvement in our relevance

scores by the use of query expansions from word embed-

dings. Our runs showed that such extrinsic evaluation of

embeddings in search requires much tuning to get a high-

quality set of related words and phrases. Given the time we

had, we did not tune the embeddings to obtain improved

relevance scores. However, we also believe that this repre-

sents only one way of applying embeddings in search.

Other applications include using embeddings to obtain ag-

gregate vectors for documents and queries, and using a dis-

tance metric to drive search ranking.

Discussion

Observations and challenges

During the process of developing and running these pipe-

lines, we encountered a few obstacles, which are now

described (with topics highlighted in each paragraph).

The sample queries for the bioCADDIE Challenge

ranged from the simple identification of a disease (e.g. a

disease in quotes) through to a single phrase, encapsulating

several specific expressions that describe it. In some cases,

however, we were not able to address the second scenario,

due to a lack of domain knowledge in the development

team.

Another challenge we did not have time to address was

negation in the data. Interestingly, these negations were

not expressed in the queries themselves, which would have

added a further level of complexity. Negation can appear

in explicit instances such as the exclusion criteria for a clin-

ical study, which is often just expressed as free form text

rather than structured data.

A subtler problem presented itself when contradictory

information was presented. For instance, assigning ‘Mus

musculus’ as a species hit, would negate ‘Human’ as a pos-

sible match. This case is somewhat avoided by the natural

ranking pushing those with matching mentions of the

required concept above those without. However, identify-

ing such contradictory information and querying against it

could provide more explicit filtering.

The natural language used to express concepts caused a

problem when phrases included conjunctions, because it

obscured entities inside a regular expression. An example:

‘stage I, II and II breast cancer’ needs to be interpreted as

‘stage I breast cancer’, ‘stage II breast cancer’, ‘stage III

breast cancer’. This was further compounded by terms

being either simple adjectives or parts of a proper name.

Semantic disambiguation of concepts also posed other

challenges, e.g. a gene being called ‘anxiety’ (https://www.

ncbi.nlm.nih.gov/gene/493091) requires a deeper under-

standing of the text than simply matching the sequence of

words.

During search matching we did not leverage specific

fields for known entity types, which could have yielded

more specific matches. For example, when identifying an

organism, we could have restricted the higher boosting of

results to those with ‘species’ field values, as these are ex-

plicit mentions of the related concepts. This would have

distinguished them from the results with mere mentions in

other fields.

Although proximity boosting is supported by the toolset

we used, we did not use it as a means for approximating re-

lations between concepts (i.e. the closer two concepts are,

the more they are related). This tool could be applied in

combination with artificial gaps in the token indexing, by

spacing out sentences, paragraphs and separate fields (in

the case of an aggregate field). In the case of aggregated

fields, keeping related hierarchical fields closer together

would have been more useful than mixing fields in some

random order.

Pseudo-relevance feedback is an unsupervised method

for extracting keywords for query expansion. We took the

top results for an existing query as feedback, and extracted

a set of keywords from this document set, that were then

used to expand the query. However, in our measurements

we did not observe any improvement on the underlying

NDCG score and therefore we did not include this method

in our submission. We could have experimented with vari-

ations of the approach in how the feedback documents and

the candidate keywords are selected.

Future work

In summary, although we were quite satisfied with our re-

sultant rankings, there are a few points which would have

improved our submission, and which we would like to ad-

dress in the future.

Initially, we considered directly indexing the data items

associated with the metadata records, which we are doing

within Elsevier DataSearch. However, apart from costing a

significant greater amount of development resources, we

were concerned that there would be a time gap between

different versions of the data and metadata provided. Also,

it was unclear if other teams would be querying the same

primary data. Because we have experience in improving re-

sults when full datasets are indexed, this is worth following

up on in the future.

Secondly, we would have liked to incorporate deeper in-

formation extraction techniques and alternative knowledge
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representations in order to better match the concepts ex-

pressed in the queries against those in the data.

When covering such a wide domain as biomedical sci-

ence, it takes time and care to prepare domain knowledge

expressed as ontologies and other knowledge databases, to

provide a comprehensive coverage of the entire domain

and address semantic disambiguation issues. More use of

word embeddings in combination with an edit measure for

handling spelling variations and errors would fill these and

other gaps. Further work on concept proximity, as a basic

form of relatedness, would undoubtedly also improve the

system, and the functioning of the model which targets

portions of queries, assigns them to specific fields, and

expresses the entity class in question would be refined.

Standardizing the entire corpus to such a data model to

provide consistency is no small effort, however.

Overall, our results do show some degree of improve-

ment over bioCADDIE’s baseline system. At the time, we

were unable to effectively explore all hyper-parameter tun-

ing and configurations due to the sparsity of judgment data

available. Our efforts to increase the judgment data may

have been biased due to the expertise of judges in relation

to the queries being addressed, and may have been influ-

enced by the order in which the data was presented for

judging, leading to a lack of resources and time.

Now that the judgment data is available from the

bioCADDIE Challenge evaluations, we would like to in-

vestigate this issue in the future to fully explore some of

the parameter space. In addition, a more in-depth analysis

of the use of fastText for query expansion in the biomed-

ical domain is needed, as it has not yet been studied in de-

tail, nor reported in literature. This would further enable

us to handle the true nature of a ‘concept’ and how it can

be expressed in text, which we believe to be an interesting

topic of study, and one that can bring improvements in the

field of biomedical information retrieval.
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