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ABSTRACT
Background. Taraxacum mongolicum (TM) is a widely used herb. Studies have
reported that TM exhibits growth-inhibitory and apoptosis-inducing on multiple
tumors, including hepatocellular carcinoma (HCC). The active ingredients, targets,
and molecular mechanisms of TM against HCC need to be further elucidated.
Methods. We identified the active ingredients and targets of TM via HERB, PubChem,
SwissADME, SwissTargetPrediction, and PharmMapper. We searched HCC targets
from GeneCards, Comparative Toxicogenomics Database (CTD), and DisGeNET.
Then, the intersection of drug targets and disease targets was uploaded to the STRING
database to construct protein-protein interactions (PPI) networking whose topology
parameters were analyzed in Cytoscape software to screen hub targets. Next, we used
Metascape for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis, andwe employedAutoDock vina, AMBER18 andPyMOL
software along with several auxiliary tools for molecular docking and molecular
dynamics (MD) simulation. Finally, based on the in silico findings, cellular experiments
were conducted to investigate the effect of TM on HSP90AA1 gene expression.
Results. A total of 228 targets and 35 active ingredients were identified. Twenty two hub
targets were selected through PPI networking construction for further investigation.
The enrichment analysis showed that protein kinase binding, mitogenactivated protein
kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways
were mainly involved. Molecular docking and MD simulation results supported good
interaction between HSP90 protein and Austricin/Quercetin. The in vitro assay showed
that TM inhibited the proliferation of HepG2 cells and the expression of HSP90AA1
gene.
Conclusions. This study is the first to use network pharmacology, molecular docking,
MD simulation and cellular experiments to elucidate the active ingredients, molecular
targets, and key biological pathways responsible for TM anti-HCC, providing a
theoretical basis for further research.
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INTRODUCTION
Liver cancer is the second leading cause of cancer-related deaths globally, remains a
global health challenge (Sung et al., 2021). The epidemiological situation of liver cancer in
China is worse than in other countries worldwide. More than half of all deaths and newly
diagnosed cases are in China (Sung et al., 2021). Surveillance Epidemiology End Results
has reported that liver cancer is the fastest increasing cause of cancer-related deaths in the
USA since the early 2000s, and it is estimated that, by 2030, liver cancer is projected to
become the third leading cause of cancer-related deaths if these trends continue (Rahib et
al., 2014). Hepatocellular carcinoma (HCC), the major pathological type of primary liver
cancer, accounts for about 90% of all cases, and the morbidity is on the rise (Liver, 2018).
Despite significant improvements in the management of HCC, the prognosis remains
bleak. None of the current treatments will be sufficient to considerably decrease the
number of deaths due to HCC in the coming decades (Yang et al., 2019). Hepatectomy and
liver transplantation are considered potentially curative approaches for HCC. However,
only 10% of patients are eligible for resection since most of the patients will present with
advanced disease, and the post-resection 5-year recurrence rate of HCC is still statistically
as high as 70% (Kulik & El-Serag, 2019). Donor livers for transplantation are scarce, and
the problem of post-transplant relapse still exists. Sorafenib, the only currently available
standard of systemic therapy for HCC, is limited by its high toxicity and low response rate
(Kudo, 2018). Low long-term survival and high recurrence rates in HCC patients continue
to be obstacles to surmount. Adjuvant therapies to preclude relapse are an unmet medical
need for HCC (Llovet et al., 2021). Developing effective, low-toxicity complementary and
alternative drugs for HCC are essential since current treatments fail to achieve satisfactory
clinical outcomes.

TM is a widely used herb with the characteristics of extensive pharmacological action,
good security, high nutritional and medical value, which is worthy of in-depth study
and development application. The theory of traditional Chinese medicine (TCM) holds
that TM is bitter and sweet in taste, neutral in property, and effective in clearing liver
fire, which is specifically used to treat liver meridian and the corresponding organs. The
clinical usage of TM in liver diseases is instinctive and comes from popular knowledge
and experience. The first evidence of its therapeutic use is in the Arabian medicine in the
X and XI centuries to treat diseases of the liver and spleen (Martinez et al., 2015). The
hepatoprotective effects of TM have been identified in liver diseases such as hepatocellular
carcinoma (Rehman et al., 2017b), nonalcoholic fatty liver (Davaatseren et al., 2013), and
liver failure (Pfingstgraf et al., 2021). In recent years, extensive studies have reported the
growth-inhibitory and apoptosis-inducing of TM on multiple tumor cells, including HCC,
gastric cancer, lung cancer, and breast cancer (Chien et al., 2018; Deng et al., 2021; Park,
Cho & Song, 2014; Rehman et al., 2017a; Ren et al., 2019; Ren et al., 2020; Zhu et al., 2017),
but the mechanisms need to be further elucidated.

Based on the theory of system biology, network pharmacology covers high throughput
omics data analysis, computer virtual computing, and network database retrieval. It is
commonly used in biological systematic network analysis and is a new discipline capable
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of predicting drug targets from a holistic perspective and increasing the efficiency of drug
discovery (Boezio et al., 2017). Network pharmacology breaks the old limitation of ‘one
drug, one biological target’ research and is applied widely in active ingredient screening,
explanation of effective mechanism, and pathogenesis research (Hopkins, 2008). The
systematicness and integrity of network pharmacology coincide with the wholism of TCM,
which contribute to understanding the mechanism of multi-ingredient, multi-target, and
multi-pathway of herbs (Lai et al., 2020; Zhang et al., 2019). Molecular docking, based on
the principle of ligand–receptor interactions, serves as a versatile tool to help understanding
how chemical compounds interact with their molecular targets and finds wide application
in drug discovery (Ma, Chan & Leung, 2011; Pinzi & Rastelli, 2019). Molecular dynamics
(MD) simulation illuminates the dynamic behavior of biomolecules at atomic level with
fine quality representation of biomolecules (Vidal-Limon, Aguilar-Toala & Liceaga, 2022).

We applied network pharmacology, molecular docking, MD simulation and cellular
experiments to identify active ingredients, molecular targets, and key biological pathways
responsible for TM anti-HCC, providing a reference for the follow-up basis research. The
detailed workflow is shown in Fig. 1.

MATERIALS & METHODS
Active ingredients and predicted targets identification
The chemical components of TM were retrieved from the HERB (http://herb.ac.cn/)
database, a high-throughput experiment- and reference-guided database of TCM. HERB
not only contains data from SymMap, the Traditional Chinese Medicine Integrated
Database (TCMID), the Traditional Chinese Medicine Systems Pharmacology Database
and Analysis Platform (TCMSP), and TCM-ID databases, but also inherently adds
herbal species and corresponding targets, making it the most comprehensive herbal
bioinformatics database now (Fang et al., 2021). The 3D structures of the chemical
components downloaded from PubChem (https://pubchem.ncbi.nlm.nih.gov/) (Wang
et al., 2017b) were uploaded to SwissADME (http://www.swissadme.ch/) platform for
pharmacokinetics and drug-likeness assessment (Daina, Michielin & Zoete, 2017). Among
the chemical components with high gastrointestinal absorption, meeting both Lipinski’s
rule, and any two of Ghose, Veber, Egan and Muegge filters, were considered as the active
ingredients of TM. The predicted targets of the active ingredients were obtained from
SwissTargetPredictive (http://www.swisstargetprediction.ch/) platform, PharmMapper
Server (http://www.lilab-ecust.cn/pharmmapper/) and HERB database. High levels of the
predictive performance of SwissTargetPrediction are based on the similarity principle,
through reverse screening, within a sizeable collection of 376342 compounds (Daina,
Michielin & Zoete, 2019). PharmMapper Server, an updated integrated pharmacophore
matching platform, uses statistical methods for potential target identification, with a
database extracted from all the targets in TargetBank, DrugBank, Binding Database, and
Potential Drug Target Database (Wang et al., 2017a). All obtained targets were preserved
as gene symbols.
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Figure 1 Workflow of this study.
Full-size DOI: 10.7717/peerj.13737/fig-1

Disease targets and intersection targets collection
HCC disease targets were collected from GeneCards (Rappaport et al., 2017) (https:
//www.genecards.org/), Comparative Toxicogenomics Database (CTD) (Davis et al., 2021)
(http://ctdbase.org/), and DisGeNET (Pinero et al., 2020) (https://www.disgenet.org/home/)
databases, with the search term ‘‘Hepatocellular Carcinoma’’ ‘‘Adult Hepatocellular
Carcinoma’’ and species selected as humans. Only targets marked with ‘‘M’’ or ‘‘T’’ symbols
were accepted in the retrieval results of CTD. ‘‘M’’ indicates the targetmay be a biomarker or
play a role in the etiology ofHCC, and ‘‘T’’ indicates the targetmay be a therapeutic target of
HCC. The intersection of HCC disease targets and the predicted targets of active ingredients
was selected in Venny 2.1.0 (https://bioinfogp.cnb.csic.es/tools/venny/index.html). The
intersection targets obtained will be compared with differentially expressed genes in TCGA
Liver Cancer Dataset (n= 423, https://tcga.xenahubs.net).

Network construction and analysis
STRING covering 24+ million proteins from 5090 organisms is a database for constructing
known and predicted protein-protein interactions (PPI) networks (Szklarczyk et al., 2019).
Cytoscape is an authoritative and reliable tool for automated biological analysis and
visualization. It can integrate biomolecular interaction networks with high-throughput
gene expression data and other molecular state information and is often used to
analyze large-scale protein-protein interaction, protein-DNA interaction, and gene
interaction (Otasek et al., 2019). The intersection targets were uploaded to STRING11.0
(https://www.string-db.org/) to build a PPI network, with the species limited to ‘‘Homo
sapiens’’ and a confidence score ≤ 0.9. Topological parameters of the PPI network were
analyzed by the Network Analyzer tool in Cytoscape 3.8.2 software. The higher quantitative
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values, especially the degree and betweenness centrality in topological parameters, indicate
the greater importance of nodes. Targets with the degree and betweenness centrality values
above twice the mean were classified as hub targets. Similarly, the interworking network
of hub targets and active ingredients was constructed and analyzed by Cytoscape. Active
ingredients with the degree greater than the mean were classified as key ingredients.

GO and KEGG enrichment analysis and herb-ingredient-target
-pathway network construction
Metascape (https://metascape.org/gp/index.html#/main/step1), one of the effective and
efficient tools for functional enrichment analysis, evades confounding data interpretation
issues by absorbing most redundancies into representative clusters better than other ways
(Zhou et al., 2019). The hub targets were uploaded to Metascape for Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to clarify
their regulatory pathways and biological functions, with ‘‘Homo sapiens’’ as the analysis
species. Terms with a P-value < 0.01, a minimum count over three, and an enrichment
factor > 1.5 were considered significant enrichment. The Cytoscape software was used
to construct a herb-ingredient-target-pathway network based on KEGG results, and its
topological parameters were analyzed with the network analyzer tool therein.

Molecular docking
AutoDock Vina, a new generation of docking software from the Molecular Graphics Lab,
generally improves the average accuracy of the binding mode predictions and speeds
up operations using a terse scoring function compared to widely-used and most cited
AutoDock 4 (Nguyen et al., 2020). AutoDock Vina is a leader in the field of Molecular
Docking currently, and its results tend to be better than those obtained from more costly
high-throughput experimental screens and are well reproducible (Muegge & Mukherjee,
2016). The semi-flexible molecular docking calculation function of AutoDock Vina
software was used to predict the binding affinities between active ingredients and hub
targets. Docking results are output in binding free energy. Protein-ligand binding can
occur spontaneously only when the system free energy is negative. The lower the energy,
the higher the affinity, and the stronger the binding force is between the ingredient and the
protein. It is generally accepted that the binding is strong when the binding free energy is
less than −5.0 kcal/mol (Hamza et al., 2021). The 3D structures of targets were obtained
from the PDB (https://www.rcsb.org/) database before docking. Firstly, ligands, non-protein
molecules, and water molecules were removed from the 3D structures by PYMOL2.5.0
software, then hydrogenation, charge addition, and residues repair were conducted in
AutoDock Vina, and finally, they were saved in PDBQT format for use as receptors for
docking. Likewise, the 3D structures of the active ingredients were converted to PDB format
by OpenBabel3.1.1 software, then hydrogenated and energy minimized in AutoDock Vina,
and finally, they were transformed into PDBQT format for use as ligands for docking.
Molecular docking was carried out at Deepsite (https://www.playmolecule.com/deepsite/)
predicted binding sites by AutoDock Vina, and the docking results were visualized by
PyMOL.
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Molecular dynamics (MD) simulation
The AMBER18 software package was used for MD simulations, and ingredients were
parameterized with ANTECHAMBER module and GAUSSIAN09 software (Salomon-
Ferrer, Case & Walker, 2013). FF14SB force field was used to process the proteins, and
GAFF2 force field was used to process the ingredients. The addition of hydrogen atoms and
sodium ions to protein-ingredient complexes was accomplished in LEaP module to ensure
overall charge neutrality. Solvation of each complex was performed with the TIP3P water
model. The MD simulation was realized with three steps: energy optimization, system
equilibrium and dynamics simulation production. Energy optimization was performed
using the steepest descent method of 2,500 steps, followed by conjugate gradient method,
for 2,500 steps. Position-restrained dynamics simulations (NVT and NPT) were performed
at 300 K for 500 ps to achieve system equilibrium. Finally, the system was subjected to
a molecular dynamics simulation (NPT) for 100 ns under periodic boundary conditions
(PBC), with collision frequency 2 ps−1, system pressure 1 atm, integration step 2 fs, and
the trajectory data was saved every 10 ps. Furthermore, the binding free energy of proteins
and ingredients was calculated using MM/GBSA.

Cell lines and cell culture
The human HCC cell lines HepG2 were purchased from the Chinese Academy of Sciences.
HepG2 cells were cultured inDMEM(Gibco, China) containing 10%FBS (Gibco,Uruguay)
and 1% penicillin/streptomycin at 37 ◦C in the cell incubator with a humid atmosphere
containing 5% CO2. Cell operations were performed on an ultra-clean workbench at all
times.

Cell counting kit-8 (CCK8) assay
The HepG2 cells were seeded in a 96-well plate at a density of 5 × 103 cells/well after 80%
confluence of the recovered cells. Treatment with various concentrations of TM extract (0,
5, 10, 15, and 20 mg/ml) for 24 h in a 5% CO2 incubator at 37 ◦C after the cells attached
to the wall completely. Then 10ul CCK-8 buffer (Dojindo, Japan) was added to each well
and incubated for 1 h. A negative control well was set up without seeding cells. Each group
was equipped with six auxiliary holes. TM extract (20:1) was purchased from Shaanxi Ivy
Bioengineering Co. The absorbance value of each well was measured using a continuous
spectrum scanning microplate reader (Molecular Devices, USA) at a wavelength of 450 nm.

Reverse transcription quantitative polymerase chain reaction
(RT-qPCR) analysis
FastPure Cell/Tissue Total RNA Isolation Kit V2 (Vazyme, China) was applied for total
RNA isolation according to the product instruction. The quality of total RNAwas accredited
by ScanDrop2 (Analytik, Jena, Germany). One microgram of the total RNA was used for
cDNA synthesis following the HiScript III RT SuperMix for qPCR (Vazyme, China)
instruction. Measurement of the relative expression of mRNA by RT-qPCR using TB
Green R© Premix Ex TaqTM II (TAKARA, Japan). β-Actin gene was served as the internal
reference and the 2−11Ct method was adopted for the data analysis. The primer sequences
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Table 1 RT-qPCR primer sequences.

Gene 5′to 3′

HSP90AA1 Forward GGTCCTGTGCGGTCACTTA
Reverse TTCTGCCTGAAAGGCGAACG

β-Actin Forward CCTTCCTGGGCATGGAGTC
Reverse TGATCTTCATTGTGCTGGGTG

of β-Actin and HSP90AA1 were synthesized by Tsingke Biotechnology Co., Ltd (Beijing,
China, Table 1).

Statistical analysis
Data were presented as mean± standard deviation (SD). Statistical analysis was performed
using GraphPad Prism 9.0 software. The two-tailed unpaired Student’s t -test was used
for comparisons between two groups, the one-way ANOVA was used for comparisons
between multiple groups, and the difference was statistically significant at p< 0.05.

RESULTS
Active ingredients and predicted targets of TM
A total of 72 components of TM were searched from HERB database, of which 35 active
ingredients were identified by SwissADME (Table 2). The number of targets predicted
from SwissTargetPrediction, PharmMapper Server, and HERB for active ingredients was
578, 423, and 417, respectively. A total of 1,126 predicted targets were retained after the
duplicates were eliminated.

Disease targets and intersection targets
A total of 1437 HCC disease targets were collected, of which 778 fromGeneCards, 509 from
CTD, and 150 from DisGENET. After the duplicates were removed, 1,223 targets were
obtained. A total of 228 intersection targets were identified by VENNY2.1.0, as shown in
Fig. 2. All the intersection targets were among the differentially expressed genes in TCGA
Liver Cancer Dataset, see supplementary file.

PPI network and hub targets
The PPI network was co-constructed by STRING and Cytoscape (Fig. 3), which contains
227 nodes and 5,867 edges, with one dissociative target removed. The average of
degree, betweenness centrality, and closeness centrality are 51.6916, 0.0038, and 0.5459,
respectively. The node size is proportional to the degree value. Twenty-two targets with
degree and betweenness centrality values above twice the mean were categorized into hub
targets (Table 3). The color of the hub targets is deepened in the figure.

Ingredient-hub target network and key ingredients
The ingredient–hub target network comprising 58 nodes and 210 edges (Fig. 4) was
constructed. The active ingredient nodes are in a circular layout and the hub targets are in
a grid layout. The network analysis showed that the average degree value of the ingredients
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Table 2 Thirty-five active ingredients of TM.

Herb id PubChem CID Active ingredients SwissADME

GI Lipinski Ghose Veber Egan Muegge

HBIN001773 5371272 1,6,6-Trimethyl-7-[(Z)-3-oxobut-1-enyl]-3,8-
dioxatricyclo[5.1.0.02,4]octan-5-one

High Yes Yes Yes Yes Yes

HBIN005643 7362 Furfural High Yes Yes Yes
HBIN006828 582907 2-t-Butyl-5-methyl-[1,3]dioxolane-

4-carboxylic acid
High Yes Yes Yes Yes

HBIN008384 536539 1-(3,7,7-Trimethyl-4-bicyclo
[4.1.0] hept-3-enyl)ethanone

High Yes Yes Yes Yes

HBIN008798 1183 Vanillin High Yes Yes Yes
HBIN010490 19376246 Diacetone alcohol High Yes Yes Yes
HBIN010946 551125 5,10-Diethoxy-2,3,7,8-tetrahydro-1H,

6H-dipyrrolo[1,2-a:1′,2′-d]pyrazine
High Yes Yes Yes Yes Yes

HBIN012161 538983 6-Acetyl-4,4,7-trimethylbicyclo[4.1.0]
heptan-2-one

High Yes Yes Yes Yes

HBIN016904 13864723 Arsanin High Yes Yes Yes Yes Yes
HBIN016938 101245659 Artecalin High Yes Yes Yes Yes Yes
HBIN017758 243 Benzoic acid High Yes Yes Yes
HBIN019298 689043 Caffeic acid High Yes Yes Yes Yes
HBIN023435 6713966 Austricin High Yes Yes Yes Yes Yes
HBIN025796 5281416 Esculetin High Yes Yes Yes
HBIN025897 5317238 Ethyl caffeate High Yes Yes Yes Yes Yes
HBIN025971 28310 Ethyl 4-hydroxyphenylacetate High Yes Yes Yes Yes
HBIN033339 5280934 Linolenic acid High Yes Yes
HBIN035129 689075 Methyl caffeate High Yes Yes Yes Yes
HBIN035816 518900 Methyl 4-hydroxyphenylacetate High Yes Yes Yes Yes
HBIN036159 11005 Myristic acid High Yes Yes Yes
HBIN038680 985 Palmitic acid High Yes Yes Yes
HBIN039500 999 Phenylacetic acid High Yes Yes Yes
HBIN039666 127 4-Hydroxyphenylacetic acid High Yes Yes Yes
HBIN039673 54675830 4-Hydroxybenzoate High Yes Yes Yes
HBIN039707 10394 3-(4-Hydroxyphenyl)propionic acid High Yes Yes Yes Yes
HBIN040911 8768 3,4-Dihydroxybenzaldehyde High Yes Yes Yes
HBIN041495 5280343 Quercetin High Yes Yes Yes Yes Yes
HBIN043442 5280460 Scopoletin High Yes Yes Yes Yes
HBIN044329 101702520 Sonchuside A High Yes Yes Yes Yes Yes
HBIN045261 443023 (+)-Syringaresinol High Yes Yes Yes Yes Yes
HBIN045547 5241825 Taraxacin High Yes Yes Yes Yes Yes
HBIN045548 9921439 Taraxinic acid High Yes Yes Yes Yes Yes
HBIN046806 5280535 p-Coumaryl alcohol High Yes Yes Yes
HBIN046808 641301 p-Coumaraldehyde High Yes Yes Yes
HBIN048047 54690394 D-Ascorbic acid High Yes Yes Yes
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Figure 2 Intersection targets. A total of 228 intersection targets were identified by VENNY2.1.0.
Full-size DOI: 10.7717/peerj.13737/fig-2

Figure 3 The PPI network. The node size is proportional to the degree value. The color of the hub tar-
gets is deepened in the figure.

Full-size DOI: 10.7717/peerj.13737/fig-3

is six. Fourteen active ingredients with the degree values higher than six were classified as
key ingredients (Table 4). The blue V-shaped nodes in the figure represent the hub targets.

GO and KEGG enrichment analysis
Metascape was used to elucidate the biological process (BP), cell composition (CC), and
molecular function (MF) annotation of the 22 hub targets. A total of 883 GO terms were
obtained, including 807 of BP, 36 of CC, and 40 of MF. The top 20 terms ranked by
log (q-value) are shown in Fig. 5. The larger the dot, the more targets are involved. The
main biological processes involved in the hub targets are gland development, epithelial
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Table 3 Twenty-two hub targets.

NO. Hub target Betweenness centrality Closeness centrality Degree

1 GAPDH 0.069492108 0.795774648 168
2 TP53 0.040729912 0.784722222 165
3 AKT1 0.039453643 0.771331058 160
4 MYC 0.02413519 0.736156352 146
5 ALB 0.044293226 0.736156352 145
6 EGFR 0.015531628 0.70846395 134
7 MAPK3 0.01953981 0.70846395 134
8 VEGFA 0.017537919 0.704049844 133
9 CASP3 0.011495283 0.704049844 132
10 STAT3 0.011020537 0.701863354 131
11 CCND1 0.013690985 0.691131498 128
12 JUN 0.011489939 0.695384615 128
13 PTEN 0.013589929 0.68902439 126
14 EGF 0.014214947 0.691131498 126
15 IL6 0.01571605 0.691131498 126
16 MAPK1 0.014283335 0.68902439 125
17 MAPK8 0.014546931 0.684848485 124
18 HRAS 0.009985322 0.682779456 122
19 SRC 0.011244283 0.678678679 121
20 TNF 0.007928097 0.672619048 117
21 ESR1 0.012107136 0.664705882 114
22 HSP90AA1 0.011944643 0.660818713 113

cell proliferation, positive regulation of transferase activity, positive regulation of protein
phosphorylation, and MAPK cascade. The hub targets widely consist in intracellular and
extracellular structures, such as vesicle lumen, membrane raft, membrane microdomain,
secretory granule lumen, and cytoplasmic vesicle lumen. Protein kinase binding is an
important molecular function of the hub targets since the largest number of targets are
involved, and six of the top 20 terms are related to protein kinases. KEGG pathway
annotation of the hub targets yielded 217 terms. The top 20 terms ranked by gene ratio are
shown in Fig. 5, eight of which pertain toHCC, including pathways in cancer, proteoglycans
in cancer, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase
(PI3K)/Akt signaling pathway, epidermal growth factor receptor (EGFR) tyrosine kinase
inhibitor resistance, foxo signaling pathway, ErbB signaling pathway, and MicroRNAs in
cancer. The pathways in cancer and proteoglycans in cancer are the terms that involve
the highest number of targets. Inspection of the detailed pathway information revealed
that these two terms contain multiple pathways, such as the MAPK signaling pathway,
the PI3K/AKT signaling pathway, the janus kinase/signal transducer and activator of
transcription (JAK/STAT) signaling pathway, and hypoxia-inducible factor-1 (HIF-1)
signaling pathway, where most of the targets are located in the MAPK signaling pathway
and PI3K/AKT signaling pathway. We speculated that the MAPK signaling pathway, the
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Figure 4 The ingredient-hub target network. The active ingredient nodes are in a circular layout and the
hub targets are in a grid layout. The blue V-shaped nodes in the figure represent the hub targets.

Full-size DOI: 10.7717/peerj.13737/fig-4

PI3K/AKT signaling pathway, and the targets involved play an important role in the
mechanism of TM anti-HCC.

Herb-ingredient-target-pathway network
The herb-ingredient-target-pathway network, containing 57 nodes and 384 edges, was
constructed (Fig. 6). The purple hexagon node denotes TM, blue V-shaped nodes denote
the key ingredients, red circle nodes denote the hub targets, and green diamond nodes
denote pathways.

Molecular docking and MD simulations
Considering the results of KEGG pathway enrichment analysis and network analysis, we
selected 12 (TP53, AKT1, MYC, EGFR, MAPK3, VEGFA, CCND1, PTEN, EGF, IL-6,
HRAS, HSP90AA1) hub targets to dock with the key ingredients using AutoDock Vina,
the PDB IDs and structures of proteins are shown in Table 5. A total of 168 docking results
were obtained, of which 139 showed binding energies below −5.0 kcal/mol-1 (Fig. 7).
Quercetin, Sonchuside A, ethyl caffeate, taraxinic acid, and Austricin play an important
role for TM anti-HCC since they bind well to each target. CCND1, PTEN, HRAS, and
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Table 4 Fourteen key ingredients of TM.

Herb ID PubChem CID Key ingredients Degree 3D structure

HBIN041495 5280343 Quercetin 18

HBIN038680 985 Palmitic acid 12

HBIN033339 5280934 Linolenic acid 12

HBIN025796 5281416 Esculetin 10

HBIN044329 101702520 Sonchuside A 9

HBIN025971 28310 Ethyl 4-hydroxyphenylacetate 9

HBIN008384 536539 1-(3,7,7-Trimethyl-4-bicyclo
[4.1.0] hept-3-enyl)ethanone

8

HBIN048047 54690394 D-Ascorbic acid 8

HBIN025897 5317238 Ethyl caffeate 8

HBIN019298 689043 Caffeic acid 8

HBIN045548 9921439 Taraxinic acid 7

HBIN035129 689075 Methyl caffeate 7

(continued on next page)
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Table 4 (continued)

Herb ID PubChem CID Key ingredients Degree 3D structure

HBIN023435 6713966 Austricin 7

HBIN008798 1183 Vanillin 7

Figure 5 GO and KEGG enrichment analysis. The GO results are presented as bubble plots. The larger
the dot, the more targets are involved. The KEGG results are presented as a chord plot.

Full-size DOI: 10.7717/peerj.13737/fig-5
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Figure 6 The herb-ingredient-target-pathway network. The purple hexagon node denotes TM, blue
V-shaped nodes denote the key ingredients, red circle nodes denote the hub targets, and green diamond
nodes denote pathways.

Full-size DOI: 10.7717/peerj.13737/fig-6

HSP90AA1 are the priority targets since their binding energy to each ingredient is lower
than −5.0 kcal/mol-1. The binding energies of HSP90AA1 to Austricin, HSP90AA1 to
Quercetin, PTEN to Sonchuside A, HRAS to Quercetin, and MAPK3 to Austricin are the
five lowest and visualized by PYMOL (Fig. 8). MD simulations of the above five complexes
were carried out, to further confirm precise binding mechanisms and interaction stability.
RMSD, RMSF, binding free energy, and energy components were reported for individual
complexes. The RMSD of HSP90AA1 with Austricin and HSP90AA1 with Quercetin
remained stable through the whole simulationG, indicating the high stability of these two
complexes (Figs. 9A, 9B). Violent fluctuation of RMSD indicates violent motion of the
complex, and conversely, stable motion. RMSF results showed that HSP90AA1 was in
a low-flexible stable state after conjugation with Austricin/Quercetin (Figs. 9C, 9D). As
shown in Fig. 10, the conformations of theHSP90AA1-Austricin andHSP90AA1-Quercetin
complexes were consistent pre and post simulation, with high protein overlap. Austricin sits

Zheng et al. (2022), PeerJ, DOI 10.7717/peerj.13737 14/29

https://peerj.com
https://doi.org/10.7717/peerj.13737/fig-6
http://dx.doi.org/10.7717/peerj.13737


Figure 7 The binding free energy of molecular docking. The results of molecular docking are presented
as a heat map. The darker the color, the lower the binding energy and the more stable the binding.

Full-size DOI: 10.7717/peerj.13737/fig-7

within the pocket formed by hydrophobic amino acids such as PHE123, VAL121, TYR124,
LEU92, LEU89, VAL135, ILE89, LEU88, and TRP147. Quercetin binds hydrophobically
to ALA40, THR169, ASN36, PHE123, LEU92, VAL135, MET83, VAL171, TYR124 on
HSP90AA1. The hydrogen bonding interaction between ASP78/SER37 on HSP90AA1 and
Quercetin contributes to the stability of the complex. The binding free energies and energy
components of these two complexes are shown in Table 6.

TM inhibits proliferation and HSP90AA1 gene expression of HCC cells
It is observed microscopically that TM-treated HepG2 cells grew slowly and did not adhere
firmly to the wall after 24 h of culture compared to the control group (Fig. 11A). CCK8
assay revealed a concentration-dependent inhibition of the proliferation of HepG2 cells
in TM treatment. Except for 5 mg/ml, the other different doses of treatment groups (10
mg/ml, 15 mg/ml, 20 mg/ml) showed significant inhibitory effects on the proliferation
of HepG2 cells compared to the 0 mg/ml group (Fig. 11B). In addition, it was found
that the half-maximal inhibitory concentration (IC50) value of TM on HepG2 cells was
6.911 mg/ml (Fig. 11C). Based on the IC50 value, we used RT-qPCR assay to analyse the
regulatory effects of TM on HSP90AA1 gene to validate the in silico results. As shown in
Fig. 11D, TM significantly inhibited the mRNA expression of HSP90AA1 (P < 0.05).
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Table 5 PDB IDs and structures of the proteins for molecular docking.

Target PDB ID Structure

TP53 6SL6

AKT1 6HHI

MYC 6G6K

EGFR 6S9C

MAPK3 2ZOQ

(continued on next page)
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Table 5 (continued)

Target PDB ID Structure

VEGFA 3QTK

CCND1 2W9F

PTEN 7JVX

EGF 1JL9

IL6 7NXZ

(continued on next page)
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Table 5 (continued)

Target PDB ID Structure

HRAS 7DPJ

HSP90AA1 4BQG

DISCUSSION
TM is a widely used herb. Previous studies have shown its treatment potential targeting
various malignant tumors, including HCC, but the detailed underlying effector mechanism
remains unclear. This study combined network pharmacology analysis and computer
virtual verification to provide a specific anti-HCC mechanism of TM, with the aim of
providing a basis for further research and clinical application of TM anti-HCC.

In this study, we recognized 22 hub targets and 14 key ingredients by network analysis.
Majority of the hub targets belong to MAPK and PI3K/Akt signaling pathways, such as
P53, AKT1, MYC, EGFR, MAPK3, VEGFA, EGF, IL-6, RAS. The function of the MAPK
signaling pathway is to transmit extracellular signals to the nucleus, thus regulating cell
proliferation, differentiation, apoptosis, and autophagy. The MAPK pathway remains
activated in approximately 90% of liver cancers, which is known to be the crucial pathway
in proliferation and metastasis of carcinoma cells (Moon & Ro, 2021). The MAPK pathway
is one of the important mechanisms of sorafenib in the treatment of HCC (Kim et al.,
2018). PI3K/AKT, one of the major intracellular signaling pathways, is frequently activated
in HCC. It regulates divers cellular functions, such as cell apoptosis, cell migration,
angiogenesis. Activation of the PI3K/AKT pathway is significantly associated with reduced
overall survival inHCC.There is also crosstalk between theMAPKandPI3K/AKTpathways.
MAPK inhibition results in a negative feedback loop that activates the PI3K/AKT pathway
(Mirzoeva et al., 2009). Therefore, drugs targeting both theMAPK and PI3K/AKT pathways
should be an excellent therapeutic strategy for HCC. Considering the importance of these
two pathways, the hub targets associated with them were selected to dock with the key
ingredients.
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Figure 8 Five best dockings with visualization by PYMOL. (A) Austricin binds to one residue (TYR139)
in HSP90AA1. (B) Quercetin binds to two residues (GLY135, SER522) in HSP90AA1. (C) Sonchuside
A binds to four residues (ASN323, ARG173, ARG172, GLN149) in PTEN. (D) Quercetin binds to two
residues (ALA146, LYS147) in HRAS. (E) Austricin binds to one residue (MET125) in MAPK3.

Full-size DOI: 10.7717/peerj.13737/fig-8

The 14 key ingredients, including Quercetin, Palmitic acid, Linolenic acid, Esculetin,
Sonchuside A, Ethyl 4-hydroxyphenylacetate, 1-(3,7,7-Trimethyl-4-bicyclo[4.1.0], hept-3-
enyl)ethanone, D-Ascorbic acid, Ethyl caffeate, Caffeic acid, Taraxinic acid,Methyl caffeate,
Austricin, and Vanillin, exhibit significant anti-HCC effects. For example, Quercetin
induces apoptosis in hepatocellular carcinoma cells in vivo and in vitro by regulating
multiple pathways such as PI3K/Akt, MAPK/ERK, and JAK/STAT (Fernandez-Palanca
et al., 2019; Ji et al., 2019; Salama et al., 2019; Wu et al., 2019a; Yamada, Matsushima-
Nishiwaki & Kozawa, 2021). The increase of metastasis potential of hepatocarcinoma
cells usually accompanies the down-regulation of a variety of phospholipid molecules
containing palmitic acid. Palmitic acid decreases membrane fluidity of hepatocarcinoma
cells by disrupting glucose uptake and lactate production, which impedes the progression
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Figure 9 RMSD and RMSF of MD simuiation. (A) The RMSD of HSP90AA1-Austricin remained stable
through the whole simulation. (B) The RMSD of HSP90AA1-Quercetin remained stable through the
whole simulation. (C) The RMSF of HSP90AA1 when conjugation with Austricin. (D) The RMSF of
HSP90AA1 when conjugation with Quercetin.

Full-size DOI: 10.7717/peerj.13737/fig-9

of HCC (Lin et al., 2017). Linolenic with anticancer, antioxidant, anti-atherosclerotic,
antibacterial, and anti-inflammatory activities realizes the chemoprotective effects via
ameliorating the hypoxia microenvironment and regulating mitochondria-mediated
apoptotic and anti-inflammatory pathways in diethylnitrosamine induced HCC (Cui et
al., 2018; Dubey, Sharma & Kumar, 2019). The cytotoxic effect of Ethyl caffeate on HepG2
hepatoma cells has been demonstrated, but the mechanism remains an open question (He
et al., 2009).

The molecular docking results indicate that Quercetin, Sonchuside A, Ethyl caffeate,
Taraxinic acid, and Austricin exhibited superior targeting ability to the hub targets.
CCND1, PTEN, RAS, and HSP90 may be critical targets of TM anti-HCC based on binding
energy. CCND1, PTEN, and HSP90 are proteins in the PI3K/AKT pathway, PTEN and
HSP90 in the upstream, while CCND1 belongs to the downstream effector protein. PTEN
is an oncogene with protein phosphatase activity and lipid phosphatase activity, and has
been correlated with tumor growth, metastasis and chemoresistance (Alvarez-Garcia et
al., 2019). PTEN negatively regulates the PI3K/AKT pathway through dephosphorylation
of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and eventually participates in the
modulation of cell proliferation, migration, invasion, and drug resistance during HCC
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Figure 10 Pre- and post-MD simulation conformations and specific binding sites of the HSP90AA1-
Austricin and HSP90AA1-Quercetin complexes. (A) Binding mode of HSP90AA1-Austricin. (B) Binding
mode of HSP90AA1-Quercetin.

Full-size DOI: 10.7717/peerj.13737/fig-10

Table 6 The binding free energy and energy components of MD simulation.

System name HSP90AA1-Austricin HSP90AA1-Quercetin

1Evdw −33.54± 0.97 −30.62± 0.82
1E elec 1.33± 1.08 −45.59± 1.20
1GGB 11.21± 1.15 43.64± 0.76
1GSA −3.98± 0.05 −5.03± 0.06
1Gbind −24.97± 0.94 −37.60± 0.51

Notes.
1EvdW: van der Waals energy.
1Eelec: electrostatic energy.
1GGB: electrostatic contribution to solvation.
1GSA: non-polar contribution to solvation.
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Figure 11 Results of cellular experiments. (A) Microscopic appearance of cells in the control and TM
treatment groups after 24 h of cultivation. (B) The results of CCK8 assay and the difference in absorbance
value between groups. (C) The dose-inhibition curve of TM at 24 h. (D) Differential expression of the
HSP90AA1 gene. **P < 0.01, ****P < 0.0001.

Full-size DOI: 10.7717/peerj.13737/fig-11

progression (Jiang et al., 2018; Ohta et al., 2015). HSP90, a member of heat shock proteins,
plays an important role in the assembly, manipulation, folding and degradation of its
client proteins. HSP90 is closely associated with tumors due to its regulation of many
client proteins that are proto-oncogene products or important signal transduction factors
in tumorigenesis (Shi et al., 2020). Previous studies have confirmed that HSP90 is highly
expressed in HCC and promises to be a new diagnostic marker and therapeutic target
(Xu et al., 2017). Activation of AKT by HSP90 regulates cellular autophagy and apoptosis
mediated by the PI3K/AKT pathway, which is associated with tumor recurrence and drug
resistance (Hu et al., 2015). CCND1 is an important cell cycle regulatory protein that
promotes the proliferation of cancer cells by forming a cell cycle-dependent complex
with cyclin-dependent kinase 4 (CDK4), which contributes to the development of many
tumor diseases, including HCC (Tashiro et al., 2003). Activation of the PI3K/AKT pathway
induces the accumulation of CCND1, which consequently promotes abnormal hepatocyte
proliferation and carcinogenesis (Wu, Lan & Liu, 2019b). RAS is a protein on the MAPK
signaling pathway, through which crosstalk between MAPK and PI3K/AKT pathways is
achieved. PI3K can be activated by RAS superfamily of GTPases, the interaction of RAS
and PI3K plays a key role in promoting tumor formation and maintenance in RAS-driven
tumors (Siempelkamp et al., 2017). RAS significantly promotes cell proliferation in HCC by
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activating both MAPK and PI3K/AKT pathways (Shen et al., 2016). Therefore, the targets
derived from the MAPK and PI3K/AKT pathways of the key ingredients are important for
the prevention and treatment of HCC.

The HSP90 protein consists of an N-terminal domain, an middle domain and a C-
terminal domain. The N-terminal domain is a dimeric structure containing an ATP
binding site. The middle domain and the C-terminal domain are the binding regions
for substrate proteins and helper molecular chaperones. HSP90 are characterized by a
distinct ‘Bergerat fold’ in the N-terminal ATP-binding domain (Chene, 2002). Occupancy
of this pocket by small molecule inhibitors inactivates HSP90 chaperone function. It is
well established that N-terminal inhibition of HSP90 is effective in inhibiting tumour
cell activity in vitro and 18 N-terminal inhibitors of HSP90 have been developed with
clinical evaluation (Patel et al., 2013). In this study, we obtained a stable binding model of
Austricin/Quercetin to the N-terminal ATP-binding domain of HSP90 through molecular
docking and MD simulations. Therefore, it is speculated that the N-terminal inhibition of
HSP90 by Austricin/Quercetin may contribute to the anti-HCC of TM.

CONCLUSION
In summary, the active ingredients of TM and their molecular targets in HCC were
successfully unveiled by network pharmacology, molecular docking, MD simulation, and
cellular experiments. A total of 14 key ingredients and 22 hub targets were identified.MAPK
and PI3K/AKT signaling pathways were found to be potentially primarily responsible for
TM anti-HCC. The interaction between Austricin/Quercetin and HSP90 is important
for the mechanism of TM anti-HCC. TM may serve as a promising complementary and
alternative drug for HCC but needs further in vivo/in vitro experiments. This study provides
a holistic view of the potential pharmacological mechanisms for TM anti-HCC, establishing
the foundations for further study on the optimization of experimental designs for more
reliable results.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Sichuan Province Key R&D Plan Project (No.
2020YFS0301) and the Sichuan Province Applied Basic Research Project (2021YJ0253).
The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The Sichuan Province Key R&D Plan Project: 2020YFS0301.
The Sichuan Province Applied Basic Research Project: 2021YJ0253.

Competing Interests
The authors declare there are no competing interests.

Zheng et al. (2022), PeerJ, DOI 10.7717/peerj.13737 23/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.13737


Author Contributions
• Yanfeng Zheng conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.
• Shaoxiu Ji performed the experiments, analyzed the data, prepared figures and/or tables,
and approved the final draft.
• Xia Li performed the experiments, analyzed the data, prepared figures and/or tables, and
approved the final draft.
• Quansheng Feng conceived and designed the experiments, authored or reviewed drafts
of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw measurements are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.13737#supplemental-information.

REFERENCES
Alvarez-Garcia V, Tawil Y, Wise HM, Leslie NR. 2019.Mechanisms of PTEN

loss in cancer: it’s all about diversity. Seminars in Cancer Biology 59:66–79
DOI 10.1016/j.semcancer.2019.02.001.

Boezio B, Audouze K, Ducrot P, Taboureau O. 2017. Network-based approaches in
pharmacology.Molecular Informatics 36:1700048 DOI 10.1002/minf.201700048.

Chene P. 2002. ATPases as drug targets: learning from their structure. Nature Reviews
Drug Discovery 1:665–673 DOI 10.1038/nrd894.

Chien JT, Chang RH, Hsieh CH, Hsu CY,Wang CC. 2018. Antioxidant property of
Taraxacum formosanum Kitam and its antitumor activity in non-small-cell lung
cancer cells. Phytomedicine 49:1–10 DOI 10.1016/j.phymed.2018.06.011.

Cui H, Han F, Zhang L,Wang L, KumarM. 2018. Gamma linolenic acid regulates
PHD2 mediated hypoxia and mitochondrial apoptosis in DEN induced hep-
atocellular carcinoma. Drug Design, Development and Therapy 12:4241–4252
DOI 10.2147/DDDT.S178519.

Daina A, Michielin O, Zoete V. 2017. SwissADME: a free web tool to evaluate pharma-
cokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.
Scientific Reports 7:42717 DOI 10.1038/srep42717.

Daina A, Michielin O, Zoete V. 2019. SwissTargetPrediction: updated data and new
features for efficient prediction of protein targets of small molecules. Nucleic Acids
Research 47:W357–W364 DOI 10.1093/nar/gkz382.

DavaatserenM, Hur HJ, Yang HJ, Hwang JT, Park JH, KimHJ, KimMJ, Kwon DY,
SungMJ. 2013. Taraxacum official (dandelion) leaf extract alleviates high-fat

Zheng et al. (2022), PeerJ, DOI 10.7717/peerj.13737 24/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.13737#supplemental-information
http://dx.doi.org/10.7717/peerj.13737#supplemental-information
http://dx.doi.org/10.7717/peerj.13737#supplemental-information
http://dx.doi.org/10.1016/j.semcancer.2019.02.001
http://dx.doi.org/10.1002/minf.201700048
http://dx.doi.org/10.1038/nrd894
http://dx.doi.org/10.1016/j.phymed.2018.06.011
http://dx.doi.org/10.2147/DDDT.S178519
http://dx.doi.org/10.1038/srep42717
http://dx.doi.org/10.1093/nar/gkz382
http://dx.doi.org/10.7717/peerj.13737


diet-induced nonalcoholic fatty liver. Food and Chemical Toxicology 58:30–36
DOI 10.1016/j.fct.2013.04.023.

Davis AP, Grondin CJ, Johnson RJ, Sciaky D,Wiegers J, Wiegers TC, Mattingly CJ.
2021. Comparative toxicogenomics database (CTD): update 2021. Nucleic Acids
Research 49:D1138–D1143 DOI 10.1093/nar/gkaa891.

Deng XX, Jiao YN, Hao HF, Xue D, Bai CC, Han SY. 2021. Taraxacum mongolicum
extract inhibited malignant phenotype of triple-negative breast cancer cells in
tumor-associated macrophages microenvironment through suppressing IL-
10/STAT3/PD-L1 signaling pathways. Journal of Ethnopharmacology 274:113978
DOI 10.1016/j.jep.2021.113978.

Dubey KKD, Sharma G, Kumar A. 2019. Conjugated linolenic acids: implica-
tion in cancer. Journal of Agricultural and Food Chemistry 67:6091–6101
DOI 10.1021/acs.jafc.9b01379.

Fang SS, Dong L, Liu L, Guo JC, Zhao LH, Zhang JY, Bu DC, Liu XK, Huo PP, Cao
WC, Dong QY,Wu JR, Zeng XX,Wu Y, Zhao Y. 2021.HERB: a high-throughput
experiment- and reference-guided database of traditional Chinese medicine. Nucleic
Acids Research 49:D1197–D1206 DOI 10.1093/nar/gkaa1063.

Fernandez-Palanca P, Fondevila F, Mendez-Blanco C, TunonMJ, Gonzalez-Gallego J,
Mauriz JL. 2019. Antitumor effects of quercetin in hepatocarcinoma in vitro and in
vivo models: a systematic review. Nutrients 11(12):2875 DOI 10.3390/nu11122875.

HamzaM, Ali A, Khan S, Ahmed S, Attique Z, Rehman SUr, Khan A, Ali H, Rizwan
M,Munir A, Khan AM, Siddique F, Mehmood A, Nouroz F, Khan S. 2021.
nCOV-19 peptides mass fingerprinting identification, binding, and blocking
of inhibitors flavonoids and anthraquinone of moringa oleifera and hydrox-
ychloroquine. Journal of Biomolecular Structure & Dynamics 39:4089–4099
DOI 10.1080/07391102.2020.1778534.

He ZZ, Yan JF, Song ZJ, Ye F, Liao X, Peng SL, Ding LS. 2009. Chemical constituents
from the aerial parts of Artemisia minor. Journal of Natural Products 72:1198–1201
DOI 10.1021/np800643.

Hopkins AL. 2008. Network pharmacology: the next paradigm in drug discovery. Nature
Chemical Biology 4:682–690 DOI 10.1038/nchembio.118.

Hu BL, Zhang YN, Jia L, WuHS, Fan CF, Sun YT, Ye CJ, LiaoM, Zhou JY. 2015.
Binding of the pathogen receptor HSP90AA1 to avibirnavirus VP2 induces
autophagy by inactivating the AKT-MTOR pathway. Autophagy 11:503–515
DOI 10.1080/15548627.2015.1017184.

Ji Y, Li L, Ma YX, LiWT, Li L, Zhu HZ,WuMH, Zhou JR. 2019. Quercetin in-
hibits growth of hepatocellular carcinoma by apoptosis induction in part via
autophagy stimulation in mice. Journal of Nutritional Biochemistry 69:108–119
DOI 10.1016/j.jnutbio.2019.03.018.

Jiang XM, Yu XN, Liu TT, Zhu HR, Shi X, Bilegsaikhan E, Guo HY, Song GQ,Weng
SQ, Huang XX, Dong L, Janssen HLA, Shen XZ, Zhu JM. 2018.microRNA-19a-3p
promotes tumor metastasis and chemoresistance through the PTEN/Akt pathway

Zheng et al. (2022), PeerJ, DOI 10.7717/peerj.13737 25/29

https://peerj.com
http://dx.doi.org/10.1016/j.fct.2013.04.023
http://dx.doi.org/10.1093/nar/gkaa891
http://dx.doi.org/10.1016/j.jep.2021.113978
http://dx.doi.org/10.1021/acs.jafc.9b01379
http://dx.doi.org/10.1093/nar/gkaa1063
http://dx.doi.org/10.3390/nu11122875
http://dx.doi.org/10.1080/07391102.2020.1778534
http://dx.doi.org/10.1021/np800643
http://dx.doi.org/10.1038/nchembio.118
http://dx.doi.org/10.1080/15548627.2015.1017184
http://dx.doi.org/10.1016/j.jnutbio.2019.03.018
http://dx.doi.org/10.7717/peerj.13737


in hepatocellular carcinoma. Biomedicine & Pharmacotherapy 105:1147–1154
DOI 10.1016/j.biopha.2018.06.097.

Kim JS, Choi GH, Jung Y, Kim KM, Jang SJ, Yu ES, Lee HC. 2018. Downregulation
of Raf-1 kinase inhibitory protein as a sorafenib resistance mechanism in hepa-
tocellular carcinoma cell lines. Journal of Cancer Research and Clinical Oncology
144:1487–1501 DOI 10.1007/s00432-018-2672-y.

KudoM. 2018. Systemic therapy for hepatocellular carcinoma: latest advances. Cancer
10:412 DOI 10.3390/cancers10110412.

Kulik L, El-Serag HB. 2019. Epidemiology and management of hepatocellular carcinoma.
Gastroenterology 156:477–491 DOI 10.1053/j.gastro.2018.08.065.

Lai XX,Wang X, Hu YJ, Su SB, LiWQ, Li S. 2020. Editorial: network pharmacology and
traditional medicine. Frontiers in Pharmacology 11:1194
DOI 10.3389/fphar.2020.01194.

Lin L, Ding Y,Wang Y,Wang Z, Yin X, Yan G, Zhang L, Yang P, Shen H. 2017.
Functional lipidomics: palmitic acid impairs hepatocellular carcinoma development
by modulating membrane fluidity and glucose metabolism. Hepatology 66:432–448
DOI 10.1002/hep.29033.

Liver EAS. 2018. EASL clinical practice guidelines: management of hepatocellular
carcinoma. Journal of Hepatology 69:182–236 DOI 10.1016/j.jhep.2018.03.019.

Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, Lencioni R,
Koike K, Zucman-Rossi J, Finn RS. 2021.Hepatocellular carcinoma. Nature Reviews
Disease Primers 7:6 DOI 10.1038/s41572-020-00240-3.

MaDL, Chan DSH, Leung CH. 2011.Molecular docking for virtual screening of natural
product databases. Chemical Science 2:1656–1665 DOI 10.1039/c1sc00152c.

Martinez M, Poirrier P, Chamy R, Prufer D, Schulze-Gronover C, Jorquera L, Ruiz G.
2015. Taraxacum officinale and related species-An ethnopharmacological review
and its potential as a commercial medicinal plant. Journal of Ethnopharmacology
169:244–262 DOI 10.1016/j.jep.2015.03.067.

Mirzoeva OK, Das D, Heiser LM, Bhattacharya S, Siwak D, Gendelman R, Bayani
N,Wang NJ, Neve RM, Guan Y, Hu Z, Knight Z, Feiler HS, Gascard P, Parvin
B, Spellman PT, Shokat KM,Wyrobek AJ, Bissell MJ, McCormick F, Kuo
WL, Mills GB, Gray JW, KornWM. 2009. Basal subtype and MAPK/ERK ki-
nase (MEK)-phosphoinositide 3-kinase feedback signaling determine suscep-
tibility of breast cancer cells to MEK inhibition. Cancer Research 69:565–572
DOI 10.1158/0008-5472.CAN-08-3389.

MoonH, Ro SW. 2021.MAPK/ERK signaling pathway in hepatocellular carcinoma.
Cancers 13(12):3026 DOI 10.3390/cancers13123026.

Muegge I, Mukherjee P. 2016. Performance of dark chemical matter in high throughput
screening. Journal of Medicinal Chemistry 59:9806–9813
DOI 10.1021/acs.jmedchem.6b01038.

Nguyen NT, Nguyen TH, Pham TNH, Huy NT, BayMV, PhamMQ, Nam PC, Vu VV,
Ngo ST. 2020. Autodock vina adopts more accurate binding poses but autodock4

Zheng et al. (2022), PeerJ, DOI 10.7717/peerj.13737 26/29

https://peerj.com
http://dx.doi.org/10.1016/j.biopha.2018.06.097
http://dx.doi.org/10.1007/s00432-018-2672-y
http://dx.doi.org/10.3390/cancers10110412
http://dx.doi.org/10.1053/j.gastro.2018.08.065
http://dx.doi.org/10.3389/fphar.2020.01194
http://dx.doi.org/10.1002/hep.29033
http://dx.doi.org/10.1016/j.jhep.2018.03.019
http://dx.doi.org/10.1038/s41572-020-00240-3
http://dx.doi.org/10.1039/c1sc00152c
http://dx.doi.org/10.1016/j.jep.2015.03.067
http://dx.doi.org/10.1158/0008-5472.CAN-08-3389
http://dx.doi.org/10.3390/cancers13123026
http://dx.doi.org/10.1021/acs.jmedchem.6b01038
http://dx.doi.org/10.7717/peerj.13737


forms better binding affinity. Journal of Chemical Information and Modeling
60:204–211 DOI 10.1021/acs.jcim.9b00778.

Ohta K, Hoshino H,Wang J, Ono S, Iida Y, Hata K, Huang SK, Colquhoun S, Hoon
DSB. 2015.MicroRNA-93 activates c-Met/PI3K/Akt pathway activity in hepatocellu-
lar carcinoma by directly inhibiting PTEN and CDKN1A. Oncotarget 6:3211–3224
DOI 10.18632/oncotarget.3085.

Otasek D, Morris JH, Boucas J, Pico AR, Demchak B. 2019. Cytoscape Automa-
tion: empowering workflow-based network analysis. Genome Biology 20:185
DOI 10.1186/s13059-019-1758-4.

Park CM, Cho CW, Song YS. 2014. TOP 1 and 2, polysaccharides from Taraxacum offic-
inale, inhibit NF kappa B-mediated inflammation and accelerate Nrf2-induced an-
tioxidative potential through the modulation of PI3K-Akt signaling pathway in RAW
264.7 cells. Food and Chemical Toxicology 66:56–64 DOI 10.1016/j.fct.2014.01.019.

Patel PD, Yan PR, Seidler PM, Patel HJ, SunWL, Yang CH, Que NS, Taldone T, Finotti
P, Stephani RA, Gewirth DT, Chiosis G. 2013. Paralog-selective Hsp90 inhibitors
define tumor-specific regulation of HER2. Nature Chemical Biology 9:677–684
DOI 10.1038/Nchembio.1335.

Pfingstgraf IO, TaulescuM, Pop RM, Orasan R, Vlase L, Uifalean A, Todea D, Alexescu
T, Toma C, Parvu AE. 2021. Protective effects of Taraxacum officinale L. (Dande-
lion) root extract in experimental acute on chronic liver failure. Antioxidants 10:504
DOI 10.3390/antiox10040504.

Pinero J, Ramirez-Anguita JM, Sauch-Pitarch J, Ronzano F, Centeno E, Sanz F, Furlong
LI. 2020. The DisGeNET knowledge platform for disease genomics: 2019 update.
Nucleic Acids Research 48:D845–D855 DOI 10.1093/nar/gkz1021.

Pinzi L, Rastelli G. 2019.Molecular docking: shifting paradigms in drug discovery.
International Journal of Molecular Sciences 20:4331 DOI 10.3390/ijms20184331.

Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM,Matrisian LM. 2014.
Projecting cancer incidence and deaths to 2030: the Unexpected burden of thyroid,
liver, and pancreas cancers in the United States (vol 74, pg 2913, 2014). Cancer
Research 74:4006–4006 DOI 10.1158/0008-5472.Can-14-1642.

Rappaport N, TwikM, Plaschkes I, Nudel R, Stein TI, Levitt J, Gershoni M, Morrey CP,
SafranM, Lancet D. 2017.MalaCards: an amalgamated human disease compendium
with diverse clinical and genetic annotation and structured search. Nucleic Acids
Research 45:D877–D887 DOI 10.1093/nar/gkw1012.

Rehman G, HamayunM, Iqbal A, Khan SA, Khan H, Shehzad A, Khan AL, Hussain
A, KimHY, Ahmad J, Ahmad A, Ali A, Lee IJ. 2017a. Effect of methanolic extract
of dandelion roots on cancer cell lines and AMP-activated protein kinase pathway.
Frontiers in Pharmacology 8:875 DOI 10.3389/fphar.2017.00875.

Rehman G, HamayunM, Iqbal A, Khan SA, Khan H, Shehzad A, Khan AL, Hussain
A, KimHY, Ahmad J, Ahmad A, Ali A, Lee IJ. 2017b. Effect of methanolic extract
of dandelion roots on cancer cell lines and AMP-activated protein kinase pathway.
Frontiers in Pharmacology 8:875 DOI 10.3389/fphar.2017.00875.

Zheng et al. (2022), PeerJ, DOI 10.7717/peerj.13737 27/29

https://peerj.com
http://dx.doi.org/10.1021/acs.jcim.9b00778
http://dx.doi.org/10.18632/oncotarget.3085
http://dx.doi.org/10.1186/s13059-019-1758-4
http://dx.doi.org/10.1016/j.fct.2014.01.019
http://dx.doi.org/10.1038/Nchembio.1335
http://dx.doi.org/10.3390/antiox10040504
http://dx.doi.org/10.1093/nar/gkz1021
http://dx.doi.org/10.3390/ijms20184331
http://dx.doi.org/10.1158/0008-5472.Can-14-1642
http://dx.doi.org/10.1093/nar/gkw1012
http://dx.doi.org/10.3389/fphar.2017.00875
http://dx.doi.org/10.3389/fphar.2017.00875
http://dx.doi.org/10.7717/peerj.13737


Ren F, Li J, Yuan X,Wang YL,Wu KX, Kang LX, Luo YY, Zhang HM, Yuan ZQ. 2019.
Dandelion polysaccharides exert anticancer effect on Hepatocellular carcinoma by
inhibiting PI3K/AKT/mTOR pathway and enhancing immune response. Journal of
Functional Foods 55:263–274 DOI 10.1016/j.jff.2019.02.034.

Ren F,Wu KX, Yang Y, Yang YY,Wang YX, Li J. 2020. Dandelion polysaccharide exerts
anti-angiogenesis effect on hepatocellular carcinoma by regulating VEGF/HIF-1
alpha expression. Frontiers in Pharmacology 11:460 DOI 10.3389/fphar.2020.00460.

Salama YA, El-karef A, El Gayyar AM, Abdel-Rahman N. 2019. Beyond its antioxidant
properties: quercetin targets multiple signalling pathways in hepatocellular carci-
noma in rats. Life Sciences 236:116933 DOI 10.1016/j.lfs.2019.116933.

Salomon-Ferrer R, Case DA,Walker RC. 2013. An overview of the Amber biomolecular
simulation package.Wiley Interdisciplinary Reviews-Computational Molecular Science
3:198–210 DOI 10.1002/wcms.1121.

Shen J, Tsoi H, Liang Q, Chu ESH, Liu D, Yu ACS, Chan TF, Li X, Sung JJY,
Wong VWS, Yu J. 2016. Oncogenic mutations and dysregulated pathways
in obesity-associated hepatocellular carcinoma. Oncogene 35:6271–6280
DOI 10.1038/onc.2016.162.

ShiWD, Feng LY, Dong S, Ning ZY, Hua YQ, Liu LM, Chen Z, Meng ZQ. 2020. FBXL6
governs c-MYC to promote hepatocellular carcinoma through ubiquitination
and stabilization of HSP90AA1. Cell Communication and Signaling 18(1):100
DOI 10.1186/s12964-020-00604-y.

Siempelkamp BD, RathinaswamyMK, Jenkins ML, Burke JE. 2017.Molecular
mechanism of activation of class IA phosphoinositide 3-kinases (PI3Ks) by
membrane-localized HRas. Journal of Biological Chemistry 292:12256–12266
DOI 10.1074/jbc.M117.789263.

Sung H, Ferlay J, Siegel RL, LaversanneM, Soerjomataram I, Jemal A, Bray F. 2021.
Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. Ca-a Cancer Journal for Clinicians
71:209–249 DOI 10.3322/caac.21660.

Szklarczyk D, Gable AL, Lyon D, Junge A,Wyder S, Huerta-Cepas J, Simonovic
M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. 2019. STRING
v11: protein-protein association networks with increased coverage, supporting
functional discovery in genome-wide experimental datasets. Nucleic Acids Research
47:D607–D613 DOI 10.1093/nar/gky1131.

Tashiro E, Maruki H, Minato Y, Doki Y,Weinstein IB, ImotoM. 2003. Overexpression
of cyclin D1 contributes to malignancy by up-regulation of fibroblast growth factor
receptor 1 via the pRB/E2F pathway. Cancer Research 63:424–431.

Vidal-Limon A, Aguilar-Toala JE, Liceaga AM. 2022. Integration of molecular docking
analysis and molecular dynamics simulations for studying food proteins and
bioactive peptides. Journal of Agricultural and Food Chemistry 70(4):934–943
DOI 10.1021/acs.jafc.1c06110.

Zheng et al. (2022), PeerJ, DOI 10.7717/peerj.13737 28/29

https://peerj.com
http://dx.doi.org/10.1016/j.jff.2019.02.034
http://dx.doi.org/10.3389/fphar.2020.00460
http://dx.doi.org/10.1016/j.lfs.2019.116933
http://dx.doi.org/10.1002/wcms.1121
http://dx.doi.org/10.1038/onc.2016.162
http://dx.doi.org/10.1186/s12964-020-00604-y
http://dx.doi.org/10.1074/jbc.M117.789263
http://dx.doi.org/10.3322/caac.21660
http://dx.doi.org/10.1093/nar/gky1131
http://dx.doi.org/10.1021/acs.jafc.1c06110
http://dx.doi.org/10.7717/peerj.13737


Wang X, Shen Y,Wang S, Li S, ZhangW, Liu X, Lai L, Pei J, Li H. 2017a. PharmMapper
2017 update: a web server for potential drug target identification with a compre-
hensive target pharmacophore database. Nucleic Acids Research 45:W356–W360
DOI 10.1093/nar/gkx374.

Wang YL, Bryant SH, Cheng TJ, Wang JY, Gindulyte A, Shoemaker BA, Thiessen PA,
He SQ, Zhang J. 2017b. PubChem BioAssay: 2017 update. Nucleic Acids Research
45:D955–D963 DOI 10.1093/nar/gkw1118.

WuHY, Pan LL, Gao CX, Xu HT, Li YP, Zhang LH, Ma LW,Meng L, Sun XL, Qin
HB. 2019a. Quercetin inhibits the proliferation of glycolysis-addicted HCC
cells by reducing hexokinase 2 and Akt-mTOR pathway.Molecules 24:1993
DOI 10.3390/molecules24101993.

Wu SY, Lan SH, Liu HS. 2019b. Degradative autophagy selectively regulates CCND1 (cy-
clin D1) and MIR224, two oncogenic factors involved in hepatocellular carcinoma
tumorigenesis. Autophagy 15:729–730 DOI 10.1080/15548627.2019.1569918.

XuQR, Tu JF, Dou CW, Zhang J, Yang L, Liu X, Lei KF, Liu ZK,Wang YF, Li
LJ, Bao HX,Wang JH, Tu KS. 2017.HSP90 promotes cell glycolysis, pro-
liferation and inhibits apoptosis by regulating PKM2 abundance via Thr-
328 phosphorylation in hepatocellular carcinoma.Molecular Cancer 16:178
DOI 10.1186/s12943-017-0748-y.

Yamada N, Matsushima-Nishiwaki R, Kozawa O. 2021. Quercetin suppresses the
migration of HCC cells stimulated by HGF or TGF-alpha: attenuation of AKT
signaling pathway. Cancer Science 112:937–937.

Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. 2019. A global
view of hepatocellular carcinoma: trends, risk, prevention and management. Nature
Reviews Gastroenterology & Hepatology 16:589–604 DOI 10.1038/s41575-019-0186-y.

Zhang RZ, Zhu X, Bai H, Ning K. 2019. Network pharmacology databases for traditional
chinese medicine: review and assessment. Frontiers in Pharmacology 10:123
DOI 10.3389/fphar.2019.00123.

Zhou Y, Zhou B, Pache L, ChangM, Khodabakhshi AH, Tanaseichuk O, Ben-
ner C, Chanda SK. 2019.Metascape provides a biologist-oriented resource
for the analysis of systems-level datasets. Nature Communications 10:1523
DOI 10.1038/s41467-019-09234-6.

ZhuHH, Zhao HY, Zhang LJ, Xu JM, Zhu CH, Zhao H, Lv GQ. 2017. Dandelion
root extract suppressed gastric cancer cells proliferation and migration through
targeting lncRNA-CCAT1. Biomedicine & Pharmacotherapy 93:1010–1017
DOI 10.1016/j.biopha.2017.07.007.

Zheng et al. (2022), PeerJ, DOI 10.7717/peerj.13737 29/29

https://peerj.com
http://dx.doi.org/10.1093/nar/gkx374
http://dx.doi.org/10.1093/nar/gkw1118
http://dx.doi.org/10.3390/molecules24101993
http://dx.doi.org/10.1080/15548627.2019.1569918
http://dx.doi.org/10.1186/s12943-017-0748-y
http://dx.doi.org/10.1038/s41575-019-0186-y
http://dx.doi.org/10.3389/fphar.2019.00123
http://dx.doi.org/10.1038/s41467-019-09234-6
http://dx.doi.org/10.1016/j.biopha.2017.07.007
http://dx.doi.org/10.7717/peerj.13737

