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Abstract

Discrepancies in population structures, decision making, health systems and numerous

other factors result in various COVID-19-mortality dynamics at country scale, and make the

forecast of deaths in a country under focus challenging. However, mortality dynamics of

countries that are ahead of time implicitly include these factors and can be used as real-life

competing predicting models. We precisely propose such a data-driven approach imple-

mented in a publicly available web app timely providing mortality curves comparisons and

real-time short-term forecasts for about 100 countries. Here, the approach is applied to com-

pare the mortality trajectories of second-line and front-line European countries facing the

COVID-19 epidemic wave. Using data up to mid-April, we show that the second-line coun-

tries generally followed relatively mild mortality curves rather than fast and severe ones.

Thus, the continuation, after mid-April, of the COVID-19 wave across Europe was likely to

be mitigated and not as strong as it was in most of the front-line countries first impacted by

the wave (this prediction is corroborated by posterior data).

Introduction

COVID-19 currently generates a major pandemic that has caused about 350,000 registered

deaths by May 28, 2020. The first cases were reported in Hubei province (China) and the epi-

demic has then spread around the world, with variable dates of emergence (e.g., ranging from

mid-January to late February in European countries [1]). The idea of using past trends in for-

eign countries to predict the future trend in a given focal country has already been mentioned

[2] and is classically used by media to help citizens perceive the future of an outbreak. If this

idea faces up the large diversity and the numerous particularities of epidemic dynamics at

country level [3], it deserves to be implemented in a formal statistical framework since mortal-

ity dynamics abroad can be viewed as real-life predictors naturally accounting for crucial fac-

tors such as population structures, health systems and control measures.

Using observations in countries that are ahead of time with respect to the country under

focus (i.e., countries with larger current numbers of deaths, relatively to population sizes), we

propose a statistical framework grounded on a flexible mixture model (i) for short-term, real-

time forecasting mortality from COVID-19, but also (ii) for comparing mortality trajectories
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between countries. The latter point allows drawing medium-term predictions: because of the

inertia of COVID-19-like epidemics that we observe (and possibly relatively similar decision

making), countries that follow the past dynamics of other countries are condemned to repeat

them, at least to some extent. The proposed framework and the accompanying web app http://

covid19-forecast.biosp.org can help in assessing the future intensity of the COVID-19 wave as

it goes on through the world and could help, in the postpandemic horizon, in screening the

impact of decision making on mortality with country-to-countries comparisons. Our

approach can also be implemented at a finer geographical resolution, at least for countries

with large enough numbers of deaths allowing the observation of significantly different tempo-

ral signals in different regions.

The online web app provides forecats and comparisons for about 100 countries, states and

provinces. It is particularly useful in the current period (May–June 2020) to screen the

COVID-19 outbreaks in South American countries while South America has been declared as

the new epicenter of the disease by the World Health Organization (on May 22). Thereafter,

we apply our approach to compare the mortality trajectories of European countries in the

front and second lines of the COVID-19 wave. We carry out this analysis with data collected

up to April 20, while the wave was particularly strong in the European region. At that time,

some countries in Europe were already largely impacted in terms of mortality rate (i.e., the

front-line countries), while the remaining countries were less affected (i.e., the second-line

countries). In addition, we assess the short-term forecast performance of the mixture model

briefly introduced above with COVID-19 data (the forecast made at a given time being com-

pared to actual data after this time). These data allow us to compute the performance of our

approach in diverse real situations instead of synthetic simulated situations. Moreover, the

mixture model is compared to a SIRD compartmental model including susceptible, infectious,

recovered and dead individuals using two distributional assumptions for the observations

(Poisson and negative-binomial) and to a log-linear regression model. The former model

exploits only data from the country of interest, whereas the latter model exploits data from the

country of interest as well as data from abroad, like our mixture model.

Material and methods

Worldwide COVID-19 mortality data

Mortality data are obtained from the Johns Hopkins University CSSE [3] and The Covid

Tracking Project (https://covidtracking.com), which provide, in particular, daily mortality

data at the level of countries, states or provinces, grounded on diverse data sources including

the World Health Organization and national government health departments. Here, we use

data from the 15 European countries having at least 200 registered deaths by April 12, 2020

(namely, Austria, Belgium, Denmark, France, Germany, Ireland, Italy, Netherlands, Poland,

Portugal, Romania, Spain, Sweden, Switzerland, United Kingdom), and from Hubei province

in China. Hubei was the first COVID-19 hotspot.

Selecting countries used as predictors

Given a focal country labelled 0, whose mortality dynamics have to be forecast, the countries i
with a larger death rate up to the current date τ are considered as being ahead of time, and can

be chosen as predictors. Denoting by Yi(t) the cumulative number of deaths at date t, and si the

population size in country i, this condition corresponds to Yi(τ)si>Y0(τ)/s0 and can be easily

checked in practice directly from raw data. The number n of possible predictors therefore

depends on the focal country and the date τ (e.g., for the 15 European countries and the Hubei

province considered in this study, n varies between 0 and 15). Predictors Zi are built from
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smoothed, scaled and delayed versions of Yi. The smoothing aims at mitigating events that are

specific to country i (e.g., some eventual delays in the registration of deaths at week-end and

the relatively large randomness of increments when the cumulative number of deaths is rela-

tively low). The scaling aims at homogenizing population sizes with the focal country 0. The

delay measures the duration between the date τ and the anterior date when the predictor Zi
reached the value Y0(τ) (i.e., the advance of country i over country 0).

Modelling the evolution of the cumulative number of deaths in the focal

country

The daily increments, say N(t) = Y0(t)−Y0(t−1), of the cumulative number of deaths in the

focal country are considered as random variables drawn under mixtures of negative-binomial

distributions whose means are the increments of the competing predictors:

NðtÞ �
Xn

i¼1

piNBðZiðtÞ � Ziðt � 1Þ; ZiÞ;

where pi is the mixture probability describing the relative contribution of data from country i
to the prediction of the increments in the focal country. Using data at dates t�τ, we apply an

estimation approach grounded on a weighted penalized likelihood to estimate pi as well as the

dispersion parameters ηi measuring how much the trajectory of the focal country is apart from

the trajectory in country i. The method is detailed and discussed in S1 File in S1 Data.

Once the model is fitted, it allows (i) the comparison of mortality dynamics between the

focal country and the ahead-of-time countries via the mixture probabilities, and (ii) the fore-

cast of the mortality trajectory of the focal country. Instead of selecting a single predictor, the

mixture approach enables a probabilistic understanding of relevant predictors. Moreover, the

temporal horizon of the forecast depends on the advance of relevant predicting countries. For

a predicting country that is m days ahead of time, the forecast horizon is m days. The longer

the targeted temporal horizon, the fewer the available predictors. We stop the forecast at the

date when ∑pi<0.5, i.e., when the remaining predictors explain less than 50% of the mortality

dynamics in the focal country.

Results

Short-term forecast: Performance and results

As explained above, the forecast horizon for a focal country depends on the advance of other

countries. To obtain relatively large forecast horizons, we select as predictors the seven Euro-

pean countries offering the longest forecast horizon (i.e., Belgium, France, Italy, Netherlands,

Spain, Switzerland, United Kingdom) as well as Hubei, and we forecast the mortality curves of

the eight other European countries (i.e., Austria, Denmark, Germany, Ireland, Poland, Portu-

gal, Romania, Sweden). This choice also facilitates comparisons between focal countries since

they initially share the same predictors. Qualitatively, forecast performance can be assessed

with plots such as those in Fig 1 where we compare, for Austria and Sweden, the forecast made

on April 12 (voluntarily ignoring posterior data) with the actual time series after this date.

Quantitatively, the average forecast exactness after 10 days is about 80% as soon as the focal

country has accumulated at least a few hundreds of deaths; see Fig 2. The performance was

computed from the eight focal European countries as the proportion of values Y0(t) observed

after τ (with τ ranging from March 31 to April 19) that are in their respective forecast 95%-

confidence intervals (CI). Other forecasts are available in S1-S3 Figs in S1 Data and in the web

app http://covid19-forecast.biosp.org.
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To get a relative assessment of the short-term forecast performance of our approach, we

compare it to a SIRD compartmental model using two distributional assumptions for the

observations (that are assumed to follow either a Poisson or a negative-binomial law), and to a

log-linear model whose explanatory variables are the scaled mortality dynamics of predicting

countries; see S2 File in S1 Data and S4 Fig in S1 Data. Up to the horizon of ten days, only the

SIRD—negative-binomial model performs better than our approach in terms of coverage of

the true value Y0(t) by the respective CI. Beyond ten days, both the SIRD—negative-binomial

and the log-linear models have better coverage of Y0(t). However, the CI obtained with the

SIRD—negative-binomial model (resp. the log-linear model) is in average 21 times (resp. 8

times) larger than the CI provided by our approach and therefore leads to a relatively vague

prediction. In addition, if the log-linear model is useful for benchmarking, it exploits data

from abroad that are synchronous with the mortality dynamics to be predicted and, hence,

cannot be used as a forecaster in real situations; see S2 File, Section S2.1 in S1 Data. The low

forecast performance beyond 10 days of the mixture model, irrespective of the cumulative

number of deaths, possibly results from the lack of relevant predictors that would be suffi-

ciently in advance given the sets of focal and predicting countries that we considered (see Dis-

cussion section). Anyway, the validation trial that we designed indicates that the mixture

model as it stands is not robust for accurately predicting the number of deaths in a given focal

country beyond 10 days (especially when the current cumulative number of deaths is low) and

cannot be used in such a setting. To circumvent this limitation, we especially propose in the

discussion some alternative choices for the set of predicting countries and the incorporation of

a parametric predictor (e.g., grounded on the SIRD model) into the mixture.

Fig 1. Forecast of the number of deaths from COVID-19 in Austria (A) and Sweden (B) when the last observation is made on April 12, voluntarily ignoring posterior

data. Raw mortality data for the focal country are given by the thin red curve up to April 12 and by the red dots afterwards. The estimated cumulative numbers of deaths

after April 12 are given by the thick red curve. 95% confidence envelopes are drawn in grey. On April 12, Hubei has a lower death rate than Sweden and can hence not

be used as a predictor (thus, the Hubei curve is stopped when it crosses the Swedish curve before April 12).

https://doi.org/10.1371/journal.pone.0238410.g001
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Medium-term and large-scale prediction

On April 12, the mortality trajectory of Austria follows a mixture of the pasts of Hubei (pi =

0.84) and Switzerland (pi = 0.16), whereas the Swedish trajectory follows the past of Switzer-

land (pi = 1.00); see Fig 1. The mixture probabilities may vary with the date τ, depending on

the evolution across time of the COVID-19-induced mortality of the focal and predicting

countries. We observe a relative temporal consistency of the mixture probabilities for Austria

whereas the mixture probabilities for Sweden are more variable, indicating a larger instability

(see S5 Fig in S1 Data). Averaging the mixture probabilities over the eight focal countries

shows, overall, that the focal countries slowly tend to increasingly follow the relatively mild tra-

jectories of Hubei and Switzerland (Fig 3A) rather than the more severe trajectories of Bel-

gium, France, Italy, Spain and the United Kingdom (see S6 and S7 Figs in S1 Data enabling a

raw comparison of mortality curves). This is confirmed by the increasing average delay

between focal countries and predicting countries (Fig 3B), and suggests that, based on data up

to mid April, the continuation of the COVID-19 wave across Europe was likely to be mitigated,

Fig 2. Forecast performance measured as the proportion of true values Y0(τ+d), d days after τ, that are in their respective forecast 95%-confidence

intervals (CI), i.e., if the red dots in Fig 1 are within the grey confidence envelope also displayed in Fig 1. Solid curve: Proportions calculated by aggregating

the eight focal countries, with τ ranging from March 31 to April 19, and using data up to April 20 (to compare the forecast and the actual data). Thus, for any

number of days in the future, d, we check for each focal country and for each date τ between March 31 and “April 20 minus d days” if Y0(τ+d) is in its

respective CI, and we compute the proportion at which this event arises. Dotted curve: Proportions calculated when one only considers situations with at least

250 cumulative deaths at τ.

https://doi.org/10.1371/journal.pone.0238410.g002
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and not as strong as it was in most of the European countries first impacted by the wave. This

conclusion is corroborated by data collected in May: S8 Fig in S1 Data shows that the mortality

rate has remained relatively low for most of the second-line countries.

Discussion

Several modelling approaches have already been proposed to forecast COVID-19 epidemics,

most of them relying on standard epidemiological models of the SIR (Susceptible-Infected-

Removed) type and their extensions [4–10]. These models generally include compartments

corresponding to the dead fraction of the population and can hence be used to predict the tem-

poral evolution of mortality due to COVID-19, in which we are interested here. However, fore-

casting the epidemic requires to take into account a large amount of factors, including the

health system, the control measures, the decision making and even the data collection.

Fig 3. Estimated mixture probabilities (A) and temporal advance of the predicting countries (B) averaged over the eight

focal countries and for a date τ of the last observation ranging from March 31 to April 20. The mixture model is fitted to

data at each date τ and therefore yields a set of mixture probabilities for each τ and each country (thus, the mixture

probabilities for a given focal country may vary across time). The temporal advance is the delay calculated in the

construction of the predictors, it is given, e.g., in the legend of Fig 1 for Austria and Sweden on April 12 and is exactly

defined in S1 File in S1 Data.

https://doi.org/10.1371/journal.pone.0238410.g003
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Data-driven approaches involving artificial intelligence-inspired methods [11], coupled

SIR-neural network approaches [12] and web-trends data analysis [13] have also been pro-

posed. In these cases, the training data concern past signals in the considered country and

therefore do not bring information on processes that only arise when some thresholds in the

number of deaths are reached (e.g., saturation of medical structures and lockdown), if the

thresholds into question have not been reached yet.

For countries where the outbreak started later than for the first impacted countries, our

approach contributes to develop a complementary and twofold vision of forecast. It firstly pro-

vides short-term and real-time forecasting that are provided by the dedicated web app http://

covid19-forecast.biosp.org. It secondly allows a probabilistic comparison of the mortality

dynamics in a focal country to past dynamics in ahead-of-time countries. These past dynamics

form real-life models and, given the inertia of COVID-19-like epidemics, they can be com-

bined to design medium-term trends under the settings of mixture modelling.

In our approach, the choice of the mixture components is critical to some extent. The set of

real-life predictors that is used may introduce a bias, as observed for Poland for example: none

of the predictors that are used have sufficiently mild mortality dynamics in comparison with

the Polish mortality dynamics; see S1-S3 Figs in S1 Data. The reasons could result from multi-

ple factors, such as differences in connections with disease epicenters in the world, economies,

health care systems, lockdown measures, climatic variables, population sizes and densities.

Thus, a preliminary step for the selection of the set of predictors could include such factors. In

the manuscript, since our aim was to compare front-line and second-line European countries,

we used the same predictors for all the focal countries. However, in the web app, predictors are

selected in a different way: they consist of countries with high mortality rates (providing a sort

of upper boundary for mortality), of countries with close raw mortality dynamics and of coun-

tries with close population sizes. Other criteria could be used, but one must make the balance

between these criteria and the availability of predictors that are sufficiently in advance. For

instance, on July 5, 2020, the mortality dynamics of Colombia follows a mixture of the dynam-

ics of Bolivia (p = 0.51), US Iowa (p = 0.25), US Mississippi (p = 0.18) and Netherlands

(p = 0.06) despite apparent differences in economies and health care systems in these 5 coun-

tries (see the corresponding capture of the web app in S9 Fig in S1 Data). In this example, it

would not be necessarily relevant to a priori use economic and health care system criteria to

preliminary choose potential predictors.

An interesting perspective for handling cases where the mixture of the predicting-countries

dynamics does not achieve a satisfactory goodness-of-fit, whatever the chosen set of predicting

countries, consists in adding a parametric predictor to the set of predictors in the mixture

model. We present this approach in S1 File (Section S1.4) in S1 Data using a parametric pre-

dictor grounded on the SIRD model introduced above in the forecast performance compari-

son, and we apply it in S10 and S11 Figs in S1 Data for Sweden and Poland. In these two cases,

the parametric predictor gets a relatively high probability (0.70 for Sweden, 0.94 for Poland),

but this is not always the case as shown in S12 Fig in S1 Data for Kyrgyzstan where the

parametric predictor has a zero probability. This approach may be relevant for both extending

the forecast horizon of the mixture model and improving its forecast performance, especially

beyond the horizon of 10 days. Indeed, the prediction resulting from the parametric predictor

is not limited in time in contrast to those furnished by the predicting-countries dynamics, and

the incorporation of the parametric predictor is expected to bring a solution to cases where

none of the predicting countries are adequate as discussed in the previous paragraph. Other

perspectives for improving the forecast performance are presented in the technical discussion

included in S1 File (Section S1.5) in S1 Data.
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In further work, our approach could be adapted for screening the impact of vaccination or

therapy on COVID-19-induced mortality with country-to-countries comparisons. Moreover,

it would be interesting to unravel the relationship between the mixture probabilities and some

potentially explanatory factors: Can we identify the same characteristics concerning popula-

tion structures, health care systems, control measures, etc., in the focal countries and their

most likely predicting countries as defined by the mixture probabilities? We could also extend

the application of our approach at the intra-country resolution to compare and monitor, in

real-time, mortality dynamics across regions, and disentangle the consequences of heterogene-

ities in, e.g., social structures and control-strategy implementation.

Supporting information

S1 Data.
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