Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$N^{\prime}-[(E)$-5-Bromo-2-hydroxy-3-methoxybenzylidene]benzohydrazide monohydrate

Jessy Emmanuel, ${ }^{\text {a }}$ M. Sithambaresan ${ }^{\text {b* }}$ and M. R. Prathapachandra Kurup ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, St. Joseph's College, Irinjalakuda, India, ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka, and ${ }^{\text {c }}$ Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India
Correspondence e-mail: eesans@yahoo.com
Received 28 October 2013; accepted 7 November 2013

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; disorder in main residue; R factor $=0.044 ; w R$ factor $=0.114$; data-to-parameter ratio $=13.6$.

Experimental

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=367.20$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=4.7223$ (5) \AA
$b=13.9357$ (17) A
$c=23.028$ (3) A
Data collection
Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}=0.446, T_{\text {max }}=0.549$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.114$
$S=0.89$
2966 reflections
218 parameters
7 restraints
H atoms treated by a mixture of independent and constrained refinement
$V=1515.4(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=2.73 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.32 \times 0.25 \times 0.22 \mathrm{~mm}$

12759 measured reflections 2966 independent reflections 2189 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.090$
$\Delta \rho_{\text {max }}=0.45 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {max }}=0.45 \mathrm{e} \AA \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.29 \mathrm{e} \AA^{-3}$
Absolute structure: Flack (1983), 1203 Friedel pairs
Absolute structure parameter: 0.016 (16)

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1 W^{\mathrm{i}}$	0.86	2.11	$2.946(5)$	163
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$	0.83	1.93	$2.637(5)$	142
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{ii}}$	$0.86(2)$	$2.50(5)$	$3.178(5)$	$136(6)$
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O}^{1 i}$	$0.86(2)$	$2.27(4)$	$3.051(5)$	$151(6)$
$\mathrm{O} 1 W-\mathrm{H} 1 A \cdots \mathrm{O} 3$	$0.86(2)$	$1.91(3)$	$2.736(5)$	$163(6)$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 1 W^{\mathrm{i}}$	0.93	2.50	$3.305(6)$	145
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O}_{1} W^{\mathrm{i}}$	0.93	2.42	$3.329(6)$	166
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{i}}$		0.93	2.55	$3.435(5)$

Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $x-1, y, z$.
Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for the single-crystal X-ray diffraction measurements. The authors are grateful to Dr Matthias Zeller, Department of Chemistry, Youngstown State University, for support with the data refinement.

[^0]
organic compounds

References

Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
Emmanuel, J., Sithambaresan, M. \& Kurup, M. R. P. (2011). Acta Cryst. E67, o3267.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Rada, B. \& Leto, T. (2008). Contrib. Microbiol. 15, 164-187.

Rakha, T. H., Ibrahim, K. M., Abdallah, A. M. \& Hassanian, M. M. (1996). Synth. React. Inorg. Met. Org. Chem. 26, 1113-1123.
Reshma, P. R., Sithambaresan, M. \& Kurup, M. R. P. (2012). Acta Cryst. E68, o2821-o2822.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sreeja, P. B., Kurup, M. R. P., Kishore, A. \& Jasmin, C. (2004). Polyhedron, 23, 575-581.
Takahama, U. (1996). Physiol. Plant. 98, 731-736
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2013). E69, o1775-o1776 [doi:10.1107/S1600536813030572]

N^{\prime}-[(E)-5-Bromo-2-hydroxy-3-methoxybenzylidene]benzohydrazide monohydrate

Jessy Emmanuel, M. Sithambaresan and M. R. Prathapachandra Kurup

1. Comment

Hydrazone derivatives represent an important class of organic compounds. The research for this class of compounds is an area of great interest due to their biological activities (Sreeja et al., 2004; Rada \& Leto, 2008). They have been extensively investigated recently owing to their potential application as antineoplastic, antiviral and antiinflammatory agents (Rakha et al., 1996; Takahama, 1996).
The compound (Fig. 1) crystallizes in the monoclinic space group $P 2_{2} 2_{1} 2_{1}$. This molecule adopts an E configuration with respect to the $\mathrm{C} 7=\mathrm{N} 1$ bond and it exists in the amido form with a $\mathrm{C} 8=\mathrm{O} 3$ bond length of 1.222 (5) \AA which is very close to the reported $\mathrm{C}=\mathrm{O}$ bond length of a related structure (Reshma et al., 2012). The O 3 and N 1 atoms are in a Z configuration with respect to $\mathrm{C} 8-\mathrm{N} 2$ having a torsion angle of $-0.3(7)^{\circ}$. The central $\mathrm{C}(=\mathrm{O}) \mathrm{N}_{2} \mathrm{C}$ unit has dihedral angles of $0.46(2)$ and $4.90(3)^{\circ}$, respectively with the phenol and phenyl rings.

In the crystal, approximately 4% of the title compound is replaced by molecules of the 6 -isomer, the Br 1 B atom of this admixture molecule was included in the refinement. Since the molecules of the 6 -isomer are likely to be non-planar due to sterical factors, it does not occupy the same position as the molecule of the 5-bromo isomer. As a result, Br1B deviates by 0.39 (2) \AA from the mean plane of C1—C6 plane, and the distance C6-Br1B is 1.798 (8) \AA, much smaller than the typical bond length of $\mathrm{C}-\mathrm{Br}$.
The lattice water molecule connects three adjacent molecules via three classical $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and a $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond interactions with $\mathrm{D} \cdots \mathrm{A}$ distances of 3.178 (5), 3.052 (5), 2.736 (5) and 2.945 (5) \AA and two non-classical $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond interactions with $\mathrm{D} \cdots$ A distances of 3.304 (8) and 3.333 (7) \AA (Fig. 2, Table 1). Molecules are stacked one over the other by forming a one-dimensional-layer via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonding along a axis (Fig. 3). Such layers are connected by means of a $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ intermolecular hydrogen bonding interaction with $\mathrm{D} \cdots$ A distance of 3.649 (5) \AA (Fig. 4). These layers arranged in a zig-zag fashion (Fig. 4) forming a three-dimensional-supramolecular network in the lattice. The molecule also has a $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ intramolecular hydrogen bonding with a $\mathrm{D} \cdots \mathrm{A}$ distance of 2.637 (5) \AA. Although there are very few weak short ring interactions found in the crystal system, they are not significant to support the network since centroid-centroid distances are above $4 \AA$. Fig. 5 shows a packing diagram of the title compound viewed along the a axis.

2. Experimental

The title compound was prepared by adapting a reported procedure (Emmanuel et al., 2011). A solution of 5-bromo-3methoxysalicylaldehyde ($0.231 \mathrm{~g}, 1 \mathrm{mmol}$) in ethanol (10 ml) was mixed with an ethanolic solution (10 ml) of benzhydrazide ($0.228 \mathrm{~g}, 1 \mathrm{mmol}$). The mixture was boiled under reflux for 3 h and then cooled to room temperature. The formed product was recrystallized in ethanol, washed with few drops of ethanol and dried over $\mathrm{P}_{4} \mathrm{O}_{10}$ in vacuo. Colorless block shaped crystals, suitable for single-crystal XRD studies, were obtained after slow evaporation of the solution in air
for a few days.

3. Refinement

The bromine atoms Br 1 and Br 1 B of this molecule were refined freely, with the sum of their occupancy factors constrained to 1.0. The atoms $\mathrm{H} 2, \mathrm{Br} 1 \mathrm{~B}, \mathrm{H} 1 \mathrm{~A}$ and H 1 B were located from a difference Fourier map and N2-H2 distance was restrained to 0.88 ± 0.02. The H 5 atom was placed in calculated position with occupancy factor equal to that Br 1 B , and its coordinates were fixed. The H 6 atom was refined with restrained distance of 0.93 with occupancy factor equal to that of Br 1 . O1W-H1A and $\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{~B}$ distances were restrained to 0.85 ± 0.02. $\mathrm{C} 6-\mathrm{Br} 1 \mathrm{~B}$ distance is restrained to $1.88 \pm 0.01 \AA$. The H atoms on C were placed in calculated positions, guided by difference maps, with $\mathrm{C}-\mathrm{H}$ bond distances $0.93-0.96 \AA$. H atoms were assigned as $U_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}$ (carrier) or $1.5 \mathrm{U}_{\mathrm{eq}}$ (methyl C). Omitted owing to bad disagreement were the reflections (0002) and ($\left.\begin{array}{lll}0 & 1 & 1\end{array}\right)$.

Computing details

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figure 1

ORTEP view of the title compound drawn with 50% probability displacement ellipsoids for the non-H atoms. Bromine and the hydrogen atoms of the admixture was omitted.

Figure 2
Hydrogen-bonding interactions in the crystal structure of $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$.

Figure 3
Molecules are stacked one over the other by means of intermolecular hydrogen bonding interactions in the crystal structure of the title compound.

Figure 4
$\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions interconnecting the two one-dimensional-layers in the lattice.

Figure 5
Packing diagram of the compound along the a axis.
N^{\prime}-[(E)-5-Bromo-2-hydroxy-3-methoxybenzylidene]benzohydrazide monohydrate

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=367.20$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=4.7223$ (5) \AA
$b=13.9357$ (17) \AA
$c=23.028$ (3) Å
$V=1515.4$ (3) \AA^{3}
$Z=4$

Data collection

Bruker Kappa APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.33 pixels mm^{-1}
$F(000)=744$
$D_{\mathrm{x}}=1.609 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3233 reflections
$\theta=2.3-28.0^{\circ}$
$\mu=2.73 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, pale brown
$0.32 \times 0.25 \times 0.22 \mathrm{~mm}$
ω and φ scan
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\text {min }}=0.446, T_{\text {max }}=0.549$
12759 measured reflections

2966 independent reflections
2189 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.090$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.9^{\circ}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.114$
$S=0.89$
2966 reflections
218 parameters
7 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

$$
\begin{aligned}
& h=-5 \rightarrow 5 \\
& k=-17 \rightarrow 17 \\
& l=-22 \rightarrow 28
\end{aligned}
$$

Hydrogen site location: inferred from

 neighbouring sites H atoms treated by a mixture of independent and constrained refinement$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0 . P)^{2}+1.2809 P\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.45 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.29 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 1203 Friedel pairs
Absolute structure parameter: 0.016 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$	Occ. (<1)
Br1	$1.56048(13)$	$0.50757(4)$	$0.94230(3)$	$0.0664(2)$	$0.956(2)$
Br1B	$1.181(4)$	$0.4776(7)$	$0.8289(6)$	$0.087(7)$	$0.044(2)$
O1	$1.0006(7)$	$0.8426(2)$	$0.82729(16)$	$0.0610(10)$	
H1	$0.906(14)$	$0.8268(14)$	$0.798(3)$	0.092^{*}	
O2	$1.3713(8)$	$0.8739(2)$	$0.90679(15)$	$0.0598(9)$	
O3	$0.4122(11)$	$0.8432(2)$	$0.70096(17)$	$0.0800(12)$	
N1	$0.7166(9)$	$0.7183(4)$	$0.76351(16)$	$0.0552(11)$	
N2	$0.5260(8)$	$0.6904(3)$	$0.72170(16)$	$0.0536(11)$	
H2	0.4997	0.6305	0.7146	0.064^{*}	
C2	$1.1208(10)$	$0.7645(3)$	$0.85060(19)$	$0.0479(11)$	
C3	$1.3235(10)$	$0.7802(3)$	$0.8941(2)$	$0.0478(11)$	
C4	$1.4551(10)$	$0.7037(3)$	$0.92142(19)$	$0.0467(11)$	$0.044(2)$
H4	1.5857	0.7140	0.9510	0.056^{*}	
C5	$1.3871(10)$	$0.6112(3)$	$0.9036(2)$	$0.0496(11)$	$0.956(2)$
H5	1.4744	0.5592	0.9214	0.060^{*}	
C6	$1.1964(11)$	$0.5953(3)$	$0.8607(2)$	$0.0527(12)$	
H6	1.1570	0.5327	0.8492	0.063^{*}	
C1	$1.0590(11)$	$0.6710(3)$	$0.83351(19)$	$0.0479(11)$	
C7	$0.8523(11)$	$0.6512(4)$	$0.7890(2)$	$0.0555(13)$	0.067^{*}

C8	$0.3806(11)$	$0.7575(3)$	$0.6918(2)$	$0.0516(12)$
C9	$0.1805(10)$	$0.7211(3)$	$0.64786(18)$	$0.0419(10)$
C10	$0.1193(10)$	$0.6254(3)$	$0.6384(2)$	$0.0489(12)$
H10	0.2073	0.5787	0.6609	0.059^{*}
C11	$-0.0706(12)$	$0.5983(3)$	$0.5959(2)$	$0.0587(13)$
H11	-0.1095	0.5336	0.5901	0.070^{*}
C12	$-0.2013(12)$	$0.6656(4)$	$0.5626(2)$	$0.0595(13)$
H12	-0.3291	0.6470	0.5340	0.071^{*}
C13	$-0.1445(12)$	$0.7607(4)$	$0.5713(2)$	$0.0603(14)$
H13	-0.2330	0.8068	0.5484	0.072^{*}
C14	$0.0435(11)$	$0.7882(3)$	$0.6138(2)$	$0.0559(12)$
H14	0.0791	0.8531	0.6196	0.067^{*}
C15	$1.5878(12)$	$0.8956(3)$	$0.9469(2)$	$0.0616(13)$
H15A	1.5379	0.8706	0.9844	0.092^{*}
H15B	1.6109	0.9639	0.9494	0.092^{*}
H15C	1.7621	0.8669	0.9343	0.092^{*}
O1W	$0.4629(10)$	$0.9794(2)$	$0.78591(18)$	$0.0782(11)$
H1A	$0.473(15)$	$0.944(4)$	$0.7555(18)$	0.117^{*}
H1B	$0.346(12)$	$0.952(5)$	$0.809(2)$	0.117^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0768(4)$	$0.0492(3)$	$0.0733(4)$	$0.0101(3)$	$-0.0021(3)$	$0.0056(3)$
Br1B	$0.127(13)$	$0.058(8)$	$0.077(10)$	$-0.019(8)$	$0.028(9)$	$0.004(7)$
O1	$0.059(3)$	$0.064(2)$	$0.060(2)$	$0.0015(17)$	$-0.0188(19)$	$0.0050(17)$
O2	$0.064(2)$	$0.0475(18)$	$0.067(2)$	$0.0032(17)$	$-0.0247(19)$	$-0.0072(16)$
O3	$0.108(3)$	$0.054(2)$	$0.078(3)$	$-0.020(2)$	$-0.012(3)$	$-0.0184(19)$
N1	$0.048(2)$	$0.081(3)$	$0.037(2)$	$-0.018(2)$	$0.000(2)$	$-0.010(2)$
N2	$0.051(3)$	$0.068(2)$	$0.042(2)$	$-0.012(2)$	$-0.003(2)$	$-0.009(2)$
C2	$0.045(3)$	$0.059(3)$	$0.039(2)$	$-0.003(2)$	$-0.001(2)$	$-0.002(2)$
C3	$0.049(3)$	$0.049(3)$	$0.045(3)$	$-0.003(2)$	$-0.005(2)$	$-0.005(2)$
C4	$0.044(2)$	$0.055(2)$	$0.041(2)$	$0.002(2)$	$-0.001(2)$	$-0.005(2)$
C5	$0.050(3)$	$0.052(3)$	$0.046(3)$	$0.000(2)$	$0.005(2)$	$-0.001(2)$
C6	$0.056(3)$	$0.052(3)$	$0.050(3)$	$-0.006(2)$	$0.004(3)$	$-0.004(2)$
C1	$0.044(2)$	$0.063(3)$	$0.036(2)$	$-0.008(3)$	$0.004(2)$	$-0.009(2)$
C7	$0.049(3)$	$0.076(3)$	$0.042(3)$	$-0.015(3)$	$0.004(2)$	$-0.010(3)$
C8	$0.054(3)$	$0.057(3)$	$0.044(3)$	$-0.007(3)$	$0.006(2)$	$-0.008(2)$
C9	$0.043(2)$	$0.044(2)$	$0.039(2)$	$-0.002(2)$	$0.007(2)$	$-0.007(2)$
C10	$0.053(3)$	$0.042(2)$	$0.052(3)$	$0.001(2)$	$-0.010(2)$	$-0.002(2)$
C11	$0.062(3)$	$0.047(3)$	$0.067(3)$	$0.003(3)$	$-0.013(3)$	$-0.015(2)$
C12	$0.057(3)$	$0.069(3)$	$0.052(3)$	$0.006(3)$	$-0.009(3)$	$-0.005(3)$
C13	$0.061(3)$	$0.063(3)$	$0.057(3)$	$0.008(3)$	$-0.006(3)$	$0.011(3)$
C14	$0.063(3)$	$0.043(2)$	$0.061(3)$	$-0.002(3)$	$0.005(3)$	$0.000(2)$
C15	$0.061(3)$	$0.059(3)$	$0.065(3)$	$-0.002(3)$	$-0.017(3)$	$-0.011(3)$
O1W	$0.111(3)$	$0.053(2)$	$0.071(2)$	$-0.012(2)$	$-0.018(2)$	$-0.0054(18)$

Geometric parameters (A, ${ }^{\circ}$)

Br1-C5	1.885 (5)	C1-C7	1.441 (7)
Br1B-C6	1.798 (8)	C7-H7	0.9300
O1-C2	1.339 (6)	C8-C9	1.475 (6)
O1-H1	0.8311	C9-C14	1.382 (6)
O2-C3	1.357 (5)	C9-C10	1.382 (6)
O2-C15	1.411 (6)	C10-C11	1.379 (7)
O3-C8	1.221 (5)	C10-H10	0.9300
N1-C7	1.277 (7)	C11-C12	1.360 (7)
N1-N2	1.374 (5)	C11-H11	0.9300
N2-C8	1.349 (6)	C12-C13	1.366 (7)
N2-H2	0.8600	C12-H12	0.9300
C2-C1	1.392 (6)	C13-C14	1.376 (7)
C2-C3	1.403 (6)	C13-H13	0.9300
C3-C4	1.385 (6)	C14-H14	0.9300
C4-C5	1.391 (6)	C15-H15A	0.9600
C4-H4	0.9300	C15-H15B	0.9600
C5-C6	1.355 (7)	C15-H15C	0.9600
C5-H5	0.9300	O1W-H1A	0.86 (2)
C6- C 1	1.387 (6)	O1W-H1B	0.86 (2)
C6-H6	0.9300		
C2-O1-H1	109.5	C1-C7-H7	119.1
C3-O2-C15	117.9 (4)	O3-C8-N2	121.9 (5)
C7-N1-N2	116.3 (5)	O3-C8-C9	122.2 (5)
C8-N2-N1	119.6 (4)	N2-C8-C9	116.0 (4)
C8-N2-H2	120.2	C14-C9-C10	117.7 (4)
N1-N2-H2	120.2	C14-C9-C8	117.2 (4)
O1-C2-C1	123.9 (4)	C10-C9-C8	125.1 (4)
O1-C2-C3	116.7 (4)	C11-C10-C9	120.8 (4)
C1-C2-C3	119.4 (4)	C11-C10-H10	119.6
O2-C3-C4	124.6 (4)	C9-C10-H10	119.6
O2-C3-C2	114.6 (4)	C12-C11-C10	120.4 (4)
C4-C3-C2	120.7 (4)	C12-C11-H11	119.8
C3-C4-C5	118.4 (4)	C10-C11-H11	119.8
C3-C4-H4	120.8	C11-C12-C13	119.8 (5)
C5-C4-H4	120.8	C11-C12-H12	120.1
C6-C5-C4	121.4 (4)	C13-C12-H12	120.1
C6- $\mathrm{C} 5-\mathrm{Br} 1$	120.6 (4)	C12-C13-C14	120.1 (5)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 1$	118.0 (4)	C12-C13-H13	120.0
C6-C5-H5	119.3	C14-C13-H13	120.0
C4-C5-H5	119.3	C9-C14-C13	121.2 (4)
C5-C6-C1	121.0 (4)	C9-C14-H14	119.4
C5-C6-Br1B	118.3 (7)	C13-C14-H14	119.4
C1-C6- $\mathrm{Br}^{\text {1 }}$ -	119.4 (7)	O2-C15-H15A	109.5
C5-C6-H6	119.5	O2-C15-H15B	109.5
C1-C6-H6	119.5	H15A-C15-H15B	109.5
C6-C1-C2	119.1 (4)	O2-C15-H15C	109.5
C6-C1-C7	119.4 (5)	H15A-C15-H15C	109.5

C2-C1-C7	121.5 (5)	H15B-C15-H15C	109.5
N1-C7-C1	121.8 (5)	H1A-O1W-H1B	106 (4)
N1-C7-H7	119.1		
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8$	-178.2 (4)	C3-C2-C1-C6	1.1 (7)
C15-O2-C3-C4	5.9 (7)	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	-1.1(7)
C15-O2-C3-C2	-175.2 (4)	C3-C2-C1-C7	180.0 (4)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$	-0.1 (6)	N2-N1-C7-C1	179.7 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$	178.9 (4)	C6- $\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	178.7 (5)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	178.8 (4)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	-0.2 (7)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-2.2(7)	N1-N2-C8-O3	-0.3 (7)
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	-179.5 (5)	N1-N2-C8-C9	-179.9 (4)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	1.8 (7)	O3-C8-C9-C14	4.8 (7)
C3-C4-C5-C6	-0.2 (7)	N2-C8-C9-C14	-175.5 (4)
C3-C4-C5-Br1	-178.5 (4)	O3-C8-C9-C10	-175.0 (5)
C4-C5-C6-C1	-0.9 (7)	N2-C8-C9-C10	4.7 (7)
$\mathrm{Br} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	177.3 (4)	C14-C9-C10-C11	0.5 (7)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{Br} 1 \mathrm{~B}$	165.9 (7)	C8-C9-C10-C11	-179.7 (5)
$\mathrm{Br} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{Br} 1 \mathrm{~B}$	-15.9 (8)	C9-C10-C11-C12	0.0 (8)
C5-C6-C1-C2	0.5 (7)	C10-C11-C12-C13	-0.1 (9)
$\mathrm{Br} 1 \mathrm{~B}-\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	-166.1 (7)	C11-C12-C13-C14	-0.3 (9)
C5-C6-C1-C7	-178.5 (4)	C10-C9-C14-C13	-0.8 (7)
$\mathrm{Br} 1 \mathrm{~B}-\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	14.9 (9)	C8-C9-C14-C13	179.4 (5)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	-180.0 (4)	C12-C13-C14-C9	0.8 (8)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{O} 1 W^{\mathrm{i}}$	0.86	2.11	$2.946(5)$	163
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{~N} 1$	0.83	1.93	$2.637(5)$	142
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.86(2)$	$2.50(5)$	$3.178(5)$	$136(6)$
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.86(2)$	$2.27(4)$	$3.051(5)$	$151(6)$
$\mathrm{O} 1 W — \mathrm{H} 1 A \cdots \mathrm{O} 3$	$0.86(2)$	$1.91(3)$	$2.736(5)$	$163(6)$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 1 W^{\mathrm{i}}$	0.93	2.50	$3.305(6)$	145
$\mathrm{C} 10 — \mathrm{H} 10 \cdots \mathrm{O} 1 W^{\text {i }}$	0.93	2.42	$3.329(6)$	166
$\mathrm{C} 11 — \mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.55	$3.435(5)$	160

Symmetry codes: (i) $-x+1, y-1 / 2,-z+3 / 2$; (ii) $x-1, y, z$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5359).

