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Abstract

Outbreaks of root rot disease in the productive South Indian sericulture belt have threatened

the sustainability of the industry. Macrophomina phaseolina (Tassi) Goid. causing charcoal

rot is the predominant pathogen to which all productive mulberry cultivars are susceptible.

The present study was undertaken to identify molecular markers associated with charcoal

rot resistance in mulberry. A mapping panel comprising 214 diverse entries from the Indian

germplasm collection was assessed for charcoal rot resistance by artificial inoculation.

Resistance to the pathogen was observed in 20 entries, and 51 were found to be moderately

resistant. A total of 773 alleles generated across 105 SSR loci and 20,384 AFLP markers

generated using 32 EcoRI-NN and MseI-CNN primer combinations were used in genetic

analysis. The panel was weakly structured with two subpopulations. However, most entries

were found to be admixtures. Survival of cuttings and number of roots per sapling were

associated with root rot resistance. Association mapping was performed using different lin-

ear mixed models. Five AFLP markers explaining 9.6–12.7% of the total phenotypic vari-

ance were found to be significantly (p < 0.05) associated with root rot resistance. Significant

associations were also detected in four AFLP markers for survival of cuttings, and these

markers explained 10.7–14.2% of the total phenotypic variance. These markers should be

validated using mapping populations derived from contrasting biparental combinations by

linkage analysis for use in marker-assisted gene pyramiding for durable resistance. The

resistant genotypes identified in this study will substantially contribute to genetic improve-

ment of mulberry for charcoal rot resistance and can be integrated into conventional breed-

ing programmes.

Introduction

Mulberry (Morus L. spp.) is indispensable in the sericulture industry, as the domesticated silk-

worm Bombyx mori (Linnaeus, 1758) feeds exclusively on the foliage of these plants to meet its

nutritional requirements. Mulberry cultivation accounts for approximately 40% of the total
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cost of cocoon production (S1 Table). Hence, it is obvious that mulberry improvement for

higher productivity, leaf quality, adaptability to different agroclimatic conditions, abiotic stress

tolerance and disease resistance is imperative to sustainably enhance the quality and yield of

silk. Mulberry is a perennial and is grown as a lowbush, highbush or small tree plantation for

silkworm rearing. A well-maintained garden can give good yields for 15–20 years [1]. Root dis-

eases are a major problem in mulberry cultivation, as managing them is quite a challenge

when compared with foliar diseases. Perennial nature of the crop, resilience of soilborne path-

ogens, and their persistence in soil as spores and sclerotia provide a congenial atmosphere for

the establishment of infectious agents and inoculum build-up [2, 3]. Of late, mulberry root rot

outbreaks have become a serious threat in four South Indian states–Karnataka, Andhra Pra-

desh, Tamil Nadu and Telangana [4]. These four states cumulatively account for approxi-

mately 80% of the mulberry raw silk production in the country [5].

Various types of root rots, such as dry rot caused by Fusarium solani (Mart.) Sacc. and F.

oxysporum Schlecht., black rot caused by Botryodiplodia theobromae Pat. [= Lasiodiplodia theo-
bromae (Pat.) Griff. and Maubl.] and charcoal rot caused by Macrophomina phaseolina (Tassi)

Goid. [= Rhizoctonia bataticola (Taubenh.) E.J.Butler], have been reported in mulberry from

India [6–8]. Occurrence of disease complexes due to infection by more than one root rot-caus-

ing pathogen and association of root-knot nematode [Meloidogyne incognita (Kofoid and

White, 1919) Chitwood, 1949] with root rot have also been reported [9, 10]. However, it was

found thatM. phaseolina is the most prevalent pathogen in the South Indian sericulture belt

[4, 9]. Most mulberry cultivars are prone to charcoal rot disease and can cause up to 35% leaf

yield loss, reduction in leaf size, deterioration of leaf quality, and plant mortality [11]. These in

turn adversely affect profitability in sericulture [12].

Many chemical and biological methods have been recommended for the control of mul-

berry root rots [13]. The use of chemicals is undesirable due to residual toxicity on silkworms

[14]. Indiscriminate use of fungicides comes at a cost to the environment and human health

[15]. Furthermore, it leads pathogens to evolve resistance [16]. Biological approaches for the

control of soilborne diseases are not very successful due to various factors, such as variability

in performance and poor efficacy under optimal conditions for disease development, stem-

ming from the complex and dynamic host plant × pathogen × biocontrol agent × environment

interactions [17]. Non-availability of root rot-resistant mulberry cultivars has made the use of

chemicals an unavoidable necessity. As such, genetic improvement by breeding for resistance

is the only tenable option. Genetic resistance is the most effective, cost-efficient and environ-

mentally friendly method for disease control [18]. A good example for this is breeding for leaf

rust resistance in spring bread wheat undertaken by CIMMYT, Mexico, which has resulted in

limiting crop losses to an insignificant level over the decades [19]. The benefit-cost ratio for

these efforts was estimated to be 27:1 [20].

Plant breeders have mostly relied on germplasm resources and crop wild relatives for useful

genetic variants to create novel gene combinations in crop improvement programmes [21].

India holds a rich germplasm collection of 1291 mulberry accessions of both indigenous and

exotic origin [22]. Significant variability in agronomically important traits is observed in the

germplasm [23–26]. To date, in India, only 20 mulberry cultivars have been screened for their

disease response toM. phaseolina, and all were found to be susceptible [11]. However, Hon-

gthongdaeng [27] reported that the mulberry cultivar Pai and F1 hybrids Pai × Noi No. 6, 18,

33 and 36 exhibited resistance to root rot disease in Thailand. This indicates the availability of

root rot-resistant sources in the germplasm. Therefore, screening a representative subset of

mulberry germplasm is important to identify charcoal rot-resistant accessions.

Mulberry breeding is constrained by its long juvenile period, outcrossing nature, heterozy-

gosity, etc. [28]. The development of a new mulberry cultivar requires approximately 15 years
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on average [28]. Modern breeding approaches such as marker-assisted selection (MAS) are

more efficient and precise for targeted trait improvement and can be undertaken once the

quantitative trait loci (QTLs) for the trait of interest have been mapped and validated [29, 30].

MAS has been successfully applied in breeding bacterial blight resistance in rice [31], Fusarium
head blight resistance in wheat [32], potato late blight resistance [33], etc. Association mapping

allows simultaneous screening of germplasm and mining QTLs. The method takes advantage

of historical recombination events in a population that bring about decay in linkage disequilib-

rium (LD) to detect causative variants in tight linkage with the trait of interest [34]. Employing

diverse germplasm resources for mining QTLs ensures that the complete genetic variability

underlying the trait in the gene pool is accounted for [34]. Sampling germplasm panels to

retain maximum genetic diversity in a minimum size has a normalizing effect that reduces

population structure and LD between unlinked loci [35]. Therefore, such panels are ideal for

association analysis. Krishnan [36] selected a ‘panel of diverse germplasm’ (PDG) comprising

300 entries using the SimEli sampling strategy. This PDG represents the entire genetic diver-

sity available in the Indian mulberry germplasm collection. The present study was undertaken

to evaluate the PDG against M. phaseolina and to identify molecular markers associated with

charcoal root rot resistance.

Materials and methods

Plant materials

Cuttings of the PDG entries were obtained from the ex situ gene bank at Central Sericultural

Germplasm Resources Centre, Hosur, and the nursery was raised according to recommended

practices [37].

The PDG was established as a small tree (90 cm crown height) plantation under augmented

randomized complete block design [38] at Central Sericultural Research and Training Institute

(CSRTI), Mysuru (12˚ 150 38.6@ N, 76˚ 370 30.6@ E). The plot with red sandy loam soil was

divided into 5 blocks, each comprising 3 sub-blocks. Every entry was represented by 4 ramets

in a sub-block, with a spacing of 1.5 m between plants and 1.8 m between sub-blocks. Victory-

1 (indigenous) and Kousen (exotic) were grown as check cultivars. An end guard row of Vic-

tory-1 was planted to eliminate border effects. Poor rooting entries were propagated by graft-

ing buds onto Victory-1 stem stocks [39] and established in the plot. The plantation was

maintained as per recommended practices [37] but with a biannual pruning schedule.

Phenotyping for root rot resistance

Preparation of inoculum. The most virulent isolate of M. phaseolina from mulberry–

MP-5 [4] was used in the study. Sorghum grains were soaked for 18 h in water. The water was

drained, and 100 g of the soaked grain was weighed into 300 ml culture bottles. These bottles

were autoclaved at 121˚C for 1 h. Ten discs (8 mm diameter) cut from 4-day-old cultures of

the pathogen grown on potato dextrose agar (PDA) were used to inoculate the sterilized sor-

ghum. The bottles were incubated at room temperature for 30 days with intermittent mixing.

The sorghum was completely colonized by the pathogen and darkened with microsclerotia at

the end of the incubation period and was used for inoculation of mulberry saplings.

Evaluation of disease response. Four-month-old saplings were carefully uprooted from

nursery beds and were planted in earthenware pots (18 cm diameter) with 2 kg of sterilized

red sandy loam soil thoroughly mixed with 1 bottle of the fungal inoculum in July 2015 (see

[40] for metrological data). The pots were arranged in three randomized complete blocks

under open-field conditions. Every accession was represented by one inoculated pot and one

uninoculated pot (control) in a block. Pots were irrigated with 300 ml of water once every two
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days during the dry period. The total number of leaves per plant, number of wilted leaves per

plant, number of dead plants per accession, weight of the whole root system per plant (g) and

weight of the healthy portion of the root system per plant (g) were recorded 90 days after inoc-

ulation, and disease indices (leaf wilting, healthy root, root rot and plant mortality percent-

ages) were calculated [41]. Based on the percentage of root rot, the disease response was

categorized on a scale of 0–5 (Table 1). A set of 10 randomly selected accessions was pheno-

typed for a second time during February–May 2016 (see [42] for metrological data). Analysis

of variance (ANOVA) and other statistical computations were performed using R 3.4.0 [43].

Pathogen recovery and molecular identification. Among the charcoal rot infected acces-

sions, 6 were randomly selected, and roots from 1 sapling per accession were thoroughly washed

with tap water. Root bits 5 mm in length were surface sterilized by dipping in 2% sodium hypo-

chlorite solution for 2 min. The root bits were then thoroughly rinsed in sterilized deionised

water to remove the bleach and inoculated onto PDA plates supplemented with streptomycin

sulphate (100 mg/l). The plates were incubated at room temperature for 2–5 days. Hyphal tips

emerging from the root bits were transferred to fresh PDA plates and were incubated for 5–7

days to obtain axenic cultures. DNA was extracted from mycelia of the stock culture and reiso-

lated pathogen using a commercial kit (HiPurA Fungal DNA Purification Kit: HiMedia Labora-

tories Pvt. Ltd., Mumbai, India) according to the manufacturer’s instructions. RAPD

fingerprinting was performed using 8 informative arbitrary primers (OPA-03, OPD-13, OPD-

18, OPG-17, OPM-04, OPQ-20, OPR-15, OPR-18: Operon Technologies Inc., Alameda, CA,

USA) as described by Naik and Dandin [44] to ascertain the identity of the reisolated pathogen.

The reproducibility of RAPD fingerprinting was assessed by performing replicate PCRs.

Testing of ‘tails’. The ‘tails’ (5 each of resistant and highly susceptible genotypes) identi-

fied after phenotyping the panel for disease response to M. phaseolina were assessed for their

reaction to other root rot pathogens using the virulent isolates F. solani ‘FS-13’, F. oxysporum
‘FO-20’ and B. theobromae ‘BT-2’ [4]. Inoculum preparation and phenotyping were performed

as described previously, from August–November 2016 (see [42] for metrological data).

Phenotypic data on yield and propagation parameters

Data on mulberry germplasm characterization for leaf yield per plant (kg) and propagation

parameters such as survival of cuttings (%), number of roots per sapling, fresh root weight per

sapling (g), dry root weight per sapling (g), longest root length per sapling (cm) and root vol-

ume per sapling (ml) were compiled from ‘Catalogue on mulberry (Morus spp.) germplasm’

(Vol. 1–5) [23–26].

DNA extraction

Genomic DNA was extracted from fresh young mulberry leaves collected from the PDG plot using

a commercial kit (HiPurA Plant Genomic DNA Miniprep Purification Kit: HiMedia Laboratories

Table 1. Categorization of disease responses in the mulberry germplasm.

Scale Root Rot % Disease Response

0 < 1% Highly resistant

1 1–< 26% Resistant

2 26–< 51% Moderately resistant

3 51–< 76% Moderately susceptible

4 76–< 90% Susceptible

5 > 90% Highly susceptible

https://doi.org/10.1371/journal.pone.0200099.t001
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Pvt. Ltd., Mumbai, India) according to the manufacturer’s instructions. An aliquot (2 μl) of each

DNA sample was electrophoresed on 1% agarose gel in 1× TAE at 4 V/cm for 1 h [45]. The DNA

was quantified using a microvolume spectrophotometer (NanoDrop 2000C: Thermo Fisher Scien-

tific Inc., Wilmington, DE, USA). DNA samples that appeared as a single, sharp high-molecular-

weight band on the agarose gel, with an A260/A280 ratio of 1.8–2, were used in genotyping.

AFLP genotyping

Restriction digestion, adaptor ligation and preselective amplification reactions were performed

as per the protocol of Vos et al. [46] with minor modifications. Genomic DNA (200–250 ng)

was incubated with 5 U each of EcoRI-HF and MseI in 40 μl of 1× CutSmart Buffer for 1 h at

37˚C. A 10 μl solution containing 5 pmol of EcoRI adaptor, 50 pmol of MseI adaptor, 5 mM

ATP and 80 cohesive end units of T4 DNA Ligase in 1× CutSmart Buffer was added to the

digestion reactions, and incubation was continued for 3 h at 37˚C. The restriction–ligation

products were diluted two-fold with T10E0.1 (pH 8.0) buffer.

The preselective amplifications were carried out in 20 μl reaction volumes containing 1×
Standard Taq Reaction Buffer, 200 μM of each dNTP, 0.3 μM EcoRI primer, 0.3 μMMseI-C

primer, 0.5 U of Taq DNA Polymerase and 2 μl of the diluted restriction–ligation product. The

reactions were performed with the following cycling profile: 20 cycles of 94˚C for 30 s, 56˚C

for 1 min, 72˚C for 1 min, and a final extension step at 72˚C for 7 min. The PCR products

were diluted eight-fold with T10E0.1 (pH 8.0) buffer.

The selective amplifications were performed as per Clarke [47] with minor modifications in

10 μl reaction volumes containing 1× Standard Taq Reaction Buffer (with 1.5 mM MgCl2), an

additional 3.125 mM MgCl2, 250 μM of each dNTP, 0.5 μM 50-labelled EcoRI-NN primer

(Applied Biosystems Ltd., Woolston, Cheshire, UK), 0.5 μM MseI-CNN primer, 0.5 U of Taq
DNA Polymerase and 2 μl of the diluted preselective amplification product. The touchdown

PCR cycling was carried out as follows: 13 cycles of 94˚C for 30 s, 65˚C (reduced by 0.7˚C/

cycle) for 30 s, 72˚C for 1 min, followed by 23 cycles of 94˚C for 30 s, 56˚C for 30 s, 72˚C for 1

min, and a final extension step at 72˚C for 7 min.

All enzymes used in AFLP genotyping were procured from New England BioLabs Inc., Ips-

wich, MA, USA. The oligonucleotides used are listed in S2 Table. All preselective and selective

amplification reactions were performed on the GeneAmp PCR System 9700 (Applied Biosys-

tems Inc., Foster City, CA, USA), and the ramping speed was limited to 1˚C/s. Capillary elec-

trophoresis and scoring of AFLP profiles were performed as described by Clarke [47].

SSR genotyping

A total of 7 SSR primers designed forM. boninensis Koidz. [48] and 154 SSR primers designed

forM. indica L. were used in the study (S3 Table). Screening of primers, PCR optimization

and genotyping were performed as described by Pinto et al. [49]. The resolving power (Rp) of

each primer pair was calculated as per Prevost and Wilkinson [50].

The mulberry germplasm was previously characterized with 74 SSR markers [36, 49], which

generated a total of 542 alleles across the loci. These genotypic data were also utilized in the pres-

ent study. Unless stated otherwise, genetic analysis was performed with the combined AFLP and

SSR marker dataset, and all markers with> 10% missing data were excluded from analysis.

Assessment of genetic diversity and kinship

A dissimilarity matrix based on Dice’s coefficient [51] was computed, and cluster analysis was

performed by the neighbour-joining method [52] using the software DARwin 6.0.14 [53]. The

dendrogram was drawn using FigTree 1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/).
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The codominant SSR marker data were used to compute pairwise kinship coefficients [54]

among the accessions with SPAGeDi 1.5 [55]. All negative values in the 214 × 214 kinship

matrix were set to zero, as suggested by Yu et al. [56].

Population structure analysis

Bayesian clustering was performed to investigate population stratification in the panel using

the software Structure 2.3.4 [57–59]. The admixture model with correlated allele frequencies

was used. All markers were coded as dominant, and ploidy was set to 1. The run length was set

to 110,000 MCMC iterations with the fist 10,000 being discarded as burn-in for subpopula-

tions (K) ranging from 1–6. Five runs were performed for each K value. The optimal number

of subpopulations was determined by the method of Evanno et al. [60]. ΔKwas calculated

using the web application Structure Harvester 0.6.94 [61]. For the optimum K, replicate runs

were aligned with the FullSeach algorithm implemented in the program CLUMPP 1.1.2 [62].

The outfile from CLUMPP was used to generate a bar plot of the Structure results using the

web application Structure Plot 2.0 (http://omicsspeaks.com/strplot2/) [63]. Principal compo-

nent analysis (PCA) was also performed to assess population stratification in the panel using

the R package adegenet 2.0.1 [64]. The first and second principal components (PCs), which

explained the maximum variance, were plotted to obtain the graphical output. Analysis of

molecular variance (AMOVA) was performed according to Excoffier et al. [65] using Arlequin

3.5.2.2 [66] to assess the molecular variance within and between Structure-defined subpopula-

tions. The program FAMD 1.31 [67] was used to count private alleles in each of the

subpopulations.

Association mapping

Association mapping for charcoal rot resistance was performed using the accession means of

healthy root percentage as the response variable. Marker–trait association (MTA) analysis was

also performed for survival of cuttings and number of roots per sapling, as these traits were

found to be associated with root rot resistance. Various statistical models described by Yu et al.
[56], namely, simple, Q, K and Q+K, were used for MTA, with subpopulation membership

coefficients as fixed covariates and kinship as random effects. MTA was performed using TAS-

SEL 5.2.37 [68] by the general linear model procedure for simple and Q models, whereas com-

pressed mixed linear model with population parameters previously determined [69] was used

for K and Q+K models. The p-values were corrected for multiple testing by the Benjamini and

Hochberg step-up false discovery rate (FDR) controlling procedure [70] implemented in the R

package multtest 2.32.0 [71]. The significance threshold for MTA was set at� 0.05. The model

with the lowest mean of the squared differences (MSD) between observed and expected p-val-

ues was selected as the best [72]. Quantile–quantile (Q–Q) plots of the p-values were also gen-

erated to assess the adequacy of the models in controlling type I errors.

Results

Disease response of the mapping panel

A total of 214 entries from the PDG were found to root and could be screened for their reac-

tion to charcoal root rot causing M. phaseolina by artificial inoculation. These 214 entries con-

stituted the mapping panel. Diverse response to the pathogen was observed (S4 Table; Fig 1).

High resistance to the pathogen was not observed, which indicates the absence of qualitative

resistance toM. phaseolina in the set of screened germplasm. However, 20 accessions with less

than 26% root rot were classified as resistant. M. cathayana (Hybrid) had of the fewest infected
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Fig 1. Infected roots–external view (A), traverse section (B) and longitudinal section (C).

https://doi.org/10.1371/journal.pone.0200099.g001
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roots (9.85%), and 2 accessions of M. multicualis Perr., ME-0168 and ME-0006, had 12.03%

and 16.57% root infection, respectively. G-2, a new cultivar recommended for young silkworm

rearing, and G-4, an improved cultivar, both bred from M.multicaulis (♀), were classified as

resistant (22.81% root rot) and moderately resistant (35.91% root rot), respectively. Moderate

resistance to the infection was observed in 51 accessions; 50 accessions were categorized as

moderately susceptible; 19 accessions were classified as susceptible; and 74 accessions were

found to be highly susceptible, of which 73 were completely infected by the pathogen. The wild

mulberry species M. laevigata Wall. ex Brandis was represented by 6 accessions that were all

found to be highly susceptible. The main effects for disease responses were significant (leaf

wilting: F213,426 = 2.97, p = 6.53 × 10−22; root rot and healthy root: F213,426 = 3.64, p = 4 × 10−30)

and negligible between replications (leaf wilting: F2,426 = 0.23, p = 0.8; root rot and healthy

root: F2,426 = 1.42, p = 0.24). There were no significant differences between the disease

responses of the 10 accessions in the two trials (leaf wilting: F1,18 = 0.44, p = 0.51; root rot and

healthy root: F1,18 = 0.02, p = 0.88). Disease responses of the ‘tails’ to other fungal root rot path-

ogens has been presented in S5 Table. The stock culture and all pathogen reisolates had identi-

cal RAPD profiles, thus fulfilling Koch’s postulates [73]. The banding profiles were consistent

across PCR replications.

Phenotypic variability in the mapping panel

The summary statistics of the distribution of phenotypic traits in the mapping panel are pre-

sented in Table 2. The root rot phenotype had a highly significant (p< 0.001) correlation with

leaf wilting (r = 0.826) and plant mortality (r = 0.982). A highly significant (p< 0.001) negative

correlation was also observed between root rot and survival of cuttings (r = –0.398) and the

number of roots per sapling (r = –0.333) traits (Fig 2). The yield potential of an accession was

not correlated with root rot susceptibility. There was a significant linear relationship (R2 =

0.682; p< 0.001) between leaf wilting and root rot percentages (Fig 3).

DNA profiling

A total of 31 primer pairs of the 161 screened were found to be polymorphic. PCR conditions

were optimized for these primers (Table 3) and were used in DNA fingerprinting of the map-

ping panel. These markers amplified a total of 231 alleles (7.45 alleles/locus) in the size range

49–420 bp. M2SSR23 amplified the maximum of 17 alleles, whereas M2SSR51 and M2SSR88

amplified only 2 alleles each. A total of 87 rare alleles (present in < 5% of the accessions) and 3

Table 2. Distribution of phenotypic traits in the mapping panel.

Trait Minimum Maximum Mean SD Variance CV% Skewness Kurtosis

Root rot (%) 9.85 100 67.24 29.10 846.68 43.27 –0.24 –1.36

Healthy root (%) 0 90.15 32.76 29.10 846.68 88.82 0.24 –1.36

Leaf wilting (%) 0 100 67.39 31.73 1007.04 47.09 –0.57 –0.92

Plant mortality (%) 0 100 53.43 40.29 1623.57 75.42 –0.11 –1.55

Survival of cuttings (%) 4.17 96.67 62.36 22.58 509.64 36.20 –0.89 0.16

Fresh root weight per sapling (g) 0.18 17.87 5.41 4.16 17.30 76.95 0.99 0.05

Dry root weight per sapling (g) 0.08 6.76 1.85 1.54 2.38 83.56 1.06 0.41

Number of roots per sapling 1.56 15.33 7.32 2.69 7.23 36.71 0.33 –0.08

Root volume (ml) 0.13 23.33 4.13 4.12 17 99.73 1.60 3.07

Longest root length per sapling (cm) 10 45.17 24.54 7.39 54.60 30.11 0.29 –0.60

Leaf yield per plant (kg) 0.10 7.08 1.87 1.29 1.66 68.96 1.45 2.67

https://doi.org/10.1371/journal.pone.0200099.t002
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common alleles (present in> 98% of the accessions) were observed. The resolving power of

the 31 SSR markers ranged from 0.07 to 3.66 and totalled 60.8. AFLP fingerprinting of the

mapping panel was performed using 32 selective primer combinations (S2 Table). A total of

20,384 fragments were amplified by these selective primers. Of these, 10,988 (53.9%) had a

frequency< 5%, and 202 had a frequency > 98%.

Genetic diversity, kinship and population stratification

Dice’s dissimilarity coefficients among the mulberry accessions ranged from 0.125 to 0.751.

The average dissimilarity was found to be 0.446. Georgia and Assama Bola were closely related,

and the pair S-1 (M. alba L.) and Nao Khurkul (M. laevigata) was the most divergent. The

panel was clustered into 2 broad groups (G1 and G2) by the NJ algorithm, comprising 114 and

100 entries (Fig 4).

Ritland’s kinship coefficients calculated based on the SSR marker data ranged from 0 to

0.9318 among the accessions. In the 214 × 214 kinship matrix, 28,058 (61.27%) pairs had a

value of 0, 12,188 (26.61%) pairs had a value� 0.05, and 5,386 (11.76%) pairs had a kinship

coefficient in the range> 0.05 to� 0.3. Only 164 (0.36%) pairs were highly related to each

other, with kinship coefficients in the range > 0.3 to< 0.95.

Population stratification in the mapping panel was best captured by Structure at K = 2 (Fig

5). The first subpopulation (Q1) comprised 151 accessions, and 63 accessions were clustered in

the second subpopulation (Q2). The exotic cultivar Kousen and 60 indigenous accessions had

Fig 2. Correlation among various phenotypic traits observed in the mapping panel. RR, root rot; HR, healthy root;

LW, leaf wilting; PM, plant mortality; S, survival of cuttings; RW-F, fresh root weight per sapling; RW-D, dry root

weight per sapling; NR, number of roots per sapling; RV, root volume; LRL, longest root length per sapling; LY, leaf

yield per plant.

https://doi.org/10.1371/journal.pone.0200099.g002
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a membership coefficient > 0.9 in Q1, of which 25 accessions had a membership

coefficient� 0.99. In Q2, 2 exotic accessions had a membership coefficient > 0.9. Other than

this, most of the accessions were admixtures (Fig 6). As many as 59 accessions had a member-

ship coefficient in the range of 0.4–0.6. The first two PCs that captured 7.17% of the total

molecular variance in the mapping panel could delimit the entries into 2 groups with some

overlaps (Fig 7), which is in agreement with the Structure result. NJ clustering also corrobo-

rated the Structure and PCA results. The NJ cluster G1 had 107 entries representing Q1 and 7

entries from Q2. The G2 cluster had 100 entries, of which 56 were from Q2. AMOVA revealed

that 92.55% molecular variance was contained within Structure-defined subpopulations, and

7.45% was partitioned between the subpopulations. The fixation index FST was calculated to

be 0.07453, which indicates a weak population structure. A total of 1623 and 2670 alleles were

private within Q1 and Q2, respectively.

Marker–trait association analysis

Of the 4 statistical models tested, the simple model performed poorly. Correction for popula-

tion stratification with the Q matrix from Structure did not appreciably reduce the number of

false associations. However, the model accounting for familial relatedness with the K matrix

from SPAGeDi and a combined Q+K model worked equally well for controlling FDR, as

judged by the MSD values (Table 4) and Q-Q plots (Fig 8). A total of 5 AFLP markers were

found to be significantly associated with charcoal rot resistance. These markers could explain

9.6–12.7% of the total phenotypic variation in the trait (R2) and had an allele frequency of

0.132–0.401. The K model could identify only 1 marker associated with charcoal rot resistance,

which was also identified by the Q+K model. Four AFLP markers (R2 = 10.7–14.2%) with allele

frequencies in the range 0.052–0.728 were significantly associated with survival of cuttings.

y = 16.22 + 0.757 ⋅ x,  R2 = 0.682
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Fig 3. Linear relationship between the leaf wilting and root rot traits.

https://doi.org/10.1371/journal.pone.0200099.g003
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The markers E-TG/M-CAG–116 and E-AA/M-CTC–224 were found to be significantly asso-

ciated with the survival of cuttings in both the K and Q+K models (Table 5). No significant

MTAs for the number of roots per sapling trait were found.

Discussion

Population structure and interrelationships in the mapping panel

The heterozygous and outcrossing nature of mulberry translates into a high level of phenotypic

variation within the segregating progeny. Therefore, mulberry is mainly propagated clonally to

ensure uniformity, which is advantageous for cultural operations on a commercial scale. Root-

ing ability is one of the main criteria for the selection of an improved mulberry cultivar in trop-

ical sericulture. Most tropical cultivars have a good rooting ability and can be conveniently

Table 3. Optimized PCR conditions and SSR marker polymorphism observed in the mapping panel.

Sl. No. Marker P TA C V Size Range (bp) NA NR NC Rp

1. M2SSR1 0.5 44.2 30 3 217–257 5 2 0 1.72

2. M2SSR10 0.25 47.6 30 5 123–159 11 5 0 2.46

3. M2SSR101 0.25 46.8 30 10 370–420 3 0 1 0.53

4. M2SSR102 0.5 46.9 30 3 201–213 4 1 0 1.37

5. M2SSR103 0.25 48.2 30 10 285–355 8 3 0 0.86

6. M2SSR107 0.25 53.3 30 3 247–262 4 1 0 1.99

7. M2SSR12 0.5 46.8 30 3 270–278 4 1 0 0.68

8. M2SSR20 0.5 48.8 30 3 232–298 9 5 0 2.85

9. M2SSR23 0.25 47.8 30 10 214–286 17 9 0 3.5

10. M2SSR36 0.25 47.2 30 3 196–208 6 3 0 1

11. M2SSR41 1 46.9 30 10 250–286 6 1 0 2.13

12. M2SSR51 0.5 47.1 32 10 209–227 2 1 1 0.07

13. M2SSR54A 0.25 48.1 35 5 215–277 7 3 0 1.06

14. M2SSR64B 0.5 46.4 30 5 170–217 11 6 0 1.25

15. M2SSR68 0.5 46.1 30 5 192–216 7 1 0 2.7

16. M2SSR72 0.5 47.6 30 5 198–218 5 2 0 1.81

17. M2SSR81 0.25 47.1 35 3 247–262 4 1 0 2.16

18. M2SSR82 0.5 44.9 30 3 186–216 7 2 0 2.55

19. M2SSR87 0.25 49.7 30 5 225–263 10 3 0 3.07

20. M2SSR88 0.5 48.2 30 5 275–293 2 0 1 0.28

21. M2SSR89A 1 46.5 30 3 200–238 8 2 0 1.85

22. M2SSR9 0.6 49.9 32 10 315–383 5 0 0 1.84

23. M2SSR93 0.5 44.9 30 10 235–247 5 0 0 1.85

24. MulSSR22S 0.25 56.8 35 10 258–297 8 2 0 3.33

25. MulSSR59 0.25 59.8 25 5 151–181 8 2 0 2.73

26. MulSSR85 0.5 56.8 30 5 291–357 13 4 0 3.66

27. Mos0031 0.5 52 30 5 49–109 9 6 0 1.32

28. Mos0157-1 0.5 51 30 10 104–146 6 5 0 0.49

29. Mos0157-2 0.25 49 25 3 242–284 10 1 0 3.51

30. Mos0288 0.25 47 35 5 118–160 13 8 0 2.9

31. Mos0340-2 0.25 50 30 5 94–146 14 7 0 3.26

P, optimized concentration of primers (pmol); TA, optimized annealing temperature (˚C); C, optimized number of PCR cycles; V, volume of PCR products loaded onto

the gels (μl); NA, number of alleles; NR, number of rare alleles; NC, number of common alleles; Rp, resolving power.

https://doi.org/10.1371/journal.pone.0200099.t003
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multiplied using stem cuttings. Temperate cultivars, polyploids and wild species, which gener-

ally do not root well, are propagated by grafting [28]. Furthermore, it has also been reported

that establishing M. serrata Roxb. in non-native eco-climatic conditions is difficult [74]. The

PDG comprises 300 entries from 17 countries and represents 10 Morus spp. Of these, 96

entries were exotic, 26 were classified as M. laevigata, and M. serrata was represented by 7

Fig 4. NJ dendrogram of the mapping panel. The Structure-defined subpopulation Q1 is coloured red, and Q2 is coloured blue.

https://doi.org/10.1371/journal.pone.0200099.g004
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entries. A total of 214 entries (S4 Table) were found to root and could be utilized in the present

study. Krishnan [36] reported that genetic distance among the PDG entries was in the range

0.071–0.865, with an average of 0.554. Based on the results of the present study, it can be con-

cluded that not much genetic diversity has been lost, even though 86 entries of the PDG were

not a part of the mapping panel. Moreover, screening poor rooting accessions for root rot

resistance is irrelevant because they are propagated by grafting onto stocks of cultivars with

good rooting ability [28], and therefore lack true to type root system.

Fig 5. Variation in ΔK values across different subpopulation numbers.

https://doi.org/10.1371/journal.pone.0200099.g005

Fig 6. Proportion of subpopulation membership of the 214 diverse mulberry accessions inferred by Structure.

https://doi.org/10.1371/journal.pone.0200099.g006
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Fig 7. Population stratification in the mapping panel deciphered by PCA. Inset: Eigenvalues of the principal components. The Structure-defined subpopulation Q1

is coloured red, and Q2 is coloured blue.

https://doi.org/10.1371/journal.pone.0200099.g007

Table 4. Marker–trait associations and mean of the squared differences between expected and observed p-values for different statistical models used in association

mapping.

Model Charcoal Rot Resistance Survival of Cuttings Number of Roots per Sapling

MTA MSD MTA MSD MTA MSD

Simple 78 0.005884 362 0.005116 20 0.007020

Q 34 0.005592 240 0.004971 0 0.006992

K 1 0.002223 4 0.002713 0 0.003795

Q+K 5 0.002368 2 0.002999 0 0.004103

MTA, marker–trait associations; MSD, mean of the squared differences between expected and observed p-values.

https://doi.org/10.1371/journal.pone.0200099.t004
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Germplasm collections consist of genetic resources sampled from different populations and

are therefore invariably structured to various extents [75, 76]. Bayesian clustering by Structure
could identify two subpopulations in the mapping panel. NJ clustering and PCA also support

this result. Q1 and Q2 contained 7.69% and 12.66% private alleles, respectively. AMOVA

showed that the variance between the subpopulation was very low (7.45%). The fixation index

(FST = 0.07453) also indicates a weak population structure. Except for 60 indigenous acces-

sions having a higher membership coefficient in Q1, geographic and taxonomic affinities were

not reflected in the Bayesian clustering. From these results and as expected, it is very clear that

the two subpopulations are admixed to a great extent. All mulberry accessions in the mapping

panel, other than 6 entries representing the wild species M. laevigata, belong to cultivated

Fig 8. Distribution of expected and observed p-values of different statistical models used in marker–trait association analysis of charcoal rot resistance (A) and

survival of cuttings (B).

https://doi.org/10.1371/journal.pone.0200099.g008

Table 5. Marker loci significantly associated with charcoal rot resistance and survival of cuttings.

Trait Model Marker p-value Adjusted p-value R2 Allele Frequency

Charcoal rot resistance K E-AA/M-CAG–317 1.23 × 10−6 0.026 0.119 0.401

Q+K E-TG/M-CAG–30 5.14 × 10−7 0.011 0.127 0.198

E-AC/M-CAA–496 1.52 × 10−6 0.016 0.115 0.132

E-AA/M-CAG–317 4.18 × 10−6 0.029 0.106 0.401

E-AA/M-CTG–31 7.77 × 10−6 0.041 0.098 0.164

E-AA/M-CAA–234 1.04 × 10−5 0.044 0.096 0.392

Survival of cuttings K E-TG/M-CAG–116 4.42 × 10−7 0.005 0.142 0.217

E-AA/M-CTA–342 5.64 × 10−6 0.036 0.114 0.052

E-TG/M-CAA–179 6.86 × 10−6 0.036 0.111 0.123

E-AA/M-CTC–224 9.87 × 10−6 0.042 0.107 0.728

Q+K E-TG/M-CAG–116 1.42 × 10−6 0.015 0.124 0.217

E-AA/M-CTC–224 5.20 × 10−6 0.037 0.109 0.728

https://doi.org/10.1371/journal.pone.0200099.t005
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species. The cultivated species have dispersed from their centre of origin and established in dif-

ferent countries, including India, and were also introduced from secondary sources at different

points in time or bred by crossing naturalized/adapted varieties with introduced materials. No

reproductive barrier exists among Morus spp. They freely intercross, even among species with

different ploidy levels [77, 78], and hence, we cannot expect population stratification. The

weak population structure makes this set of germplasm ideal for association mapping.

The AM panel also comprised the ‘kernel’, which consists of accessions frequently used in

breeding programmes in India over the past five decades and improved cultivars. Mutants and

full-sib, half-sib and first-cousin relationships exist in these accessions [79], and the same is

reflected in the kinship matrix based on Ritland’s coefficient.

Phenotyping for root rot resistance

Having a reliable and efficient technique for screening disease reactions is quite important for

the assessment of resistance. Although sick plot screening is considered to be a more realistic

method for the evaluation of disease response [80], it may not be very reliable due to non-uni-

form concentration and non-random distribution of inoculum within and between fields [81].

Variability in the virulence of pathogenic isolates between fields also affects the disease mani-

festation [82]. Moreover, the method may not be suitable for screening a perennial such as

mulberry. Toothpick inoculation is another technique commonly used in annuals, wherein

inoculum is introduced through the stalks [83]. This method cannot be implemented in mul-

berry because it is woody in nature. Furthermore, the method is unsatisfactory because it does

not simulate the natural infection process, and the level of disease development is usually less

when compared to infection through roots [83]. The results obtained in the present study indi-

cate that artificial inoculation of mulberry saplings in pots was quite reliable in terms of repro-

ducibility and logistically feasible for large-scale screening of germplasm. This is the first study

in mulberry wherein a large set of germplasm was assessed for disease response to M. phaseo-
lina, resulting in the identification of 20 accessions with genetic resistance to charcoal rot.

These accessions can be integrated into conventional breeding programmes and used as donor

parents for genetic improvement of elite cultivars for charcoal rot resistance.

Traits associated with root rot resistance

A highly significant positive correlation was observed between root rot and leaf wilting

(r = 0.826; p< 0.001) in the present study (Fig 2, Fig 3). Therefore, leaf wilting can be used as a

predictor variable to assess disease progression in terms of root rot percentage in the field.

Such estimates will be important for taking up timely control measures on the required scale.

Survival of cuttings and number of roots per sapling were found to be associated with root

rot resistance, as these traits had a highly significant negative correlation with leaf wilting, root

rot and plant mortality percentages (Fig 2). The survival of cuttings is a measure of the rooting

ability of the genotype. Formation of adventitious roots and shoots from the uninfected por-

tions was observed in some resistant and moderately resistant accessions (Fig 9). Du et al. [84]

reported that many defence-related genes were activated during root formation in mulberry.

An increase in sugar transport towards the rooting zone has also been observed during adven-

titious rooting [85, 86] and may contribute to disease resistance [87]. In sorghum, it was

observed that a loss of up to 50% of the roots due to infection had little impact on the leaf

water potential [88]. Higher numbers of roots and root regeneration allow plants to sustain

water and nutrient mining capability even though parts of the root system are deteriorated due

to infection, thereby allowing them to survive. Because the infected plants have to reallocate a

substantial amount of photosynthate and stored carbohydrates for regeneration of roots and
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Fig 9. Adventitious shoot (A, B) and root (B, C) regeneration in mulberry infected with M. phaseolina.

https://doi.org/10.1371/journal.pone.0200099.g009
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defence, there will be a loss of vigour. Drought stress and unavailability of nutrition aggravate

the problem by decreasing photosynthetic efficiency and render the plants quasi-defenceless.

Therefore, mitigation of these stresses by enhancing soil fertility and providing sufficient irri-

gation becomes crucial in saving the plantation. Nutrient availability is known to prevent path-

ogenesis [89] and increases the diversity of beneficial soil microflora, which contributes to the

control of the pathogen [90]. Furthermore, the survival of cuttings and the number of roots

per sapling must be considered as component traits for root rot resistance, and selection of

hybrids with higher survival of cuttings and number of roots per sapling must be emphasized

in root rot resistance breeding programmes.

Markers for charcoal rot resistance and associated traits

The charcoal rot resistance trait has a near-normal distribution in the mapping panel, as

judged by the distribution of leaf wilting, root rot, healthy root and plant mortality percentages

(Table 2). Not much variation in the root traits was present in the mapping panel, as can be

inferred from the variance values. This is expected because the mapping panel does not include

the poor rooters from the PDG. For association analysis, alleles of all frequencies were

retained. Of late, there has been a growing realization that by excluding low frequency alleles,

many rare variants are missed out [91, 92]. Tabangin et al. [93] found that leaving out such

alleles due to concerns about inflating the FDR may not be appropriate, as even alleles with

lower frequencies showed type I error rates close to nominal levels. With appropriate measures

for controlling FDR, the inclusion of minor alleles can result in the discovery of rare genetic

variants underlying complex traits [94]. The Q model was not very effective in controlling

FDR as expected because the mapping panel is only weekly structured and most of the acces-

sions are admixtures. K and Q+K models performed adequately in controlling FDR (Table 4,

Fig 8). Five markers significantly associated with charcoal rot resistance and four markers for

survival of cuttings have been identified (Table 5). No significant MTAs for the number of

roots per sapling could be found, perhaps due to a lack of sufficient variability for the trait in

the mapping panel. However, Mishra [95] identified RAPD and ISSR markers linked to this

trait in the F1 mapping population derived from Dudhia White × UP-105 by single marker

analysis. Sequencing all these markers and chromosome walking will be useful for elucidating

the molecular mechanism of root rot resistance. Conversion of these markers into SCARs or

CAPSs will help in efficient and rapid genotyping of germplasm or introgression lines for

MAS.

Although mixed-model association mapping approaches are adept at controlling false posi-

tives, stringent control for population stratification also results in false negatives [96]. Segregat-

ing F1 progeny from crosses between resistant and susceptible genotypes can be used to further

validate the markers identified in the present study by linkage mapping and to look for addi-

tional QTLs. Once validated, breeding resistance to charcoal rot can be expedited by MAS.

Based on the disease response, sex expression and genetic dissimilarity, the following parental

combinations will be best suited for generation of mapping populations: (1)M.multicaulis
(ME-0006, resistant, ♀) × Thailand Male (ME-0033, highly susceptible, ♂); (2)M.multicaulis
(ME-0168, resistant, ♀) × Thailand Male (ME-0033, highly susceptible, ♂); and (3) Punjab Local

(MI-0026, highly susceptible, ♀) ×M. cathayana (Hybrid) (ME-0254, resistant, ♂).

Future perspectives

It would be oversimplification if we were to assume root rot to be only a host × pathogen inter-

action. Studies in various crops have clearly demonstrated that the disease outcome is greatly

influenced by genotype (host/pathogen) × environment interactions [80, 83, 88, 97, 98].
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Previous results have indicated that soil water deficit has a major role in predisposing mulberry

to charcoal rot [11], and soil moisture levels below 30% increase disease severity [9]. Drought

stress greatly affects mulberry, and leaf yield is reduced to one-third in comparison to the

same cultivar gown under optimal irrigation [28]. It has been reported that drought stress def-

erentially regulates 1051 genes in mulberry [99]. WRKY transcription factors, which play key

roles in plant defence signalling and disease resistance [100, 101], were differentially regulated

in response to drought stress [99, 102]. The role of these transcription factors in resistance to

charcoal rot remains to be investigated.

Harvesting leaves or shoots for silkworm rearing and complete pruning of plants once

every 70 days are an integral part of the mulberry cropping system [37]. This means that

for 1–2 weeks in each cropping cycle, the plants completely depend on stored nutrients

for their survival and regeneration. The effects of repeated pruning on mulberry are not

well understood. However, the plants are particularly vulnerable to root rot-causing path-

ogens due to photosynthetic stress–translocation balance [103]. If environmental stressors

act in tandem with pruning stress, it can be highly detrimental to mulberry plantations.

Further investigations must be undertaken to understand the pruning stress associated

physiological, biochemical and gene expression changes. The effects of moisture deficit,

high temperatures, nutritional imbalances and soilborne pathogens in combination with

pruning stress also need to be investigated for developing effective strategies to manage

the disease.

The wide distribution of root rot-causing pathogens in the South Indian sericulture belt

and their genetic diversity [4] are an important source of concern because a dynamic pathogen

population is in a perpetual ‘arms race’ and can easily evolve to overcome host disease resis-

tance [104]. A continuous programme for scouting the emergences of new virulent isolates

and systematic monitoring of various pathogen populations must be initiated. This will be

vital for disease forecasting, taking up adequate control measures and sustaining efforts in

genetic improvement of mulberry for root rot resistance.

Though quantitative disease resistance for Fusarium spp. and B. theobromae infection

has been reported in mulberry [6, 105, 106], large-scale screening of germplasm for disease

response to these pathogens has not been performed. The results obtained in the present

study (S5 Table) indicate the availability of genetic resistance to all fungal root rot patho-

gens in M. multicaulis (ME-168) and M. cathayana (Hybrid). Further studies must be initi-

ated to assess the entries in the mapping panel for their reaction to F. solani, F. oxysporum
and B. theobromae for identification of accessions with resistance to multiple fungal root rot

pathogens. Mining QTLs for resistance to other root rot pathogens or QTLs with pleiotropic

effects against multiple pathogens will be useful for breeding durable broad-spectrum resis-

tance by gene pyramiding.

With the advent of next-generation sequencing technologies, comparative transcriptomic

studies have been used to understand the molecular mechanisms that regulate abiotic and

biotic stress tolerance in mulberry [99, 107, 108]. Similar efforts towards understanding resis-

tance to root rot pathogens will be more comprehensive and will help in the development of

functional markers for root rot resistance.

The PDG was established at CSRTI, Mysuru, in 2015 as a part of this study, making the

genetic resources available for extensive phenotyping of agronomically important traits. The

genotypic information generated on the mapping panel in the present study can be further

enriched with additional markers and used to identify QTLs associated with the traits of inter-

est. Utilization of these resources will be efficacious in genetic diversification and improve-

ment of mulberry cultivars.
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