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César López-Camarillo5, Carlos Pérez-Plasencia2,6* and Alma D. Campos-Parra2*

1 Postgraduate in Experimental Biology, DCBS, Autonomous Metropolitan University-Iztapalapa, Iztapalapa, Mexico,
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Ciudad de México, Mexico, 6 Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional
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Background: In Cervical cancer (CC), in addition to HPV infection, the most relevant
alteration during CC initiation and progression is the aberrant activation of Wnt/b-catenin
pathway. Several inhibitory drugs of this pathway are undergoing preclinical and clinical
studies. Long non-coding RNAs (lncRNAs) are associated with resistance to treatments. In
this regard, understanding the efficiency of drugs that block theWnt/b-catenin pathway in CC
is of relevance to eventually propose successful target therapies in patients with this disease.

Methods:We analyzed the levels of expression of 249 components of the Wnt/b-catenin
pathway in a group of 109 CC patients. Three drugs that blocking specific elements of
Wnt/b-catenin pathway (C59, NSC668036 and ICRT14) by TOP FLASH assays and qRT-
PCR were tested in vitro in CC cells.

Results: 137 genes of the Wnt/b-catenin pathway were up-regulated and 112 down-
regulated in CC patient’s samples, demonstrating that this pathway is dysregulated. C59
was an efficient drug to inhibit Wnt/b-catenin pathway in CC cells. NSC668036, was not
able to inhibit the transcriptional activity of the Wnt/b-catenin pathway. Strikingly, ICRT14
was neither able to inhibit this pathway in HeLa cells, due to HOTAIR interaction with b-
catenin, maintaining the Wnt/b-catenin pathway activated.

Conclusions: These results demonstrate a mechanism by which HOTAIR evades the
effect of ICRT14, a Wnt/b-catenin pathway inhibitory drug, in HeLa cell line. The
emergence of these mechanisms reveals new scenarios in the design of target
therapies used in cancer.
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INTRODUCTION

Cervical cancer (CC) constitutes a major health concern
worldwide since it is the fourth most common cancer in
women (1). Epidemiological and molecular studies have shown
that high-risk Human Papilloma Virus (HR-HPV) is a causal
agent but not sufficient (2). Hence, the malignant progression of
HR-HPV infected cells is a casual event that requires the
emergence of other genetic, epigenetic, phenotypic and micro-
environmental alterations (3–5). Among the most relevant
alterations during CC initiation and progression is the aberrant
activation of Wnt/b-catenin pathway, which is essential in
cervical oncogenesis (6, 7). Wnt/b-catenin pathway has a
critical role in development, differentiation, and tissue
homeostasis. However, in several types of cancer this pathway
is dysregulated promoting poor patient prognosis, so it is
attractive to be pharmacologically blocked (8). Only a few
drugs have made it into Phase I clinical trials, such as
Ipafricept and vantictumab (WNT antibodies), LGK974 and
ETC-159 (PORN inhibitors), PRI-724 and CWP232291 (b-
catenin inhibitors); however, none has been approved yet (9).
Other drugs are still in pre-clinical studies, for example; C59, acts
at the extracellular level inhibiting the function of PORCN,
which is a membrane-bound O-acyltransferase required for
palmitoylation, secretion and activity of WNTs ligands (10).
NSC668036, is an organic molecule that acts at the cytoplasmic
level binding to DVL protein, that inhibits the Wnt3A induced
signaling (11). Another drug is ICRT14, which acts at the nuclear
level inhibiting direct interactions between b-catenin and TCF4,
antagonizing the transcriptional function of nuclear b-catenin
and consequently shutting down the signaling pathway (12). Due
to the existence of an arsenal of drugs blocking Wnt/b-catenin
pathway, some characteristics that determine their efficacy are
becoming apparent (13).

Recent studies have revealed that the dysregulation of multiple
pathways by long-non coding RNAs (lncRNAs) results in drug
resistance (14, 15). HOX transcript antisense intergenic RNA
(HOTAIR) is the best example, as its overexpression induced
cellular resistance to cisplatin through Wnt/b-catenin pathway
activation in ovarian cancer (16). Likewise, HOTAIR upregulation
was associated with drug resistance by Wnt/b-catenin pathway
activation in lung cancer (17), and colorectal cancer (18).

In the present study, we validated the dysregulation of Wnt/
b-catenin pathway signaling in CC patients. Next, since there are
several drugs to inhibit this pathway, we performed in vitro
assays to determine the efficacy of C59, ICRT14 and NSC668036
in order to inhibit Wnt/b-catenin signaling pathway in CC cell
lines (HeLa, SiHa and CaSki). C59 was an efficient drug,
NSC668036 showed no inhibitory effect while, ICRT14 turned
out to have an inhibitory effect in SiHa and CaSki cell lines but
did not inhibit the Wnt/b-catenin pathway in the HeLa cell line.
HOTAIR overexpression was verified in HeLa cells, and its
potential interaction with b-catenin, was associated with Wnt/
b-catenin activation, decreasing ICRT14 drug efficiency. These
data revealed a new resistance mechanism, hence, some target
therapies are not convenient against cancer due to the lncRNAs-
mediated regulation in order to promote drug-resistance. The
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description of these mechanisms provides new insights into
further therapeutic opportunities in CC.
MATERIALS AND METHODS

Cervical Samples
We included 109 cervical cancer patients from 2010 to 2013
through Instituto Nacional de Cancerologıá of Mexico City
(INCan). This study was approved by INCan’s Review Board
and Ethics Committee (015/012/IBI-CEI/961/15). All patients of
this study agreed and signed the consent form. In order to
identify mRNAs deregulated and involved in the Wnt/b-catenin
pathway, gene expression microarray assay was performed for
which 89 samples were used and 20 were selected to perform
validation by qRT-PCR. After surgical excision, tumor biopsies
were segmented into two pieces, one for pathological
confirmation and another for nucleic acid separation. Twenty
non-pathological cervical tissues were obtained from patients
who had undergone a hysterectomy due to uterine myomas.

RNA Purification and
Microarray Hybridization
RNA was extracted from 89 cervical cancer samples and 6
cervical non-tumor tissues to perform the microarray assay
and it´s quality was measured using the 18S:28S ratio.
Microarray was performed as previously reported and the raw
data are publicly available at the GEO database (Gene Expression
Omnibus, http://www.ncbi.nlm.nih.gov/geo/) with the accession
number GSE56303.

RT−qPCR
RNAfrom20 samples tumor tissues andCCcell lines,was extracted
with Trizol reagent (Ambion) according to the manufacture’s
protocol. The total cDNA was generated by reverse transcription
from 1µg of total RNA using the kit High-Capacity cDNA Reverse
Transcription (AppliedBiosystems)with afinal volumeof 20 µl. To
amplify, c-Jun, c-Myc, MMP7, Cox2, CyD1, MMP10, CTNNB,
CSNK1, FZD5, DVL, LRP5, NKD2Klotho (KL), Cerberus (CER1),
NKD1, Wnt11 and HOTAIR, a Luminaris Color HiGreen qPCR
Master Mix was used along specific primers and specific
amplification conditions for each gene (Supplementary File 1).
Reactions were performed in Step One System. Relative expression
levels were calculated using the DDCt method (Applied
Biosystems). b-actin mRNA was used as a reference gene for
normalization. At this section it is important to emphasize that
the ideawas to evaluate the expressionof eachof these genes in each
tumor and normal sample. However, the amount of RNA obtained
from each of the samples (tumor) was insufficient to do so.
Therefore, of the 20 tumor tissue samples, only 19 were evaluated
for c-Jun expression, 14 for NKD expression and 13 for
DVL expression.

Cell Culture, Transfection, and
Reagents Drugs
All cell lines were obtained from ATCC. Human CC cell lines,
HeLa (ATCC CRM-CCL-2) and SiHa (ATCC HTB-35) were
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cultured in DMEMF12 (Gibco) medium while CaSki cell line
(ATCC CRL-1550) was cultured in RPMI (Gibco) medium, both
mediums were supplemented with 10% (v/v). All cells were
maintained at 37°C in a humidified atmosphere with 5% CO2.
The drugs C59 (Bio-vision 2063-5) and ICRT14 (Toronto
Research Chemical Canada I163900) were purchased from
Sigma Aldrich and were solubilized in dimethyl sulfoxide
(DMSO; Sigma-Aldrich, St. Louis, MO, USA). NSC668036
(TOCRIS BIOSCENSE 5813) was purchased from TOCRIS
and was dissolved in water. All reagents were stored at -20°C.
The IC50 (concentration resulting in a 50% inhibition of cell
growth) for each drug is provided by the supplier.

Viability MTT Assay
In order to verify the half maximal inhibitory concentration (IC50)
providedby the supplier forC59,NSC668036 and ICRT14 inHeLa,
SiHa andCaSki cell lines, anMTTassaywas employed todetermine
cell viability. Briefly, 4x 103 cellswere seeded in a 96-well plate. After
24 hrs of incubation, the cells were exposed to different
concentrations close to those given by the supplier of C59,
NSC668036, ICRT14 and DMSO as a control in fresh medium
for 24 hrs. Cells were washed with PBS and were exposed to MTT
(300 mL/well, 1 mg/mL; Sigma) for 3 hrs at 37°C. Then, cells were
washed and incubatedwith 100 µLofDMSOfor 10-15min. Finally,
the optical density (OD) was recorded at 540 nm in an Epoch
Microplate Spectophotometer (Bioteck).

TOP/FOP Flash Assay
To determine the activity of Wnt/b-catenin pathway, TOP/FOP
flash assay (TCF Reporter Plasmid Kit Merck Millipore) was
performed following the manufacturer’s instructions. Briefly,
4x105 cells were seeded in a 6-well plate and co-transfected with
2.5 µg of TOP and FOP plasmids. After 24 hrs, cells were incubated
with the IC50 of each inhibitor (C59, NSC668036, ICRT14) or 30
µM DsiHOTAIR (IDT; San Diego, CA, USA) and a scramble
sequence (scramble silencer negative control Ambion AM4611);
using Lipofectamine 2000 transfection agent (Invitrogen). After
incubation for 24 hrs, the cells of each group were collected, and
then the activity ofWnt/b-catenin signalingpathwaywasmeasured
by Dual Luciferase Reporter Assay Kit (Promega) in GloMax® 96
Microplate Luminometer (Promega; Madison, WI, USA).

Flow Cytometry for Annexin V/Propidium
Iodide (PI)
Apoptosis was assessed by staining cells with annexin V-
fluorescein isothiocyanate (FITC) and propidium iodide (PI).
Briefly, HeLa cells were washed with PBS, and suspended in
serum-free, phenol red-free medium. HeLa cells were seeded in
6-well plates at a density of 3x105 cells/well. After 24 hrs, the cells
were incubated either with the scramble (30 µM for 48 hrs), Dsi
HOTAIR (30 µM for 48 hrs), ICRT14 (IC50 12.9 µM for 24 hrs)
or the combination DsiHOTAIR (30 µM for 48 hrs) plus ICRT14
(IC50 12.9 µM incubated for this condition for 24 hrs). Then, the
cells were washed with PBS. The level of annexin V binding was
determined by using a commercially available annexin V
apoptosis detection kit (FITC Annexin V Apoptosis Detetion
Kit with PI, BioLegend), according to the manufacturer´s
Frontiers in Oncology | www.frontiersin.org 3
instructions. The cells were subsequently analyzed by a flow
cytometer (FACScalibur). Approximately 10,000 events were
collected for each sample. The percentage distributions were
calculated by Expo32 ADC software (Beckman Coulter, Inc.,
Miami, FL). Cells were classified as apoptotic (positive annexin V
and negative PI), late apoptotic/necrotic (positive annexin V and
positive PI) or viable (negative annexin V and PI). Unstained
HeLa cells were used as negative fluorescence controls. The same
procedures were performed for 30 mg/ml etoposide treated cells.
Moreover, we captured a photography for each condition
(Microcopy leica 090-135.002).

RNA Binding Protein Immunoprecipitation
(RIP) assay
RNA immunoprecipitation (RIP) was performed usingMagnaRIP
RNA-Binding Protein Immunoprecipitation kit (17-704, EMD
Millipore) according to the manufacturer´s instructions. HeLa
cells were lysed in complete RIP lysis Buffer, after the lysate was
incubated with RIP buffer containing magnetic beads conjugated
with 2.5 µg to human Anti- b-catenin (Abcam, ab227499) and
negative control normal rabbit IgG (Millipore). Samples were
incubated with proteinase K and the inmunoprecipitated RNA
was isolated. Finally, HOTAIR was amplified by qRT-PCR as
mentioned before.

Protein Expression Analysis
Protein extracts from cultured cells were achieved by
homogenization in RIPA buffer (Santa Cruz Biotechnology), later
dissipated by centrifugation at 12,000 rpm for 20 min. For
immunodetection, 50 µg total protein from cultured cells were
mixed with Laemmli sample buffer, boiled, separated in 12 or 15%
SDS-PAGE, and transferred in aPVDFmembrane (Amersham-GE
Healthcare). Membranes were incubated overnight using a 1:1,000
(v/v) dilution of the anti-caspase 3 (Cell signaling), anti-
PARP46D11 (Cell signaling), anti-c-Jun (Cell signaling) and anti-
c-Myc (Cell signaling). Fordetection, 1:2,500 (v/v) dilutions ofHRP
anti-rabbit or anti-mouse conjugate antibodies (Santa Cruz
Biotechnology) were used. Finally, using the Super Signal West
Femto chemiluminescent substrate (Thermo Scientific), the
membranes were scanned in the C-Digit blot scanner (Li-Cor)
and the images were analyzed for densitometry in the associated
Image Studio software (LiCor). Membranes were stripped and re-
probed for detection of actin (anti-actin, Sc-47778) as a loading
control. A representative image from three independent
experiments is shown.

Bioinformatics Analysis
RPISeq software (from website http://pridb.gdcb.iastate.edu/
RPISeq/) was used to predict the interaction probability
between HOTAIR and b-catenin protein. The interaction
probability accepted was ≥ 0.8 in both classifiers of random
forest (RF) and support vector machine (SVM).

Statistical Analysis
In order to obtain a list of significant genes from Wnt signaling
pathway aberrantly expressed in tumor tissues versus their
normal counterparts, we used significance analysis of
October 2021 | Volume 11 | Article 729228
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microarrays (SAM) software. This software assigned a score
based on the change of expression relative to the standard
deviation of repeated measurements of each Wnt pathway-
dysregulated components. Genes with scores higher than the
threshold are considered potentially significant, in this way, we
contemplated as positively or negatively regulated genes those
with a delta score >0.3 and less than − 2.0, respectively (19). All
data are expressed as the mean ± S.D. from three independent
experiments. Statistical analyses were performed using one-way
ANOVA. P < 0.05 (*) or P < 0.01 (**) was considered to indicate
statistical significance.
RESULTS

Patients
One hundred nine patients were recruited. Of these, 89 patients
were used to assess mRNAprofile expression through amicroarray
assay and 20 were selected for RT-qPCR validation of the data
generated by the microarray. The mean age of the patients was 48
years (range, 29-70 years). All patientswere diagnosedwithCCand
themost commonhistologic subtype was squamous cell carcinoma
(90.8%). According to the clinical stage classification (FIGO),
patients’ specimens were categorized as follows; 60.5% stage IIB,
24.7% stage IIIB, 12% stage IB2 and 0.91% stage IIA and IIIA.

Wnt Signaling Pathway Is Deregulated in
Cervical Cancer Patients
As a first approach, in order to identify the differential expression
genes involved in Wnt/b-catenin signaling pathway of CC
specimens, microarray data was analyzed with SAM algorithm
(https://statweb.stanford.edu/~tibs/SAM/), which detects genes
with important expression changes using Delta Score (Score
(d) ≥ 1.5 and ≤ 1.5 and a false discovery rate (FDR) < 10%).
Thus, we analyzed 249 genes and isoforms involved in Wnt
signaling pathway which expression was significantly altered in
CC specimens compared to normal cervical tissues (137 were up-
regulated and 112 down-regulated) (Supplementary File 2). In
Figure 1 is shown a hierarchical clustering in which Pearson
correlation distance and complete linkage clustering were used to
display differences and similarities based on the expression
profiles obtained from Genesis 2.1 software (20).

To confirm the microarray data, we perform RT-qPCR to
validate the expression of key upregulated genes such as: NKD2,
c-Jun, DVL, FZD5 and c-Myc as well as key downregulated genes
such as: Cerberus (CER1), Klotho (KL), NKD1 and Wnt11. The
expression was evaluated in an independent cohort of 20 cervical
cancer specimens and 10 normal cervical tissues. As shown in
Figure 2, the expression levels of each gene obtained by RT-PCR
correlated and were consistent with the microarray data analysis.

C59, NSC668036 and ICRT14 Reducing the
Cell Viability in a Dose-Dependent Manner
One of our main goals was to probe the efficacy of three drugs
(C59, NSC668036 and ICRT14) to inhibit the Wnt/b-catenin
pathway at three different levels (extracellular, cytoplasm and
nucleus) into the CC cells (Figure 3). For that purpose, first we
Frontiers in Oncology | www.frontiersin.org 4
verify the IC50 provided by the supplier of each drug. Thus, we
tested a range of concentrations for each drug in HeLa (epithelial
adenocarcinoma CC cell line infected with HPV18), SiHa and
CaSki (both are squamous cancer cell line infected with HPV16
cells). As expected, the results shown in Figure 4 indicate that
these drugs reduced cell survival in a dose-dependent manner.
According to the findings, IC50 for C59 and ICRT14 were similar
in HeLa, SiHa and CaSki cell lines (Figures 4A, C), whereas IC50
for NSC668036 was higher. Therefore, C59, ICRT14 and
NSC668036 were selected for subsequent experiments.

C59 and ICRT14 Inhibit the Transcriptional
Activity of Wnt/b-Catenin Pathway in CC
Cell Lines
In order to determine if C59, NSC668036 and ICRT14 inhibit the
Wnt/b-catenin pathway inCC cell lines, we conducted a TOP-flash
assay, the standard assay for assessing Wnt/b-catenin pathway
activity. The transcriptional activity of Wnt/b-catenin pathway
was determined in HeLa, SiHa and CaSki using the IC50 of C59,
NSC668036 and ICRT14. Aswe expected, the results demonstrated
thatC59, was able to significantly inhibit the transcriptional activity
of Wnt/b-catenin in HeLa, SiHa and CaSki cell lines (Figure 5A).
Moreover, the expression of c-Myc and c-Jun, two main targets of
theWnt/b-catenin pathway,was downregulatedwhenweusedC59
in siHa and CaSKi cell lines. In HeLa treated with C59, c-Myc
expression protein decreased but not c-Jun expression protein, it is
presumed that alternativepathwaysmaybeactivating its expression
(Supplementary File 3A). Conversely, NSC668036, was not able to
inhibit the transcriptional activity of theWnt/b-catenin pathway in
HeLa, SiHa andCaSki cell lines (Supplementary File 4). Regarding
ICRT14, was able to inhibit the transcriptional activity of Wnt/b-
cateninpathway inSiHaandCaSki cell linesbutnot inHeLacell line
(Figure 5B). Furthermore, to corroborate whether ICRT14 was
unable to inhibit the Wnt/b-catenin pathway in HeLa cell line, we
analyzed the expression of main targets of the Wnt/b-catenin
pathway such as c-Myc, c-Jun, MMP7 and MMP10 in HeLa,
SiHa and CaSki treated with ICRT14. The results showed that
the expression of c-Myc, c-Jun and MMP10 was downregulated
in SiHa cells treated with ICRT14. In CaSki cells treated with
ICRT14 was downregulated c-Myc and MMP7. Nevertheless, in
HeLa cells treated with ICRT14, c-Myc expression was maintained
but c-Jun, MMP7 and MMP10 expression was upregulated
(Figure 5C). Moreover, the expression protein of c-Myc and c-
Jun also was overexpressed when HeLa cells were treated with
ICRT14 (Supplementary File 5A). These data suggested that the
Wnt/b-catenin pathway continues to be active, despite the use of
ICRT14. This ICRT14 does not inhibit Wnt/b-catenin pathway in
HeLa cells.

HOTAIR Maintains Active Wnt/b-Catenin
Pathway in HeLa Cells Despite
Treatment With ICRT14 Drug, by
Interaction With b-Catenin
Several reports have described that upregulation of HOTAIR
stimulates the Wnt/b-catenin pathway in several types of cancer
including lung (21), pancreatic (22), ovarian (23) and cervical
October 2021 | Volume 11 | Article 729228
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cancer (17); mainly in HeLa cells (24). Therefore, we explored if
this mechanism was responsible of the ICRT14 drug inefficiency
to inhibit Wnt/b-catenin pathway in the HeLa cell line. First, we
aimed to quantify HOTAIR expression by RT-qPCR in CC cell
lines and CC biopsies samples. As expected, we found that
HOTAIR was significantly upregulated in CC cells lines and
CC biopsies samples compared to the non-tumor cell line HaCat
and normal tissues samples patients, respectively (Figure 6 and
Supplementary File 3B). Moreover, HOTAIR expression was
higher in HeLa cell line versus SiHa and CaSki cells (Figure 6A).
Nonetheless, ICRT14 treatment increased HOTAIR expression
in HeLa cells (Supplementary File 3C). To verify this data, we
used a DsiRNA to perform a HOTAIR knockdown in HeLa cell
line (Figure 6B) and evaluated the effect of ICRT14. Indeed,
HOTAIR´s downregulation led to the inhibition of Wnt/b-
catenin pathway, also when the ICRT14 drug was added
(Figure 6C). Besides, three main targets of the Wnt/b-catenin
pathway such as; c-Myc, c-Jun and MMP10 expression was
downregulated when we used a DsiRNA to perform a
HOTAIR knockdown in HeLa cell (Figure 6D). Moreover, the
expression protein of c-Myc and c-Jun was not downregulated
when we used ICRT14 in HeLa cells versus SiHa and CaSki cells
lines (Supplementary Files 5A–C), but a modest reduction in
expression was observed when we used a DsiRNA to perform a
HOTAIR knockdown in HeLa cell (Supplementary File 5A).
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These findings indicate that HOTAIR expression in HeLa cells
activates or maintains active Wnt/b-catenin and inhibited the
blocking effect of ICRT14 on this pathway. Since ICRT14 acts at
the nuclear level inhibiting direct interactions between b-catenin
and TCF4, blocking the transcriptional function of nuclear
b-catenin, it was feasible to hypothesize that HOTAIR was
maintaining the interaction between b-catenin and TCF4,
blocking the effect of ICRT14. To support this idea, we explored
RPIseq tool, that predicts protein-RNA interactions. We found
that RPIseq tool predicted interactions between HOTAIR and
b-catenin, as well with TCF, PYGO2 and BCL9 (Figure 6E).
Next, to demonstrate at least one of these interactions, we
performed a RIP assay. We found that HOTAIR was highly
enriched in b-catenin-RNA precipitates compared to input
precipitates (Figure 6F and Supplementary File 6). These
findings suggested a potential interaction between b-catenin
and HOTAIR, which could prevent the blocking effect of
ICRT14 on Wnt/b-catenin pathway.

HOTAIR Knockdown Induce Necrosis in
HeLa Cell Line Incubated With ICRT14
To identify the mechanisms by which DsiHOTAIR plus ICRT14
decrease Wnt/b-catenin pathway in HeLa cells, we analyzed cell
death by flow cytometry assay. As in Figure 7 is shown,
untreated HeLa cells, and HeLa cells transfected with scramble,
FIGURE 1 | Hierarchical cluster generated from 89 LACC and 6 non-tumor tissue samples. Cluster analysis of the microarray data. The microarray data were
analyzed by the Genesis program. The cluster shows 249 genes (137 up-regulated and 112 down-regulated). Each row represents a gene, whereas each column
corresponds to a tissue sample, the color line above the tissue samples indicates the sample type: normal samples (blue) and tumor samples (red). The relative
abundance of each gene in the tissue correlates with the color intensity (red, induced; blue, repressed; white, no change). In the dendrogram, all six normal cervical
samples clustered together, indicating their similarity based on the expression profile.
October 2021 | Volume 11 | Article 729228
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the rate cell viability was 93% and 89%, respectively. Similarly,
when HeLa cells were treated independently with the ICRT14
drug for 24 hrs, and transfected with DsiHOTAIR, the 85% and
83% of cells were viable, respectively (Figure 7). These data
confirmed our finding obtained with the TOP-flash assay
(Figure 6C). However, when HeLa cells were incubated with
DsiHOTAIR plus ICRT14 drug, only 14% of the cells were
underwent apoptosis, and 74% necrosis. (Figure 7 and
Supplementary File 5D). Taken together, HeLa cells treated
Frontiers in Oncology | www.frontiersin.org 6
with DsiHOTAIR in combination with ICRT14 drug, induces
cell death mainly by necrosis.
DISCUSSION

Accumulating evidence has reported dysregulation of Wnt/b-
catenin signaling in several types of cancer (8). Specifically, in
A B

FIGURE 2 | Relative expression of dysregulated genes of Wnt/b-catenin pathway in CC samples versus normal cervix tissues. The expression level of each gene by
RT-qPCR was determined as described in the methods section. Statistical analysis to compare the mRNA expression levels between normal and tumor tissues was
performed using an unpaired two-tailed t-test. (A) Representative downregulated genes of the Wnt/b-catenin pathway. (B) Representative upregulated genes of the
Wnt/b-catenin pathway.
October 2021 | Volume 11 | Article 729228
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CC, activation of this pathway is a second hit to develop the
disease (6, 7), since the transformation of HPV expressing
human keratinocytes requires activation of the Wnt/b-catenin
pathway (25). In the present study, through a transcriptome
exploration on 89 CC samples and 6 non-tumor tissues, we
found that Wnt/b-catenin signaling pathway was significantly
altered, confirming previous reports (6, 7). We validated the
expression of some Wnt/b-catenin pathway involved genes by
qRT-PCR in CC specimens. Similar to our findings, some studies
have reported the altered expression of DVL (26), FZD5 (27),
c-Myc (28), Cox2 (29), c-Jun (30) and Klotho (31). These data
support that members of Wnt/b-catenin pathway may be
attractive upcoming therapeutic targets (32).

Despite the existence of many drugs to block Wnt/b-catenin
(9), it seems that not all of them are effective. This lack of efficacy
may be due to drugs acting on different elements of the pathway.
It can also be explained by the cellular context in which drugs are
being used, even, drug efficacy may be subject to regulation by
ncRNAs. C59, NSC668036 and ICRT14 act at extracellular,
cytoplasmic and nuclear level, respectively. In the current study,
we found that C59 was a highly efficient drug in HeLa, SiHa and
CaSki cell lines. Consistent with our results, it has been reported
Frontiers in Oncology | www.frontiersin.org 7
that C59 blocked Wnt/b-catenin pathway, and in consequence,
migration and invasion of triple negative breast cancer cells were
inhibited (33, 34). In mice, C59 displayed good bioavailability, it
did not exhibit toxicity and blocked progression of mammary
tumors, suggesting that C59 is a safe and feasible strategy to block
Wnt/b-catenin signaling (35). In colorectal cancer, Koo BK and
collaborators, demonstrated that C59, attenuated hyperplasias in
mouse-small intestinal stem cells (36). Additionally, mice with
nasopharyngeal carcinoma treated with C59 did not develop
visible tumors. Moreover, it was demonstrated that this agent
inhibited the generation of cancer stem cells (CSCs), activity
responsible of Wnt/b-catenin signaling (37). It is significant to
mention that this is the first study that evaluated the effect of C59
in CC cells. Taken together, is reasonable to consider that small
molecule Wnt/b-catenin pathway inhibitors open a new
therapeutic window for what should be tested in clinical trials
of patients carrying malignant tumors.

Contrary toC59, we found thatNSC668036 did not inhibitWnt
pathway in CC cells. Although, NSC668036 has been less explored
compared toC59, itwas important for us to considerNSC668036 in
our study. In concordance to our results, Shin J and collaborators
reported that among several agents that block Wnt pathway,
A B

FIGURE 3 | Schematic representation of Wnt/b-catenin signaling. (A) Wnt/b-catenin signaling is activated by Wnt ligands, which bind to the FZ/LRP5/6 receptor in
order to inhibit the destruction complex. Thus, leading to accumulation of cytoplasmic b-catenin and its eventual translocation into the nucleus. Then, b-catenin binds
to TCF/LEF sites to activate transcription of target genes such as CCND1 and MYC, which are involved in cell proliferation and survival. (B) The drug C59 acts at the
extracellular level inhibiting the Wnt ligands to block the pathway. NSC668036 acts at the cytoplasmic level binding to DVL protein, which inhibits the Wnt3A induced
Wnt/b-catenin signaling. ICRT14 acts at the nuclear level inhibiting direct interactions between b-catenin and TCF4, blocking the transcriptional function of nuclear
b-catenin. Left panel shows the Wnt/b-catenin signalling pathway turned on; while right panel turned off.
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NSC668036 was not an efficient drug to block Wnt/b-catenin
pathway in HeLa cells (38). Conversely, NSC668036 blocked
Wnt/b-catenin signaling in experimental diabetic peripheral
neuropathy rats provided with neuroprotection (39).
Furthermore, Reshman K. and Sharma S. reported that in rats
treated with paclitaxel and NSC668036, their behavioral pain
thresholds and nerve functional parameters were significantly
improved by inhibition of Wnt/b-catenin signaling (40).
Therefore, we speculate that these findings suggest that each
inhibitor had differential effects depending on the cellular context.

Interestingly, the agent ICRT14 inhibited Wnt/b -catenin
pathway in SiHa and CaSki but not in HeLa cells. The positive
effect of this agent is similar to previously reported results. For
instance, ICRT14 inhibited c-Myc and cyclin D1 expression in
breast cancer cells as well as it decreased migration and invasion
(41–43). In colon cancer cells, ICRT14 inhibited Wnt pathway
and sensitized cells to radiation treatment (12, 44, 45). In
leukemic cell lines, ICRT14 led to significant downregulation
of Wnt target genes (46). In the case of lung cancer, ICRT14 is
efficient, and even, is used as a positive control to validate new
drugs (47). In pancreatic cancer (48), head and neck cancer (49)
and Gallbladder carcinoma (50) cells, ICRT14 has also been
demonstrated to be an efficient agent.
Frontiers in Oncology | www.frontiersin.org 8
Surprisingly, we found that ICRT14 had no effect in HeLa
cells due to HOTAIR overexpression maintains Wnt/b-catenin
pathway activated. Consistent with our results, it was recently
reported that HOTAIR is involved in overactivation of Wnt/b-
catenin pathway in HeLa cell line (24). Likewise, HOTAIR
maintains Wnt/b-catenin activated in esophageal squamous
cell carcinoma (51). Additionally, in line with previous reports,
we found that HOTAIR is overexpressed in HeLa cells compared
to SiHa and CaSki cell lines (52, 53). Thus, HeLa cells have been
used as a model to study mechanisms involving HOTAIR in CC
(54–57).

We noticed that HOTAIR knockdown in combination with
ICRT14 downregulated Wnt/b-catenin pathway in HeLa cells.
These results suggest that HOTAIR overexpression conducted to
Wnt inhibitors-resistance through Wnt/b-catenin pathway
activation. In this regard, it was already known that HOTAIR
induces chemoresistance activating Wnt pathway in other types
of cancer such as ovarian (16), colorectal (18) and lung cancer
(55). In CC cells and in pancreatic ductal adenocarcinoma,
HOTAIR knockdown enhanced sensitivity to radiotherapy
through Wnt signaling pathway suppression (22, 55). One of
the mechanisms of resistance is that HOTAIR promotes b-
catenin transportation to the nucleus to maintain the pathway
A

B

C

FIGURE 4 | C59, NSC668036 and ICRT14 decrease proliferation of CC cells. HeLa, SiHa and CaSki cells were treated with different doses of (A) C59, (B) NSC668036
and (C) ICRT14 for 24 hrs. Cell viability was analyzed using MTT. IC50 was determined by non-linear regression.
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activated (19). In this work, we observed that in HeLa cells line,
ICRT14 did not reduced the activation of the Wnt/b-catenin
pathway. Since, ICRT14 inhibit the direct interaction between b-
catenin and TCF4, blocking the transcriptional function of
nuclear b-catenin, we hypothesize that in HeLa cell line,
ICRT14 has no effect because HOTAIR is binding to b-catenin
to retain it in the nucleus and preserve the pathway active.
Although a direct interaction between HOTAIR and b-catenin
has not been reported yet, this work is the first to suggests the
interaction between them, thus confirming the role of lncRNAs
Frontiers in Oncology | www.frontiersin.org 9
as protein binding scaffolds sustaining the tumoral phenotype
and therapy-resistance (20).

We also found that HOTAIR knockdown plus ICRT14 induced
cell death mainly by necrosis. Regarding this, it has been reported
that apoptosismachinery is defective in numerous cancers (58, 59).
Moreover, it iswell described thatWnt/b-cateninpathwayregulates
early and late apoptosis in cancer (60–64). In our study, Wnt/b-
catenin pathway was inhibited by ICRT14 in combination of
HOTAIR knockdown, consequently, it is reasonable to
contemplate that, since the apoptosis machinery was disturbed,
A

B

C

FIGURE 5 | Effect of C59 and ICRT14 drugs on Wnt/b-catenin pathway in CC cell lines. HeLa, SiHa and CaSki cells were co-transfected with 2.5 mg FOPFlash-Luc
(mutant reported vector) and TOPFlash (Wnt/b-catenin reporter vector). After 24 hrs, they were incubated with IC50 of (A) C59 and (B) ICRT14. After 24 hrs, the
luciferase activity and the expression of the main targets of wnt pathway was measured in order to determine the Wnt/b-catenin pathway activation by luciferase
assay (A, B) and (C) RT-qPCR, respectively. The bars represent the mean ± standard deviation from at least three independent experiments. *p < 0.05; **p < 0.01
and ***p < 0.001.
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FIGURE 6 | HOTAIR maintains Wnt/b-catenin pathway active in HeLa cells by avoiding the effect of ICRT14. (A) Relative expression of HOTAIR was determined by
RT-qPCR on CC cells. (B) HeLa cells were transiently transfected with 30 µM of DsiHOTAIR. After 48 hrs of post-transfection, the expression of HOTAIR was
measured. (C) HeLa cells were transiently transfected with 30 µM of DsiHOTAIR alone or in combination with 12.9 µM of ICTR14 and the activity of Wnt/b-catenin
pathway was detected by TOPFlash assay at 48 hrs. (D) The relative expression of c-Myc, c-Jun, MMP7 and MMP10 was determined by RT-qPCR from HOTAIR
knockdown HeLa cells. (E) Interaction probability between HOTAIR and b-catenin detected by RPIseq tool. RIPseq uses the classifiers of random forest (RF) and
support vector machine (SVM) for calculation. (F) Relative RIP assays using qPCR to detect binding between b-catenin and HOTAIR in HeLa cell line.The bars
represent the mean ± standard deviation from at least three independent experiments. *p < 0.05; **p < 0.01 and ***p < 0.001.
A

B

FIGURE 7 | DsiHOTAIR plus ICRT14 induces cell death by necrosis in HeLa cells (A) Flow cytometry percentage distributions after annexin V/propidium iodide
staining of HeLa incubated with the scramble, DsiHOTAIR (30 µM), ICRT14 (12.9 µM) and the combination DsiHOTAIR/ICRT14. (B) Representative images of HeLa
cells incubated with the scramble, DsiHOTAIR, ICRT14; and the combination DsiHOTAIR/ICRT14.
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alternative pathways of cell death such as necrosis took place. As in
ICRT14, it has been reported that anticancer drugs, such as b-
lapachone, apoptolidin and honokiol, induce cancer cell death
through necrosis (65–67). In this way, necrosis induced by drugs
and lncRNAs downregulation, may play an important therapeutic
role as the main goal of cancer treatment is, irrevocably, cell death.
In conclusion, our results indicate that C59 is a good option as a
treatment in CC, although further studies are still required in
clinical trials. Moreover, we determined that the effect of ICRT14
in CC depends on the cellular regulation by HOTAIR. These
findings indicate that not all target therapies can be efficient and
that regulation by lncRNAs should be considered as an alternative
treatment for drug resistance mechanisms.
CONCLUSIONS

This is thefirst study to report the inhibitory effectofC59oncervical
cancer, which was an efficient target therapy for Wnt/b-catenin, in
vitro. Clinical trials are needed to validate its effectiveness. On the
other hand, ICRT14 inhibits direct interactions between b-catenin
and TCF4 shutting down the signaling pathways; however
according to our results the presence of HOTAIR affected the
inhibitory effect of the drug by the potential interaction with b-
catenin. These findings demonstrate that the effectiveness of target
therapies can be affected by lncRNAs, which have been shown to
play an important role in treatment resistance.
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Cantu De Leon D, Jacobo-Herrera N, et al. Transcript Profiling Distinguishes
Complete Treatment Responders With Locally Advanced Cervical Cancer.
Transl Oncol (2015) 8:77–84. doi: 10.1016/j.tranon.2015.01.003

21. Chen J, Shen Z, Zheng Y, Wang S, Mao W. Radiotherapy Induced Lewis Lung
Cancer Cell Apoptosis via Inactivating b-Catenin Mediated by Upregulated
HOTAIR. Int J Clin Exp Pathol (2015) 8:7878–86.

22. Jiang Y, Li Z, Zheng S, Chen H, Zhao X, Gao W, et al. The Long Non-Coding
RNA HOTAIR Affects the Radiosensitivity of Pancreatic Ductal
Adenocarcinoma by Regulating the Expression of Wnt Inhibitory Factor 1.
Tumour Biol (2016) 37:3957–67. doi: 10.1007/s13277-015-4234-0

23. Li J, Yang S, Su N, Wang Y, Yu J, Qiu H, et al. Erratum to: Overexpression of
Long Non-Coding RNA HOTAIR Leads to Chemoresistance by Activating
the Wnt/b-Catenin Pathway in Human Ovarian Cancer. Tumour Biol (2015)
36:9093–4. doi: 10.1007/s13277-015-4210-8
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