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In collective systems, influence of individuals can permeate an entire group through indirect interactionscom-
plicating any scheme to understand individual roles from observations. A typical approach to understand an
individuals influence on another involves consideration of confounding factors, for example, by conditioning on
other individuals outside of the pair. This becomes unfeasible in many cases as the number of individuals increases.
In this article, we review some of the unforeseen problems that arise in understanding individual influence in a
collective such as single cells, as well as some of the recent works which address these issues using tools from
information theory.
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J Significance I
This paper highlights the challenges of inferring causal relationships in systems of many agents. We summarize
recent developments in applying information theory and image analysis, which are able to extract information about
individual cell-to-cell relationships such as their network structure or the domain of interaction. The developed
method is expected to enable us to unveil them for systems of millions or more interacting cells.

Introduction

Groups can achieve complex behaviors that transcend the ability and complexity of the individuals that constitute the
group. This phenomenon is evident in various biological systems, including the aggregation and collective migration
of cells [1], the flocking of birds [2], and the schooling of fish [3]. For example, colonies of the amoeba Dictyostelium
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discoideum (Dd) can aggregate into mounds consisting of thousands of cells upon starvation [4]. Understanding such
“emergent behaviors” is crucial for many biological applications such as wound healing, cancer growth, and embryo
development. The root cause of emergent behavior can only be understood by investigating the interactions between
individuals, since individual cells cannot perform such complex actions by themselves. Furthermore, it is expected that all
individuals do not contribute equally in developing, especially in triggering, emergent behaviour of the collective. Indeed,
there is(are) at least one or a few individuals which has(have) the ability to influence and guide other group members in
collectives [5]. When an aggregate of the individuals move, sometimes an individual may trigger the neighboring others
to follow itself, which may be interpreted as a leader and the others nearby the leader as the followers. Thus, understanding
the collective behavior of systems relies on understanding the influence of individuals and their interactions with each
other, as well as on understanding the structure of leader-follower relationships in the system.
To examine the emergence of collective systems and the individuals that they are composed of, experimental data such as

sequences of fluorescence images of single cells can be used, from which one can construct time series data that is associ-
ated with properties of individuals. Understanding the influence of individuals in the colony then can be achieved through
reconstructing the causal relationships between the measured time series variables of interest representing different indi-
viduals. One way to examine the existence of such causal relationships is using measures such as cross-correlation [6] or
Granger Causality [7]. Alternatively, one can use information-theoretic schemes such as time-delayed mutual information
(TDMI) [8], transfer entropy (TE) [9], or intrinsic mutual information (IMI) [10].
In inferring causal relationships between two stochastic variables, one underlying assumption is that all other confound-

ing variables, or indirect influences, can be accounted for. Systems of cells, however, such as developing organs, amoeba
colonies, or cancer tumors, typically consist of millions of cells, which make it computationally infeasible to condition on
all other possible relevant variables. Even for a single pair of cells, there are other assumptions that complicate inferring
causal inference from time series. For example, consider a time series trajectory of the positions of two cells, cell A
and cell B. We would like to infer the influence of the position of cell A on that of cell B. Naturally, cell A’s position
cannot instantaneously affect that of cell B, so we must consider some time lag between them, that is, we are inferring
the influence of the present value of cell A on some future time point of cell B. However, cell B’s future position is also
affected by its own present. Thus when inferring the relationship between cell A and cell B with some time lag, the
time-lagged measurements of B are themselves confounding factors. The past of A also has an effect on the present value
of A, and when there is some bi-directional influence, the past of B would have had an effect on the present or further
in past values of A. Thus the past values of each cell, or the time-lagged influences, must be considered as confounding
factors in inference using time series data of cells.
In addition to challenges that arise due to confounding factors, collective systems can also be difficult to measure and

interpret in their data in sequences of images of cells. For example, the tracking of individual cells can be almost infeasible
by human eye for many cells, and automated tracking does not always produce reliable results. When trying to compute a
measure of influence between cells in a large cell colony, it may be more prudent to analyze the system using the Eulerian
reference frame. In this setting, one may obtain the velocity vector field as it evolves over time in the cell colony, and
then compute the measure of influence (e.g., TE) between different regions of the colony. One technique to compute the
Eulerian velocity vector fields from sequences of images is called particle image velocimetry (PIV) [11]. Later, we discuss
how PIV has been validated to produce reliable velocity vector fields in cell colonies that vary in their level of coherent
motion.
This article reviews three central issues in inferring the influence of individuals in collective systems:

1. What challenges arise due to large numbers of interactions and the effect of time-lagged influence in collective
systems?

2. Given the above challenges, what measures are promising for understanding the individuals in collective systems?
3. In sequences of images of cell colonies where individual cell tracking is not feasible, how can we obtain reliable
velocity data for inferring influence?

The rest of the paper is structured as follows: In Measuring influence with information theory we review information-
theoretic measures that are used to understand pairwise interactions in collective systems. In the Models section, we
introduce graphic models that represent different types of time-lagged influence between a leader and a follower, as well as
modifications to the Vicsek model that follow the same patterns of influence as the graphs. We then introduce a modified
version of the Vicsek model which can simulate larger systems of leaders and followers. In the Review of results section,
we review three key findings: 1) the number of agents that need to be conditioned on for inferring influence can be
reduced greatly by utilizing the transfer entropy with cutoff distance. 2) Modes of information flow can help infer about
the time-lagged influence in collective systems, as well as improve estimations of influence given the challenges associated
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with indirect influence from the past of a variable. 3) When tracking individual cells becomes impractical, utilizing PIV to
measure cell motion can determine the optimal parameters for understanding the velocity dynamics of the system. In the
Conclusion and perspectives section we summarize our paper and discuss some future directions of this area of research.

Measuring Influence with Information Theory

Information theory plays a pivotal role in advancing our understanding of causality within the context of time series data.
Utilizing fundamental concepts from information theory, such as Shannon entropy and mutual information, researchers
are empowered to quantitatively assess the extent of uncertainty and information within time series data sets. This
methodological approach is instrumental in elucidating causal relationships by facilitating the identification of patterns,
dependencies, and the transfer of information between variables over temporal dimensions.
The concept of information theory begins with Shannon entropy or information entropy [12], simply referred to be

entropy in this paper. Let - signify the time series characterizing an agent’s behavior. Within this context, - encapsulates
the dynamic features of an agent, for example, changes in speed, velocity, or the release of chemical signals essential modes
of communication between collectively moving agents. Entropy, denoted as � (-), quantifies the degree of uncertainty or
amount of information carried in - . The equation for entropy is expressed as:

� (-) = −
=∑
8=1

%(G8)log2%(G8).

Here, %(G8) represents the probability of observing a particular value G8 in the time series - , and = is the total number of
discrete values G8 can take. This mathematical formulation encapsulates the fundamental principle of entropy, allowing
for a quantitative assessment of the inherent uncertainty and information content embedded in the agent’s behavior. In our
efforts to infer causality within the interactions of two agents, another relevant metric is conditional entropy. Consider two
agents characterized by time series - and . . The conditional entropy of - given . is denoted by � (- |. ) and is defined
as follows:

� (- |. ) = −
=∑
8=1

<∑
9=1

%(G8 , ~ 9 )log2
%(G8 , ~ 9 )
%(~ 9 )

.

Here, %(G8 , ~ 9 ) represents the joint probability of observing values G8 and ~ 9 , while %(~ 9 ) is the probability of observing
~ 9 , and < is the total number of discrete values ~ 9 can take. Conditional entropy � (- |. ) measures the uncertainty in the
stochastic variable - that persists even after considering the information provided by another stochastic variable . ; when
. imparts no information about - , then � (- |. ) = � (-).
Stochastic variables - and . can either be independent or dependent, with dependency implying that one variable

holds information about the other. To measure the extent of information one variable provides about the other, mutual
information, � (-;. ), can be computed using the formula:

� (-;. ) = � (-) − � (- |. ) = � (. ) − � (. |-).

While mutual information provides a measure of the statistical dependence between two stochastic variables, its inherent
symmetry makes it inadequate for inferring causal direction. However, an alternative is time-delayed mutual information,
which introduces a temporal aspect to capture potential causal relationships. Time-delayed mutual information considers
the influence of one variable on another with a time lag, offering insights into the directionality of causal connections.
The time-delayed mutual information, denoted byM-→. , incorporates a time-lag parameter g in the variable - (or . ) as
follows [13]:

M-→. (g) =
∑
GC

∑
~C+g

%(GC , ~C+g)log2
%(GC , ~C+g)

%(GC )%(~C+g)
. (1)

From Eq. 1, the asymmetricity of time-delayed mutual information is apparent so that one can evaluate how much the
current information of - at time C shares the information with the future information of. at time C + g, enabling it to assign
the causal direction. It, however, has limitations in that it overlooks shared history and common external driving effects
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between the processes [8, 14]. Consequently, this oversight can potentially result in misleading conclusions regarding
directed information transfer. To unveil the authentic influence of -’s past on the present of. , Schreiber [9] highlighted the
importance of conditioning on . ’s past state(s) within Equation 1 using conditional mutual information. This leads to the
introduction of transfer entropy denoted by T-→. below, a concept designed to overcome the constraints of time-delayed
mutual information. T-→. for a time lag g has the following form:

T-→. (g) = � (~C+g ; GC |~C ) =
∑
~C+g

∑
~C

∑
GC

%(~C+g , ~C , GC )log2
%(~C+g |~C , GC )
%(~C+g |~C )

, (2)

where � (.; .|.) denotes conditional mutual information, while %(.|.) signifies conditional probability. Transfer Entropy (TE)
is one of the most-well used measures in information theory to quantify the information flow from - to. by measuring the
reduction in uncertainty about . ’s future based on knowing -’s present, given . ’s own present, which has overcome the
drawback of time-delayed mutual information. However, recently, it was pointed out that TE is not necessarily intrinsic to
information flow solely from the past - to the future . because of accounting for . ’s own present in its definition [10,15].
This additional information, as highlighted by James et al. [10], includes the reduction in uncertainty about . gained
from knowing both - and . ’s present states simultaneously. This extraneous component inflates the desired measure of
intrinsic information flow from - to . , which is solely concerned with the influence - has on . ’s future independent of
. ’s own state. Recognizing this limitation, James et al. [10] proposed decomposing TE into two distinct modes: intrinsic
and synergistic. The intrinsic mode captures the direct influence of - on . , while the synergistic mode accounts for the
additional information gained through the simultaneous knowledge of both - and . . This decomposition provides a more
nuanced understanding of the information flow between variables (see [10], Figure 1 for a schematic representation of
intrinsic, synergistic, and shared information flows). If - and . are two stochastic processes then the amount of I from
process - to . is the infimum of � (-C ;.C+g |.̄C ) taken over all possible conditional distributions ?(.̄C |.C ) [10]:

I-→. (g) := inf
{
� (-C ;.C+g |.̄C ) :

∑
~∈.C

?(-C , .C+g , .C = ~)?(.̄C |.C = ~)
}

(3)

and S from - to . is determined as follows:

S-→. = T-→. − I-→. (4)

where .̄C is an auxiliary random variable (that satisfies a Markov chain .C → .̄C ) to determine the upper bound of
((-C ;.C+g |.C ), which is a secret-key agreement protocol between - and . , quantifying those information passes from
present - to future . and this amount of information is equivalent to the information intrinsically coming from - to . .
Similarly, James et al. [10] also proposed to decompose the time-delayed mutual information from - to . ,M-→. , into

the intrinsic information from - to . (I-→. ) and shared information from - to . (f-→. ) as follows:

f-→. = M-→. − I-→. (5)

where f-→. estimates the shared information which appears due to the dependency of both -’s and . ’s future dynamics
on the same history (current or past states) themselves.

Models

To examine the pitfalls of using TE for inferring influence, models with agents that have different dependencies on their
past have been examined. Figure 1 represents four different types of two-agent models, labeled Type A, Type B, Type C,
and Type D. A node defined as L or F in Figure 1 represents either a leader or follower agent, respectively. A directed
edge from one agent to another signifies that the first agent exerts direct influence on the second agent. An edge from an
agent to itself signifies that an agent’s future state depends on its present. In all Types, L exerts direct influence on F and
F does not exert direct influence on L. In Type A, the future of L and F both do not depend on their present sates. In Type
B, the future state of F depends on its present state, and the future state of L does not depend on its present state. In Type
C, the future state of L depends on its present state, and the future state of F does not depend on its present state. In type
D, the futures states of both L and F depend on their current states. In Review of Results, we will discuss further how
measuring influence from L to F and F to L in these different models can lead to counter-intuitive results using TE or TDMI.
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Our Modified Vicsek Model
Over the last few decades, many researchers have made considerable efforts to model the dynamic characteristics of

individuals in the collective behavior of multi-agent systems [16–20]. One of the widely studied models in this context
is the Vicsek model (VM) due to its simple mathematical design and its effectiveness in explaining the fundamental
properties of collective motion [17]. The basic principle of VM is that each individual moves and updates its direction of
motion based on the average direction of motion of its neighbors at each time step in presence of some noise. However, the
VM does not distinguish between individuals’ roles as leaders and followers, as all individuals have the same influence on
their neighbors. Therefore, Basak et al. [14,21] modified the original Vicsek model by integrating asymmetric interactions
among individuals, designating individuals with greater influence as leaders and those with lower strengths as followers.
They observe the trajectories ofN self-propelled individuals within a square box of length L subject to periodic boundary

conditions, where all individuals are randomly positioned and oriented at the initial time i.e., C = 0. For simplicity, it is
assumed that each individual moves uniformly at a constant speed {0 and update their positions at each time step ΔC = 1
using the equation:

®rC+18 = ®rC8 + ®vC8ΔC, (6)

where ®rC8 and ®v
C
8 ( 8 = 1, 2, 3, ..., #) denote the position of individual 8 and its velocity at time C, respectively. The orientation

of individual at time C, denoted by \8 (C), is updated by

\8 (C + 1) = 〈\ (C)〉',|,®rC8 + Δ\8 . (7)

The term 〈\ (C)〉',|,®rC8 represents weighted average of neighbors orientations of 8, including itself is computed by the
formula:

< \ (C) >',|,®rC8= arctan
[ ∑

9∈N8 (C) | 98 sin \ 9 (C)∑
9∈N8 (C) | 98 cos \ 9 (C)

]
where the sum counts the individuals 9 which are within the interaction circle of radius ' centered at ®rC8 at time C (N8 (C)
denotes such set of the neighboring agents for agent 8 at time C). \ represents an angle between the agent and a reference
axis (the horizontal axis) via the origin in a 2D Euclidean space. When the numerator

∑
9∈N8 (C) | 98 sin \ 9 (C) ≤ 0, c is

added to the arctan value (\ ∈ [c, 2c)), otherwise not (\ ∈ [0, c)).
The parameter | represents a non-negative asymmetric matrix, where |8 9 denotes the interaction strength exerted by

the individual 8 on the individual 9 , and |8 9 > | 98 when 8 and 9 are a leader and a follower, respectively. The term Δ\8
corresponds to random noise following a uniform distribution in the interval [−[0/2, [0/2], where the parameter [0 is a
temperature-like parameter. The dynamics of individuals in leader-follower interactions are governed by the following
principle: the leader exerts direct influence on the follower, while the follower has no influence on the leader, i.e., |LF > 0
and |FL = 0, where L and F denote the leader and follower, respectively (in the following sections we will also discuss
cases where |FL > 0.) Recently, Sattari et al. [15] implemented the Vicsek model including two supplementary features:
unequal influence weights to address the asymmetric effect of one individual on another, and individual memory. They
have elucidated the influence of individual and group memory in shaping collective behavior based on pairwise informa-
tion flows estimated by transfer entropy and its decomposed informational modes such as intrinsic information (I) and
synergistic information (S). A detailed study is carried out for a two-agent system considering four possible interactions
with or without memory, as illustrated in Figure 1, where the straight arrow indicates the direct influence of leader (L)
on follower (F) (i.e. |8 9 > 0 and | 98 = 0, where 8 is the leader and 9 is the follower) and the curved arrow implies the
dependency of the agent on itself. For each type, the influence of the current configuration of an individual on its future
is modified. For the cases where the future configuration of an individual L or F does not rely on its current configuration
\L (C) or \F (C), respectively, the future configurations are set randomly from the interval [0,2c] in computing the weighted
average of the neighbors of individuals, i.e., 〈\ (C)〉',|,®rC8 , to erase any dependency on \L (C)s or \F (C)s current state. In
Type A (Figure 1A), neither the leaders nor the followers future dynamics (i.e., \L (C + 1) and \F (C + 1)) depends on its
present state \L (C) and \F (C), respectively. Only the follower’s future dynamics, i.e., (\F (C + 1)) depends on the present
configuration of leader (\L (C)). In Type B (Figure 1B), the followers future dynamics, i.e., \F (C + 1) has dependency on
the present states of both leader and itself, i.e., \L (C) and \F (C) . The follower’s self -dependency is incorporated in the
dynamics by setting |FF = 1. Similarly, in Type C (Figure 1C), the future dynamics of both leader and follower, i.e.,
\L(F) (C + 1) depend on the current state of leader \L (C) and the leader’s self-dependency is included in the dynamics by
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Figure 1 Graph representations for models for different interaction types. (A) Type A. (B) Type B. (C) Type C. (D) Type
D.[Reprinted with permission from Ref. [15]. Copyright©2023, American Association for the Advancement of Science.]

setting |LL = 1. In Type D (Figure 1D), the future dynamics of both, i.e., \L (C + 1) and \F (C + 1) depends on their own
present states \L (C) and \F (C), respectively.

Review of Results

Transfer Entropy Dependent on Distance
We introduced information-theoretic methodologies aimed at deducing the domain of interaction by analyzing the

trajectories of agents. These methodologies hinge on a parameter referred to as the ‘cutoff distance _,’ representing
the maximum distance within which interactions between agents are taken into account for Transfer Entropy (TE)
estimation [21, 22]. Specifically, for a predetermined cutoff distance _, the TE between two agents is calculated based
on the following criteria: only if the distance separating two agents at time C is less than or equal to _, their respective
time series are employed to estimate probability distributions at that particular time instance [21, 22]. The process
involves systematically varying the value of _, and the TE between agents is subsequently computed as a function of _ [22].

In the context of the problem, we conceptualized the domain of interaction as a circular area with a radius denoted as
', a parameter that is often unknown. This approach allows for a comprehensive exploration of the influence of different
cutoff distances on the estimation of Transfer Entropy, providing insights into the dynamics of agent interactions within
the specified circular domain. With the modified VM (Eq. 7), it was revealed that the derivative of the average TE
with respect to _, 3 〈TE〉

3_
reaches a minimum in the vicinity of _ = '. An intuitive explanation is as follows: the most

common computation of TE is to build up a joint probability distribution among GC , ~C and ~C+1 over all pairs of random
variables in a give data. One expects for interacting agents, say, - and . , that the closer the distance between a pair
of the agents is, the more the two agents interact and influence to each other. Suppose that there exists some typical
interaction length ' beyond which two agents less interact, and below which the two interacts similarly. Then, if one
computes TE as a function of _, TE is expected to stay large until _ ≤ ', but beyond this point, it gradually diminishes
(because non-interacting pairs will be taken into account in computing the joint probability distribution) and ultimately
approaches 0 as _ increases towards infinity. Consequently, the rate of change in TE with respect to _ tends to be nearly 0
for _ ≤ ', becomes negative for _ > ', and gradually approaches 0 again as _ tends to infinity. Therefore, we anticipate
a kink or minimum in the curve of 3 〈TE〉

3_
around _ = ' (See our discussion with a mathematical simple model and its

derivation [14]). Nevertheless, it was observed that this approach may encounter challenges, particularly in cases where
the time series data has a limited length [21]. Due to the practical constraints of obtaining extended trajectories in real
experiments, we devised an alternative method centered around the ’convexity score’ of points at a coarse-grained level.
This convexity score approach demonstrated resilience against the fluctuations of 3 〈TE〉

3_
[14, 21].

Take note that the previously mentioned papers [14, 21, 22] presumed uniformity in the interaction domains among all
agents in the system, conforming to the interaction rules of the VM. However, this assumption may not always hold true,
as the interaction domain can vary among individuals based on factors such as chemical signals, phenotypic variation,
and other characteristics. For instance, in Dd colonies, cells exhibit varying levels of excitability. The communication
among Dd cells involves a diffused chemical signal, and the radius of influence of a cell is contingent upon the excitability
of the cell it is influencing. This steers our efforts towards the objective of employing the TE versus cut-off technique in
real-world systems that deviate from ideal VM rules. A modified VM, proposed in [23], deviates from the assumption of
agents sharing uniform interaction domains. In this model, an agent influences the motion of another agent only when the
former is located inside the interaction domain of the latter, which is similar to models of auditory sensing in bats [24].
Hence, an agent with a larger interaction radius is more susceptible to external influences from other agents in the system
than an agent with a shorter interaction radius. Hence, in a system involving two agents with varying interaction domains,
the agent with the shorter interaction domain is regarded as the leader, while the second agent is recognized as the follower
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(Figure 2).
How can we identify the number of interaction radii in a system? Consider a two-agent system with interaction radii

A1 = 2 and A2 = 4 arbitrary units. We examine how the average TE, 〈TE〉 changes with the cut-off distance (_) under
moderate noise level ([0 = c): [0 = 0 represents no noise, and [0 = 2c corresponds to high noise level so that noise spoils
any prediction of interaction regime. Kinks appearing near _ = 2 and _ = 4 in the average TE as a function of _ (inset of
Figure 3) correspond to the interaction radii of agents 1 and 2 in the simulation model, respectively. The derivative of the
average TE with respect to _ exhibits two minima near _ = 2 and _ = 4. This indicates that, even under noisy environment,
the underlying interaction radii can be estimated by the cut-off distances (_) associated with the local minima of the TE
derivative when angular dependence of agents interaction is not significant and radial dependence is a more dominant
factor.

(A) (B) (C)

Figure 2 Particle interaction depends on position. (A) the solid particle’s motion is influenced by the dotted particle
within its interaction domain, but not vice versa. (B) both particles influence each other as they are within each other’s
interaction domains. (C) particles move independently since they are outside each other’s interaction domains. [Reprinted
with permission from Ref. [23]. Copyright ©2023 AIP Publishing LLC.]

Figure 3 Derivative of average TE with respective of the cutoff distance _, 〈TE〉_
3_
as a function of _. Inset: Average TE,

〈TE〉_ as a function of cutoff distance _. [Reprinted with permission from Ref. [23]. Copyright ©2023 AIP Publishing
LLC.]

How can one determine the interaction radii of specific agents? Understanding the interaction characteristics between
agents is crucial for establishing each agent’s interaction domain. In the modified VM described in [23], agent 9 influences
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agent 8’s motion only when 9 is located inside 8’s interaction domain. In simpler terms, if the distance between agents 8
and 9 is less than the interaction radius '8 of agent 8, agent 9 affects the motion of agent 8. Therefore, the average inward
TE (〈TE 9→8〉_) of agent 8 provides insights into its interaction domain. Figure 4 illustrates the derivative of the average
inward TE of agent 1 concerning the cut-off distance _, 3 〈TE2→1 〉_

3_
. The inset in Fig. 4 displays the average inward TE of

agent 1. It is evident from Fig. 4 that 3 〈TE2→1 〉_
3_

exhibits a minimum at _ = 2, indicating the interaction radius of agent
1. Similarly, a similar analysis revealed that the derivative of the average inward TE of agent 2, 3 〈TE1→2 〉_

3_
, also has a

minimum. Additionally, it was discovered that within a system marked by a diverse range of agents, the TE versus cut-off
technique proves to be a robust method for forecasting the average interaction domain of all agents. This is particularly
relevant as the interaction domain of each agent is randomly selected from a Gaussian distribution. This approach not
only showcases the versatility of the technique but also underscores its effectiveness in capturing the dynamic interplay
and collective behavior within complex systems [23].

Figure 4 The derivative of the average inward TE for particle 1 with respect to the cutoff distance _ is depicted as
a function of _. In the inset, the average inward TE of particle 1 is illustrated as a function of the cutoff distance _.
[Reprinted with permission from Ref. [23]. Copyright ©2023 AIP Publishing LLC.]

Modes of Information Flow
In developing the theory of TE, Schreiber originally noted that TDMI from the present state of X to the future of Y

contains information from the present state of Y itself. Later this was termed as shared information (Eq. 5), which is
interpreted as the shared history between the two variables. In order to interpret TDMI as information flow, an assumption
must be made that the present state of Y does not influence its future state. TE is widely thought to relieve this assumption
because TE measures the reduction in uncertainty of the future state of Y from knowing the present state of X, while
considering the present state of Y as being already known. James et al. [10], however have shown that TE fails to remove
the so-called synergistic information to predict the future of . , which can be interpreted as the ability to predict the future
of . by knowing - and . simultaneously, which cannot be attributed to knowing - or . alone (see [10] for a binary
model which exemplifies this type of information flow). Thus intrinsic, shared, and synergistic information flows provide
a broader picture of the relationships between agents than TE or TDMI alone.
The models shown in Figure 1 are meant to build upon the notion of shared history in computing information flow

measures. In [15] the VM corresponding to each graph in Figure 1A-D was simulated, and the three information measures
TE, TDMI, and IMI were computed. It was shown that in Type A, where neither the future of L or F depend on their
present, TDMI, TE and IMI all give the same result in terms of measuring how well the present of L can predict the
future of F. In other words, shared and synergistic effects are zero. In type B, where the future state of F depends on its
present, we found that TE>TDMI, and their difference is accounted for in the synergistic information. This is because F
is contingent on its current state, so having simultaneous knowledge of both the present state of F and L yields greater
predictive capability compared to knowing only the present state of either F or L individually. In type C, where the future

Biophysics and Physicobiology Vol. 21

e211014_8



Sattari et al.: Inferring the roles of individuals

Table 1 Summary of information flow modes through interaction type A-D

Interaction Type Intrinsic Synergistic Shared Dependency on past history

Type A > 0 0 0 Both L and F do not depend on their past

Type B > 0 > 0 0 Only F depends on its past

Type C > 0 0 > 0 Only L depends on its past

Type D > 0 > 0 > 0 Both L and F depend on their past

of L depends on its present, we found that TE<TDMI, and their difference is accounted in the shared information. This
is because the current state of L conveys information to the future dynamics of F, and simultaneously, this information is
embedded in the future state of F due to the reliance of F’s future state on the same historical context, namely, the present
of L. Perhaps surprisingly, in type C, TE and TDMI from the follower to the leader (F to L) are both non-zero, even though
no interaction link exists from F to L in the dynamics. The rationale lies in the fact that the historical context of L serves
as a hidden variable, imparting information onto both L and F (see Ref. [15] for further discussion). In Type D, where the
future of both L and F depend on their present, both the synergistic and shared effects appear, as well as the presence of
TE and TDMI from F to L.
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Figure 5 S as a function of noise level [0 (in units of c radians) for a model with different numbers of leaders and
followers. (A) SL→F, and (B) SF→L as a function of [0 (in units of c radians) for four agents with one leader and three
followers (blue) and two leaders and two followers (red). (C)SL→Fand (D)SF→L for eight agents with one leader and seven
followers (blue), two leaders and six followers (red), three leaders and five followers (yellow), and four leaders and four
followers (purple). (E) SL→F and (F) SF→L with three followers and one leader (blue), two leaders (red), and three leaders
(yellow). (G) Graph representation of model A, where there is one leader and three followers. (H) Graph representation
of model A, where there are two leaders and two followers.[Reprinted with permission from Ref. [15]. Copyright ©2023,
American Association for the Advancement of Science.]

It is natural to expect the presence of multiple individuals acting as leaders in the dynamics of collective behavior
observed in real-world phenomenon in nature. Hence, in general, multiple leaders may contribute to the dynamics of fol-
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lowers in collective behavior, and by observing their interactions, greater insights can be gleaned about collective behavior
compared to scenarios where followers are influenced by a single leader. Sattari et al. [15] discussed pairwise information
flows as a function of noise ([0) between leader and follower considering a collective scenario (similar to Figure 5G)
as a model in which a single leader interacts with followers, and followers also interact with both the leader and among
themselves. They observed the presence of some small bumps in the information flow of well-known transfer entropy
TL(F)→F(L) (see Figure 6). It should be noted that such bumps—even if they may be observed in the analysis— have simply
been neglected because of being negligibly small contributions. It was found that as TL(F)→F(L) is decomposed to intrinsic
information IL(F)→F(L) and the synergistic information SL(F)→F(L) , no such bumps exists in the intrinsic information, and
the bumps are originated from the synergistic information that diminishes with an increase in the number of follower
agents (#F). This confirms that the bumps emerge because of the simultaneous impact of the current states of both the
leader and the follower. The decomposed pairwise information measures from TL(F)→F(L) , that is, intrinsic information
IL(F)→F(L) and the synergistic information SL(F)→F(L) , can tell us that type of the underlying multiple interactions solely
from pairwise measures (See [15]).

Figure 6 T as a function of noise level [0 (in units of c radians) for model A with one leader and different numbers
of followers. Here, #F=1 (blue), 3(red), 7(yellow), and 15(purple), where the number of leader is always one.[Reprinted
with permission from Ref. [15]. Copyright ©2023, American Association for the Advancement of Science.]

This confirms that the bumps emerge because of the simultaneous impact of the current states of both the leader and the
follower. Then, to understand how this structure (bumps) changes as increase of number leader (#L), the same collective
scenario was also studied considering multiple leader agents wherein all agents interact with each other except leader
to leader, as demonstrated in Figure- 5H, where the two leaders do not interact with each other, but the two followers
interact. In Figure- 5(A-F), the results indicate that SL(F)→F(L) is significantly greater than zero at some noise levels
([0). This finding confirms that the future of individuals L(F) is inferred by the simultaneous knowledge of their current
configurations. The results presented in Figure- 5(A, C, E) demonstrate that SL→F decrease as increase both the number
of leader (#L) as well as the number of follower (#F). Since each followers configuration is affected by the dynamics of
additional individuals, so due to this reason the likelihood of the current configurations of leaders (L) and followers (F)
occurring simultaneously also diminishes. TheSL→F decrease more with the increase of follower compared to the scenario
with the increase leader. Because the followers posses less weigh and thats why they cannot reduce the synergistic effect
as much as the multiple leaders can. The reduction in SL→F is more pronounced with an increase in followers compared
to the scenario with an increase in leaders. This is because followers carry less weight, and consequently, they cannot
mitigate the synergistic effect to the same extent as multiple leaders can (see Figure- 5(A , C)). From these results, it also
can be concluded that SL→F decrease as the followers weighted indegree increases. But this statement, surprisingly, does
not hold for SF→L (see Figure- 5(B , D)). In Figure- 5(E , F), where the results are demonstrated varying #L and keeping
#� fixed. It is observed that SF→L remains unchanged as increase of #L because the leaders indegree does not increase
despite the increase of #L and total number of individuals.
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Obtaining Velocities for Inference using Particle Image Velocimetry
Particle tracking velocimetry (PTV) is a widely recognized method for obtaining a “Lagrangian descriptor" of velocity

dynamics by tracking individual cells. However, manual implementation for numerous cells can be labor-intensive, and
automated approaches using supervised or unsupervised techniques may be more problematic especially with high cell
density or rapid cell movement. In contrast, an Eulerian descriptor of the velocity field can be achieved through particle
image velocimetry (PIV), where flow properties are expressed as a field without identifying individual cells. We conducted
a thorough exploration to identify and understand the optimal Particle Image Velocimetry (PIV) parameters specifically
tailored for the examination of cell motility. To accomplish this, we employed simulation models to make it possible to
compare PIV velocity vector field to the underlying individual agents’ motions [25].
PIV captures the flow patterns of a fluid as it passes a stationary observation point. It determines velocity vectors

by identifying a zone in a subsequent frame that best matches a given grid unit cell in the current frame. For that,
each image is initially divided into grid unit cells (simply termed as“grids" otherwise noted), with the center of
each grid remaining constant across all images. For a grid at time C, the goal is to find the zone in the subsequent
image at time C + 1 where the content of the grid at time C best aligns. Instead of scanning the entire image for
the best match, an interrogation zone, typically a square of size N × N pixels, is defined in the succeeding image.
Here, N is chosen to approximate the largest possible displacement of cells between two successive frames. PIV
then establishes a temporary grid (referred to as a window) within the search zone at time (C + 1), matching the
size of the original grid. The window is moved within the search zone to find the best match by comparing the
orientation of cells within the original grid. The cross-correlation process is employed to find the best match between
the displacements of grids in two subsequent images. The correlation function is maximized when the overlap
between the original grid at time C and its corresponding best-matched location in the image at time C + 1 is largest.
This peak in correlation determines the displacement of the original grid between the two images. Finally, PIV
draws a vector from the center of the original grid to the center of its best-matched window. PIV vector characterizes
the collective motion of cells within a grid, allowing the study of cell movement by examining all PIV vectors in the system.

Figure 7 Schematic illustrates particle groups with diverse alignment scores (�'), with the thick shaded arrow repre-
senting a PIV vector defined over a grid, and the ovals with arrows representing the moving particles along with their
respective directions of movement. (a) �' close to -1 due to opposing PIV vector; (b) �' close to 0 for randomly moving
particles; (c) �' close to 1 when PIV vector aligns with particle movement. [Reprinted with permission from Ref. [25].
Copyright ©2023 Springer Nature Limited.]

In simulating the VM, we knew the positions and velocities of individual particles at each time instance. We utilized
these trajectories to assess the performance of PIV in capturing the motion of single agents. The simulation involved
generating images of the particles by plotting markers representing agents at each particle location, oriented in the direction
of particle motion. Subsequently, the PIV technique was applied to these images, enabling a direct comparison between
the velocities computed by PIV and the velocities known from the trajectories, assessed through the alignment score,
�' (C) which has the following form:
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where ®{C
9
and ®|C

8
refer to the 9 th PIV vector and the velocity vector of particle 8 at time C, respectively, where ‘·’ denotes

the dot product. The second summation in Equation 8 is performed over all particles 8 situated within a distance ' from
the initial point of PIV vector 9 at time C. The alignment score, �', ranges from -1 to 1. A score of 1 indicates perfect
alignment between particles within the circle and PIV vectors, 0 implies no tendency for alignment, and -1 signifies
particles moving precisely opposite to PIV vectors (refer to Figure 7 for a visual representation). Hence, an �' value
greater than zero suggests some average alignment between PIV vectors and particle motion.

Figure 8 The alignment score �' is plotted against time C for various radius ' values under different noise conditions:
(a) [0 = c

6 , (b) [0 =
3c
6 , (c) [0 = c, and (d) [0 = 11c

6 . [Reprinted with permission from Ref. [25]. Copyright ©2023
Springer Nature Limited.]

The alignment score, defined in Eq. 8 was utilized to assess the extent to which PIV vectors reflect the motion of nearby
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particles. The alignment score �' is depicted in Figure 8 as a function of time C at different noise levels: (a) [0 = c
6 ,

(b) [0 = 3c
6 , (c) [0 = c, and (d) [0 = 11c

6 . At low noise levels ([0 =
c
6 ), �

' rapidly converges to its maximum value
of 1 for small ' values. The value of �' declines during the initial increase in radius '. This is attributed to the time
required for the global coherence of particles to form, as dictated by the interaction rules of the VM, which do not allow
for instantaneous global interactions among particles. This delay in coordinated agent movement is a common natural
phenomenon, reflecting the time required for information cascade among group members. Once the system achieves
global coherence, �' becomes less dependent on '. As noise [0 increases, the value of �' decreases (Figure 8b-d). At
high noise levels ([0 = 11c

6 ), �' approaches zero as noise dominates the system, and particles move randomly (Figure
8d). Interestingly, even at very high noise levels, �' remains relatively high (∼ 0.5) for ' = 30. Thus, under high
noise conditions, it is crucial to select ' such that the number of particles within the radius ' is not excessively large,
and the grid size for evaluating PIV vectors appropriately captures the underlying particle motility, ensuring accurate
characterization of PIV using the quantity �'.

The exploration of identifying the optimal values for both ' and the grid size is also addressed. Determining the optimal
' and grid size in PIV estimation under high-noise conditions poses a challenge. PIV measures the average particle dis-
placement within a grid of size W × W (W ∈ R). In situations of high noise, where particles move randomly, PIV encounters
difficulty in precisely measuring velocities, particularly when multiple particles inhabit a PIV grid. Theoretically, if a PIV
grid contains only one particle, PIV should be effective in characterizing the motion of that particle even in high-noise
scenarios. Let W0 (#) denote the typical size of a PIV grid for a given particle count # , ensuring an average occupancy of
only one particle. It is defined as:

W0 (#) =
√

Γ × Γ

#
,

where Γ represents the length of the image data. Correspondingly, assuming a uniform distribution, '0 (#) = W0 (#)/
√
c

represents the radius size of a circle centered at each pixel for a given particle count # , ensuring an average occupancy of
only one particle.

Figure 9 The landscape of �' at [0 = 11c
6 (high noise) is depicted in relation to the normalized PIV grid size,

W

W0 (# ) ,
and normalized radius, '

'0 (# ) , for a particle count of (a) # = 100 and (b) # = 300. [Reprinted with permission from
Ref. [25]. Copyright ©2023 Springer Nature Limited.]

Figure 9 illustrates the landscape of �' concerning the normalized PIV grid size, W

W0 (# ) , and the normalized radius,
'

'0 (# ) , for (a) # = 100 and (b) # = 300 in a high-noise scenario ([0 = 11c
6 ). As

W

W0 (# ) and
'

'0 (# ) approach unity,
�' values tend to converge towards unity. This convergence stems from the fact that, on average, the PIV grid and �'
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estimation involve a single particle within a small circle. Conversely, W

W0 (# ) values exceeding 1 imply that, on average, a
PIV grid may contain multiple randomly moving particles, leading to decreased �' values for W

W0 (# ) > 1 in noise-intensive
scenarios where particles lack coherence. Similarly, an '

'0 (# ) value exceeding 1 may indicate consideration of multiple
randomly moving particles, resulting in low �' values. This trend in �' values holds universally for different particle
counts # .

Conclusion and Perspectives

The information-theoretic and image analysis techniques highlighted in this article are applicable to understanding
the structure of a wide variety of many-body systems from observations alone. For example, in observing a swarm of
un-manned air vehicles (UAVs) or animals, one may seek knowledge about which individuals are most influential or how
their influence propagates through the system. In that case, we propose analysis based on modes of information flow or
PIV can help extract important insights. More work needs to be done, however, before one can apply these techniques
for systems of homogeneous quality, for example, in the human body where the interactions between parts of the system
occur in different ways and in different size and time scales.
Specifically for the analysis of large colonies of cells, recent developments in live cell imaging can capture both micro-

and macro-scale information simultaneously, achieving individual cell resolution while also providing a viewing window
at the cell colony scale. By noting the ability to extract information about multiple scales simultaneously, these images have
been termed as "trans-scale" imaging, and can provide crucial insights for addressing the question of how an individual
cell influences the collective.
Inferring the relationships between individual cells from these huge data sets requires new mathematical tools due

challenges specific to inference in systems of large numbers of interacting agents. We have the effects of individual and
shared history on inference measurement, and propose that the decomposition of transfer entropy and time-delayed mutual
information into intrinsic, shared, and synergistic information flows can help to elucidate the effects of history.
The interaction domain of individuals is one crucial parameter for inferring influence in order to reduce the number

of candidate agents that can influence a given agent. We have shown that transfer entropy dependent on distance can
determine the interaction domain of agents in a collective even when the sizes of domains of individuals can be hetero-
geneous. We also have addressed tools that can extract information about the network structure and role of cell memory
in collectives using modes of information flow. It was demonstrated using simple two-agent models that shared history
determines the existence of shared or synergistic information flows. In systems of more than two agents, it was shown that
synergistic information flow can be used to distinguish systems that have follower-to-follower interaction in addition to
leader-to-follower interaction from those which only have leader-to-follower interaction.
In addition to the information-theoretic techniques for extracting information from trajectories, we have analyzed how

PIV can extract relevant velocity information from cell images even when individual cell tracking is not possible. This
can be applied in conjunction with information theory in future works. For example, using PIV, one can extract velocity
fields of regions, and then use transfer entropy dependent on distance to infer the domain of influence of cell motion or
the network structure of interaction between different regions of cells. This can help understand the emergent properties
of systems of cells that cannot be addressed by studying individual cells alone.
Understanding emergent behavior is a task whose benefit will extend beyond cell colony dynamics. Emergent behavior

has puzzled scientists in many disparate fields such as artificial intelligence [26], social science [27], robotics [28],
and ecology [29]. Since information-theoretic methods do not confine their applicability to a single model, the works
summarized here may be applied to understanding how individual influence plays a role in emergent behavior in different
fields of research.
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