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Abstract

Motivation: RNA-sequencing (RNA-seq) of tumor tissue is typically only used to measure gene expression. Here, we
present a statistical approach that leverages existing RNA-seq data to also detect somatic copy number alterations
(SCNAs), a pervasive phenomenon in human cancers, without a need to sequence the corresponding DNA.

Results: We present an analysis of 4942 participant samples from 28 cancers in The Cancer Genome Atlas (TCGA),
demonstrating robust detection of SCNAs from RNA-seq. Using genotype imputation and haplotype information,
our RNA-based method had a median sensitivity of 85% to detect SCNAs defined by DNA analysis, at high specificity
(�95%). As an example of translational potential, we successfully replicated SCNA features associated with breast
cancer subtypes. Our results credential haplotype-based inference based on RNA-seq to detect SCNAs in clinical
and population-based settings.

Availability and implementation: The analyses presented use the data publicly available from TCGA Research
Network (http://cancergenome.nih.gov/). See Methods for details regarding data downloads. hapLOHseq software is
freely available under The MIT license and can be downloaded from http://scheet.org/software.html.

Contact: pscheet@alum.wustl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer arises as a result of a gradual acquisition of molecular altera-
tions (Hanahan and Weinberg, 2011). Genomic instability, a hall-
mark of cancer (Negrini et al., 2010), leads to DNA alterations,
such as somatic copy number alterations (SCNAs), which may span
large genomic regions or entire chromosome arms. They can play a
key role in the path to tumorigenesis by leading to loss of tumor sup-
pressor genes and/or generating additional copies of oncogenes
(Knudson, 1971). SCNAs have been associated with clinical features
or outcomes and serve as prognostic indicators (Hieronymus et al.,
2018; Liang et al., 2016; Nibourel et al., 2017; Ried et al., 2012;
Shukla et al., 2020; Taylor et al., 2018; Wang et al., 2016; Watkins
et al., 2020). Hence, detection and genome-wide characterization of

SCNAs is a key component for genomic studies of tumor initiation
and progression, and of SCNA-associated clinical features and
outcomes.

Typically, SCNAs are almost exclusively inferred directly from
DNA, measured by technologies such as array comparative genomic
hybridization, single nucleotide polymorphism (SNP) DNA micro-
array or next-generation sequencing (NGS) (Alkan et al., 2009;
Amarasinghe et al., 2014; Bouska et al., 2014; Callagy et al., 2005;
Weiss et al., 2004). Investigations of RNA, either by microarray or
NGS [RNA-sequencing (RNA-seq)], often complement DNA analy-
ses through quantification of gene expression, and identification of
novel transcripts and gene fusions (Alexandrov et al., 2013; Peng
et al., 2015) or point mutations (Coudray et al., 2018; Griffith et al.,
2015; Kridel et al., 2012; Shah et al., 2009; Yizhak et al., 2019) to
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further our understanding of disease. Yet, in many settings, particu-
larly where tumor material or funding is limited, data exist from
RNA-seq only. However, the extension of RNA-seq data into SCNA
calling has not been as well developed. Inferring SCNAs from RNA-
seq data is inherently difficult, since both regulation of expression
and underlying DNA copy number will alter the observable quanti-
ties of mRNA. In addition, due to the non-uniform coverage of the
genome from RNA-seq, it is challenging to differentiate between dy-
namically varying gene expression and SCNAs.

Recently the relative void of methods to detect SCNAs from
RNA has been partially addressed. Most of these methods are exclu-
sively tailored to single cell RNA-seq, such as HoneyBADGER (Fan
et al., 2018), CopyKAT (Gao et al., 2021) and inferCNV (Fan et al.,
2018; Gao et al., 2021; Tickle et al., 2019), while some can be
applied to bulk RNA, such as CaSpER (Serin Harmanci et al., 2020)
and SuperFreq (Flensburg et al., 2021). CaSpER integrates genome-
wide total gene expression and allelic signals to detect and visualize
SCNAs; SuperFreq also uses both read counts and BAF dispersions
for SCNA inference, requiring referent samples to be available for
normalization. Another approach for detection of SCNAs from bulk
RNA profiling integrated coverage data and tumor-specific SCNA
frequency patterns from public, external, data to identify
chromosome-arm level aneuploidy, which was in turn assessed for
association with prostate cancer outcomes (Stopsack et al., 2019).
Yet, these methods do not utilize haplotype information (the genetic
makeup of a single chromosome that is passed on from a parent),
which has been shown to increase power for SCNA detection in
studies with SNP microarray data (Baugher et al., 2013; Loh et al.,
2018; Sivakumar et al., 2021; Vattathil and Scheet, 2013).

We sought to facilitate inference of SCNAs from RNA by apply-
ing an approach that utilizes haplotypes for SCNA detection from
bulk RNA-seq, opening avenues for joint analysis of aneuploidy and
expression from population-scale data. Consideration of haplotype
structure implicitly models the signal at multiple genomic loci (or
SNP markers) jointly, which not only offers an opportunity for
increased power, but also requires the patterns to sustain beyond in-
dividual transcripts, which may be modulated by factors beyond
SCNAs. Our approach enables robust detection of megabase-scale
SCNAs that represent gain, loss or copy neutral loss of heterozygos-
ity (cn-LOH) events. The strength of our approach derives from
modeling the allelic imbalance (AI) at genomic regions affected by
SCNAs. AI refers to a deviation from the expected 1:1 ratio of ‘A’
and ‘B’ alleles at germline heterozygous (genotype ‘AB’) loci.
Alterations such as deletion (genotype: A- or B-, ratio: 1:0 or 0:1),
duplication (genotype: AAB or ABB, ratio: 2:1 or 1:2) and cn-LOH
(AA or BB, ratio: 2:0 or 0:2) are representative examples of AI.

In this study, we demonstrate effective somatic chromosomal
copy number alteration identification from RNA-seq, comparing
results to those derived from a high-density SNP DNA microarray
as a benchmark and so-called ‘gold standard’ for SCNA detection.
We consider scenarios where data are available from RNA-seq only,
as well as a complementary scenario where germline DNA data is
available from another source such as routinely collected blood. We
apply several novel techniques including using RNA-seq for infer-
ence of acquired AI and the incorporation of genotypes via an im-
putation step using publicly available large-scale genotype reference
data, which improves our performance considerably by enhancing
the quality of estimated genotypes and haplotypes. Our results dem-
onstrate that comprehensive and robust inference of megabase-scale
SCNAs is possible from bulk RNA-seq.

2 Materials and methods

2.1 Dataset
RNA-seq BAM files aligned against the human genome build hg38
(GRCh38) and the level 1 raw CEL files from Affymetrix Genome-
Wide Human SNP Array 6.0 profiling of 4942 (primary solid)
tumor samples across 28 cancer sites in The Cancer Genome Atlas
(TCGA) were obtained from the Genomic Data Commons data por-
tal along with BRCA clinical information. The level 1 raw CEL files

of the matched-normal (blood) samples across these sites were also
downloaded to perform genotype imputation. In addition, for a sub-
set of 7 cancer sites (BRCA, COAD, GBM, LUAD, LUSC, PAAD
and PRAD), WES BAM files of 888 (primary solid) tumor samples
aligned against the GRCh38 were obtained for comparisons.

2.2 Processing of the tumor RNA-seq array data
Our method for the detection of SCNAs relies on the allele-specific
signals at germline heterozygous sites. For the purpose of deriving
germline genotypes, the sample can come from the tumor itself or
from a matched-normal. We explored the utility of using two differ-
ent sources of data for obtaining germline genotype calls: (i) tumor
RNA-seq and (ii) imputed genotypes derived from SNP array data
from a matched-normal, specifically blood for the samples to which
we had access.

2.2.1 Genotyping and phasing

2.2.1.1 Approach 1: genotypes from tumor RNA-seq. For this ap-
proach, using tumor RNA-seq, the genotypes were called at sites al-
ready known to be polymorphic from large-scale surveys of genetic
variation. The Haplotype Reference Consortium (HRC; for individ-
uals of European ancestry) was used as a reference and genotypes
were called at these reference sites from the RNA data with the
UnifiedGenotyper from Genome Analysis Toolkit (McKenna et al.,
2010) (GATK; version 3.6). Subsequently, the genotypes were
phased using the MaCH software (Li et al., 2010) to reconstruct
haplotypes using the set of individual-level genotypes as an internal
reference. Singleton SNPs—heterozygous markers that were
observed only in one sample at a particular SNP locus within a can-
cer site—were removed.

2.2.1.2 Approach 2: genotypes imputed. The accuracy of haplo-
type reconstruction increases with larger reference/internal sample
size. Therefore, haplotype reconstruction accuracy is limited par-
ticularly for smaller cancer sites when using an internal reference as
done in approach 1. For approach 2, we leveraged the available
blood genotype data from SNP DNA microarrays, representing gen-
otypes from the matched-normal samples of the TCGA resource
(blood). After calling genotypes using the SNP array data of the
matched-normal samples with the Birdsuite software (Korn et al.,
2008), the genotypes were prepared for imputation. To assure the
quality of the genotypes submitted for imputation, several quality
control steps were performed. To filter out low-quality SNPs, we
removed the SNPs that failed Hardy–Weinberg equilibrium test (P-
value < 1�10�6), those with missing rate > 5% and excluded
monomorphic sites. In addition, samples with greater than 5% miss-
ing genotype rate were removed from downstream analyses.
Individuals of European ancestry were identified using principal
component analysis [EIGENSTRAT (Price et al., 2006)] using the
genotyped SNPs at 1KG sites with. The cleaned, unphased geno-
types from individuals of European ancestry were submitted to the
Michigan Imputation Server (Das et al., 2016) (MIS), using hg19
(GRCh37) genome build, the HRC panel (Version r1.1 2016) as the
reference, 0.1 R2 cutoff and EUR for population. Consequently, the
imputed genotypes and estimated haplotypes for 4942 TCGA sam-
ples of European ancestry from 28 cancer sites were downloaded
from the MIS and markers with an R2 < 0.3 were removed to re-
move poorly imputed markers.

In both approaches, the centromeric, human leukocyte antigen
(HLA), VDJ and Database of Genomic Variants (DGV) regions
were masked for exclusion of putative germline copy number
changes. We examined the effects of not performing any masking
step. This resulted in slightly higher sensitivities and slightly lower
specificities. For example, in COAD, sensitivity is 85% (versus 79%
masked), specificity is 96% (versus 97% unmasked), in LUAD, sen-
sitivity is 86% (versus 84% masked), specificity is 87% (versus 90%
masked), and in LUSC, sensitivity is 90% (versus 88% masked), spe-
cificity is 85% (versus 88% masked). As in our approach, we are
not modeling explicitly the repeat-rich nature of these regions, we
determined it was a better practice in general to exclude them up
front.
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2.2.2 Detection of SCNAs

As noted earlier, we investigate two approaches that differ on how
the germline haplotypes are obtained. While the first approach uses
tumor RNA to statistically estimate haplotypes, in approach 2, the
phased germline genotypes are obtained through genotype imput-
ation performed on a matched-normal from SNP array. hapLOHseq
(San Lucas et al., 2016) algorithm identifies the haplotype in excess
and using the germline haplotypes, quantifies phase concordance via
switch accuracy to determine genomic regions that harbor SCNAs.
hapLOHseq software (version 0.1.2) was applied using the default
parameters in both approaches, except –end_param_event (¼0.9)
and –event_prevalence (¼0.05). SCNA calls with <10 markers or
those smaller than 2 Mb were excluded. Furthermore, SCNA calls
that contain large (>10 Mb) genomic regions without any heterozy-
gous sites were split up into multiple regions.

2.3 Processing of the tumor DNA WES data
To identify SCNAs from WES tumor data, the genotypes were called
at the HRC sites with UnifiedGenotyper first. Second, the genotypes
were phased with MaCH software using the set of individual-level
genotypes as an internal reference. Third, hapLOHseq software was
used with the default parameters to detect the SCNAs after masking
the centromeric, HLA, VDJ and DGV regions and removing single-
ton SNPs. SCNAs with <10 markers or those smaller than 2 Mb
were excluded and the calls that contain large (>10 Mb) regions
without any heterozygous sites were split up into multiple regions.

2.4 Processing of the tumor SNP array data
To detect SCNAs from SNP array tumor data, first the genotypes
were called using the Birdsuite software, second the genotypes were
phased using MaCH software, and third hapLOH software was
used with the default parameters to identify regions that harbor
SCNAs. Prior to the third step, the markers were mapped from gen-
ome build hg19 to hg38 and the centromeric, HLA, VDJ and DGV
regions were masked. The SCNA calls detected from the SNP array
constitute a gold standard for assessing the performance.

To ensure the consistency in the way the samples were processed,
SyQADA (Fowler et al., 2019) was used to automate the pipelines
across the three platforms.

2.5 Performance assessment
We sought to assess the performance of our method for detection of
SCNAs in tumors. To do so, we compared our set of SCNA calls to
a gold standard set of SCNA calls from matched-tumor DNA sam-
ples processed using arrays, a gold standard set of calls. We con-
trasted the SCNA call sets at gene-, chromosome arm- and genome
levels. At the gene level, we report sensitivity and specificity.
Sensitivity represents the method’s power to detect true SCNAs that
are identified by the gold standard, while specificity represents the
method’s ability to correctly identify genes that do not fall within an
SCNA region in the gold standard. Therefore, sensitivity (TPR) was
calculated as TP/(TP þ FN) and specificity (1 - FPR) was calculated

as TN/(TN þ FP) where TP is true positive, FN is false negative, TN
is true negative and FP is false positive. For each sample, sensitivity
and specificity were calculated individually, then median sensitivity
and specificity for samples in each TCGA cohort were reported as
cohort-level summary statistics. When assessing the method’s per-
formance at the chromosome arm level, for each sample, we
assessed presence or absence of a chromosome arm-level event,
defining an arm-level event as present when at least 50% of the
chromosome arm is affected by SCNAs. At the genome level, we cal-
culated genomic burden for each sample, which reflects the percent-
age of a sample’s genome that exhibits SCNAs. For each cancer site
independently, we calculated each sample’s genomic burden based
on RNA-seq-derived SCNA calls and compared with the gold stand-
ard derived genomic burden.

2.6 Comparison to other methods
We followed the recommended workflow for SuperFreq of first
applying VarScan2 (Koboldt et al., 2012) for variant identification,
followed by SuperFreq itself which is in R. RNA-seq from two
adjacent-to-tumor breast samples in the BRCA resource were sup-
plied to SuperFreq for normalization. Results from the TP53 ana-
lysis of COAD samples were taken directly from their curated data
in their GitLab page. Results from CaSpER were obtained directly
from what they had curated previously, using their stored and avail-
able R data frames. We then summarized results by gene through
direct tabulation or applying BEDTools intersect.

3 Results

To detect somatic (acquired) copy number alterations (SCNAs)
using RNA, we applied a haplotype-based approach. In brief,
hapLOHseq detects regions of the genome where the signal at het-
erozygous sites reflects one of the estimated haplotypes for that indi-
vidual. A deviation from the expected 1:1 ratio of maternal to
paternal DNA indicates a relative over-representation of one of the
parental chromosomes, signaling the presence of an SCNA. This ap-
proach has been applied successfully to bulk DNA analyses of vari-
ous tissues (Jakubek et al., 2020; Loh et al., 2018; Vattathil and
Scheet, 2016).

Here, we explore the potential of this method for detection of
large-scale SCNAs from NGS data of bulk RNA (RNA-seq). To do
so, we obtained RNA-seq from seven large cancer sets in TCGA:
Breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD),
glioblastoma multiforme (GBM), lung adenocarcinoma (LUAD),
lung squamous cell carcinoma (LUSC), pancreatic adenocarcinoma
(PAAD) and prostate adenocarcinoma (PRAD). To identify genomic
regions that harbor SCNAs, we applied hapLOHseq. To assess the
accuracy and potential of this approach, we compare SCNAs
inferred from RNA-seq to high-confidence SCNA calls detected
from DNA SNP microarray data, which have been documented pre-
viously (Sivakumar et al., 2021) with an estimated false-positive rate
<3% (Vattathil and Scheet, 2016). For these purposes, since the
RNA and DNA were derived from the same tissue (or tumor), we

Table 1. Gene-level performance assessment

BRCA COAD GBM LUAD LUSC PAAD PRAD

Sens

(%)

Spec

(%)

Sens

(%)

Spec

(%)

Sens

(%)

Spec

(%)

Sens

(%)

Spec

(%)

Sens

(%)

Spec

(%)

Sens

(%)

Spec

(%)

Sens

(%)

Spec

(%)

hapLOHseq (RNA-seq) 71 94 47 99 79 93 74 91 73 89 69 97 45 97

hapLOHseq (RNA-seq þ imputed genotypes) 84 92 79 97 89 92 84 90 88 88 80 95 66 94

hapLOHseq (WES) 93 89 94 92 94 96 89 92 91 90 94 89 76 97

Note: We evaluated the method at the gene level by comparing SCNA status of genes between the RNA-seq-derived SCNAs and the gold standard (array-based

analysis) for seven cohorts in the TCGA. Sens, sensitivity; the proportion of genes covered by an SCNA in the gold standard that were also identified by the listed

approach. Spec, specificity; the proportion of genes that are not covered by an SCNA event in the gold standard that were also not inferred to be covered by an

SCNA by the listed approach.
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treat the SNP microarray results as a gold standard. For a subset of
samples, we also applied hapLOHseq to whole exome sequencing of

DNA (WES) to help interpret the results and assess where deficien-
cies may be attributed to technology, bioinformatic approaches or
inherent limitations of inference from specific nucleic acids.

3.1 SCNA detection from RNA-seq
We compared and contrasted the RNA-seq derived SCNAs with the
gold standard SCNAs with units of analysis as gene, chromosome

arm and entire genome (i.e. burden) (Supplementary Figs S1 and
S2), focusing here on gene-level summaries. Table 1 [first row:

‘hapLOHseq (RNA-seq)’] shows the sensitivity and specificity for
SCNA detection solely using tumor RNA for seven cancer sites.
Sensitivity is the method’s power to detect true SCNAs (defined as

those identified by the gold standard) and specificity measures the
method’s ability to correctly identify genomic regions where there is
no SCNA detected by the gold standard. We obtained a generally

high concordance between the events called from RNA-seq with
those called from SNP arrays at a gene level, and this held for the

other units of analysis as well. Our SCNA detection rate (sensitivity)
from RNA-seq was highest for the GBM data at 79%, whereas the
sensitivity for PRAD was markedly lower at 45%. We observed

high specificities for all seven cancer sites, ranging between 89%
and 99%.

To assess which factors drive the lower than average perform-
ance in the PRAD cohort, we further investigated the samples with

the highest sensitivities. We observed that the samples with the high-
est quartile of sensitivity had the highest median number of hetero-
zygous sites and the highest haplotype accuracies (Supplementary

Fig. S3). After grouping the samples into quartiles based on their
sensitivity, we statistically compared the groups with the Kruskal–

Wallis test and noted that the groups were significantly different

when compared both by the number of heterozygous sites (P-val-
ue<1e-8) and phase accuracy (P-value¼0.008).

To help understand potential limitations of our approach, we
compared our results to those obtained from the application of
hapLOHseq to TCGA DNA WES [Table 1; third row: ‘hapLOHseq
(WES)’]. Not surprisingly, since it assays the DNA directly, WES
consistently achieved higher sensitivities at similar specificities
across sites, including PRAD with 76% sensitivity in comparison to
45% from RNA-seq. Although we observed a lower performance
for RNA-seq than for WES, our results demonstrate that there exists
sufficient information in the RNA-seq for generally accurate infer-
ence of SCNAs. Encouraged by this, we explored further the power
of RNA-derived SCNA profiling approaches.

3.2 SCNA detection from RNA-seq and

imputation-based haplotype inference
We hypothesized that the standard genotyping (variant calling) pipe-
lines for NGS, along with modest reference sizes for haplotype phas-
ing, were holding back the potential of our approach. To address
this, we imputed germline genotypes and haplotypes from large-
scale reference data using the optimized workflows in the Michigan
Imputation Server (MIS). We leveraged the genotype data from a
matched-blood sample, available for most participants in TCGA.
While this sample does not provide any direct information about
SCNAs of the tumor, it does provide more accurate identification of
heterozygous sites and estimated haplotypes, central to our ap-
proach, but without the need to extract DNA from the tumor. We
then applied hapLOHseq for detection of tumor SCNAs using
RNA-seq signal combined with the more accurate haplotype infor-
mation, as detailed in the methods.

The inclusion of imputed genotype calls and high-quality haplo-
types provided a substantial improvement in overall SCNA detec-
tion [Table 1; second row: ‘hapLOHseq’ (RNA-seq þ imputed

Table 2. Gene-level performance summaries across 28 cancer sites

Tumor site (abbreviation) (sample size) Sensitivity (%) Specificity (%)

Adrenocortical carcinoma (ACC) (n¼ 58) 89 93

Bladder urothelial carcinoma (BLCA) (n¼ 261) 83 90

Breast invasive carcinoma (BRCA) (n¼ 641) 84 92

Cervical squamous cell carcinoma and endocervical adenocarcinoma

(CESC) (n¼ 150)

88 94

Cholangiocarcinoma (CHOL) (n¼ 26) 85 95

Colon adenocarcinoma (COAD) (n¼ 256) 79 97

Esophageal carcinoma (ESCA) (n¼ 54) 91 79

Glioblastoma multiforme (GBM) (n¼ 99) 89 92

Head and neck squamous cell carcinoma (HNSC) (n¼ 346) 86 94

Kidney chromophobe (KICH) (n¼ 6) 94 95

Kidney renal clear cell carcinoma (KIRC) (n¼ 56) 90 94

Kidney renal papillary cell carcinoma (KIRP) (n¼ 143) 92 95

Brain lower grade glioma (LGG) (n¼ 388) 79 96

Liver hepatocellular carcinoma (LIHC) (n¼ 115) 82 95

Lung adenocarcinoma (LUAD) (n¼ 312) 84 90

Lung squamous cell carcinoma (LUSC) (n¼ 221) 88 88

Mesothelioma (MESO) (n¼ 76) 87 95

Ovarian serous cystadenocarcinoma (OV) (n¼ 249) 87 87

Pancreatic adenocarcinoma (PAAD) (n¼ 124) 80 95

Pheochromocytoma and paraganglioma (PCPG) (n¼ 133) 89 96

Prostate adenocarcinoma (PRAD) (n¼ 317) 66 94

Rectum adenocarcinoma (READ) (n¼ 133) 80 96

Skin cutaneous melanoma (SKCM) (n¼ 87) 86 94

Stomach adenocarcinoma (STAD) (n¼ 190) 86 87

Testicular germ cell tumors (TGCT) (n¼ 116) 88 93

Thyroid carcinoma (THCA) (n¼ 276) 85 94

Uterine carcinosarcoma (UCS) (n¼ 34) 85 90

Uveal melanoma (UVM) (n¼ 75) 87 98

Note: For each cancer site, the study abbreviation, number of samples analyzed in the cohort and median gene level sensitivity and specificity are shown.
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genotypes)]. After the imputation approach, sensitivities improved
across all cancer sites, ranging from 10% to 32% in absolute in-
crease, i.e. BRCA (13%), COAD (32%), GBM (10%), LUAD
(10%), LUSC (15%), PAAD (11%) and PRAD (21%), while high
specificities remained similar. In comparison to WES, the imput-
ation approach has lower sensitivity with similar specificity. For in-
stance, for the BRCA cohort, the imputation approach’s sensitivity
is 9% lower while specificity is 3% higher. These results indicated
the potential for inference of SCNAs purely from RNA-seq, so long
as there exist sufficiently informative germline genotypes. To com-
prehensively characterize the potential for SCNA inference from
RNA-seq across a range of tissue types, we applied this approach to
the remaining cancer sites from the TCGA for which data existed.
Study abbreviations for all 28 TCGA cohorts investigated in this
study are shown in Table 2.

Across all cancer sites, the median SCNA size was 31.28 Mb, ap-
proximately equal to the median SCNA size (31.31 Mb) detected by
the gold standard. The median number of SCNA events detected per
sample was 20 (gold standard: 19). The highest frequency of SCNA
calls per sample were observed in esophageal carcinoma (ESCA),
ovarian serous cystadenocarcinoma (OV), LUSC, uterine carcinosar-
coma (UCS) and bladder urothelial carcinoma (BLCA) with each
with a median of 30 SCNAs or more per sample, consistent with the
gold standard (Supplementary Table S1). In contrast, thyroid carcin-
oma (THCA) and uveal melanoma (UVM) had the fewest number
of SCNAs per sample with each site having <10 SCNAs per sample.
These two sites were also ranked as having the lowest median num-
ber of SCNAs by the gold standard.

Table 2 contains per cancer site gene-level summaries of sensi-
tivity and specificity for 28 cancer sites, comprising 4942 samples in
the TCGA, after applying the imputation workflow. At the gene
level, our imputation-based approach achieved an 85% median sen-
sitivity and 94% median specificity (all genes, all samples). Across
the sites, median sensitivities ranged from 66% to 94%, with me-
dian specificities between 79% and 98%. With the exception of
ESCA, specificity was always greater than or equal to the sensitivity
for a given site. At 79%, 79% and 66%, COAD, brain lower grade
glioma (LGG) and PRAD (respectively) were the only cancer sites

with sensitivity below 80%. Interestingly, kidney cancers (kidney
chromophobe: KICH; kidney renal clear cell carcinoma: KIRC; and
kidney renal papillary cell carcinoma: KIRP) were the three cohorts
that we observed the best performances for with 94%, 90% and
92% sensitivity and 95%, 94% and 95% specificity.

We evaluated the method at the chromosome arm level as well
(Fig. 1). For each chromosome arm, we assessed the concordance
with the gold standard calls and the results indicate that the majority
of the true arm-level SCNAs were inferred correctly across all cancer
sites. However, several, such as 5p, 9p, 13q and 21q were missed
with RNA consistently across the cohorts. We also note that the ma-
jority of the chromosome arm-level SCNAs inferred from RNA-seq
in the THCA cohort were not present in the gold standard set.

To evaluate the SCNA patterns at a whole genome level, we cal-
culated ‘genomic burden’ – the proportion of a sample’s genome
exhibiting SCNAs. Marginally, we observed a median 0.28 genomic
burden across all samples across all cancer sites, compared with
0.31 from DNA microarrays. Further, we investigated the patterns
of genomic burden per cancer site. The highest genomic burden was
observed in ESCA (0.63), followed by OV (0.53) and TGCT (0.53).
THCA was the lowest (0.05), followed by PRAD (0.09). Median
genomic burden for all cancer sites along with the corresponding
array-derived genomic burden are shown in Figure 2. Next, we
assessed the correlation of the RNA-derived genomic burden with
the gold standard-derived genomic burden at a sample level
(Supplementary Fig. S5), with most of the sites exhibiting correla-
tions larger than 0.9.

SCNA calls discovered by RNA-seq that were not detected in the
DNA (gold standard) are putative false positives in our analysis.
However, some appear to be false negatives in the gold standard set.
To attempt to discriminate between these, we examined in more detail
the COAD data, where these putative calls made up 6% of all SCNAs
discovered in RNA-seq. We explicitly tested the genomic regions of
the putative false positive SCNAs in the corresponding SNP array
data with a specific binomial test leveraging phase concordance.
Among the 6%, we found that approximately one-fourth (23%) of
the calls were validated in the SNP array data (at a P-value<0.05),

Fig. 1. Chromosome arm-level concordance assessment summaries across 28 cancer sites. We identified chromosome arms that were spanned by SCNAs (�50%) and for each

arm we evaluated the concordance between RNA-seq and gold standard. The distribution of the non-acrocentric autosomal chromosome arms (n¼39) across the cancer sites

are shown. For each site, a stacked bar plot of the number of samples with concordance-specific chromosome arm-level SCNAs are shown for all 39 chromosome arms
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indicative that the reported false positive rates are modestly over-
estimated.

We investigated the method’s performance for different SCNA
categories (Supplementary Table S2). We observed that ‘undeter-
mined’ events—subtle events in bulk samples with low mutant cell

fraction that cannot be classified as gain, loss or cn-LOH—in the
gold standard were the SCNA category that was most frequently

missed by RNA-based detection. The difference was most striking in
the PAAD and PRAD sites. Exclusion of these undetermined (low
mutant cell fraction) events results naturally in higher overall sensi-

tivity rates. Perhaps not surprisingly, the cn-LOH category consist-
ently had the best performance, presumably due to greater BAF

perturbation for this SCNA type.

3.3 Comparison to other methods for bulk RNA-seq
While most methods for SCNA inference from RNA-seq have been

designed for single cell data, we were able to conduct a detailed
comparison with one state-of-the-art method for bulk RNA.
Table 3 contains a summary of results from our method,

hapLOHseq and CaSpER, for BRCA and GBM, sites analyzed in
the original paper for CaSpER. We compared both methods to the
gold standard. Compared with the gold standard calls at the gene
level, for both cancers, hapLOHseq offered a superior performance,
with a substantial increase in sensitivities with absolute gains of
30% and 42%. Against CaSpER’s own benchmark, the methods
appeared more similar, with an edge to hapLOHseq in detection but
at some cost in specificity (Supplementary Table S3).

We were also able to successfully run SuperFreq on a subset of
the BRCA samples. From analysis of 12 samples where we had
results from both SuperFreq and hapLOHseq, the sensitivity for
hapLOHseq was 85% versus 77% for SuperFreq (specificities were
95% and 98%, respectively). The authors of SuperFreq demon-
strated high sensitivities analyzing TP53 alterations in high mutant
cell fraction settings for COAD. We were able to detect SCNAs in
TP53 in this set with hapLOHseq at an equivalent rate but without
the need for additional RNA samples for normalization.

3.4 Translational/prognostic use
Finally, to demonstrate a translational potential, we examined the
portability of conclusions from others’ analyses of DNA to ours
from RNA-seq. In an example in breast cancer, we recapitulated the
distinct genomic burden distributions across different subtypes pre-
viously observed in TCGA BRCA data (Cancer Genome Atlas
Network, 2012), demonstrating that those of a basal subtype are
characterized by high genomic burden in comparison to the others
(Fig. 3A). We observed that the samples in the basal subtype that
have more than 40% of their genome altered comprise 84% of all
basal samples, consistent with the previous report. Furthermore,
analyzing the RNA-seq, we were also powered to observe that
chromosome arm 5q is more frequently altered in the basal subtype,
whereas chromosome arms 1q and 16q are more frequently altered
in the luminal subtypes, consistent with the previous findings from
analyzing DNA directly (Cancer Genome Atlas Network, 2012)
(Fig. 3B). Finally, we specifically investigated the concordance

Fig. 2. Concordance assessment at genome level ‘genomic burden’ across 28 cancer sites. Genomic burden is defined as the fraction of the genome that is affected by SCNAs. A

scatter plot demonstrating the concordance between RNA-seq- and gold standard-derived genomic burden (median) for each cancer site is shown

Table 3. hapLOHseq and CaSpER comparison

BRCA (n¼ 77) GBM (n¼ 98)

Method Sens (%) Spec (%) Sens (%) Spec (%)

hapLOHseq (RNA-seq) 74 94 81 93

hapLOHseq (RNA-seq þ
imputed genotypes)

85 91 89 92

CaSpER 43 82 59 95

Note: hapLOHseq and CaSpER performance evaluation. Rows 1–3 show

performance results at the gene level obtained by comparing each method to

the gold standard (Sivakumar et al., 2021).
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between hapLOHseq and gold standard results for five genes that
are frequently affected by CNA events for the BRCA cohort, i.e.
BRCA1/2, PTEN, RB1 and TP53. We showed that hapLOHseq
obtained promising results that have a potential clinical use with
93% sensitivity and 85% specificity for BRCA1, 78% sensitivity
and 95% specificity for BRCA2, 85% sensitivity and 88% specifi-
city for PTEN, 87% sensitivity and 94% specificity for RB1 and
90% sensitivity and 86% specificity for TP53. Sample-level con-
cordance assessment for each of the genes is shown in Figure 3C.

4 Discussion

In this study, we detect and characterize the genomic landscapes of
SCNAs from tumor bulk RNA-seq using a haplotype-aware statis-
tical method. We proposed two approaches that differ in the way
germline genotypes are obtained for subsequent analysis of ‘B allele’
frequencies (BAFs). While the first approach solely uses RNA-seq
from tumor to estimate the haplotypes, the second approach lever-
ages available or potentially collectible SNP array (or equivalent)
data from a matched-normal sample to achieve higher accuracies in
genotyping and haplotype reconstruction through a popular imput-
ation pipeline.

In an analysis of 28 cancer sites from TCGA, our method
achieved high sensitivity for SCNA detection with the imputation
approach (85% versus 68%), retaining high specificity as well
(~95%). Summaries of SCNA genomic burden were sufficiently high
as to potentially obviate the need for analyzing DNA. In sites with
lower sensitivities, such as PRAD, analyses of DNA exome sequenc-
ing reflected difficulties as well, indicating challenges for such sites
more specific to targeted sequencing data.

Our imputation approach addresses difficulties associated with
genotype calling from RNA-seq, e.g. due to non-uniform coverage,
which in turn provides highly accurate and phased genotypes. Indeed,
we explored these factors as direct contributors to improved

performance in PRAD (Supplementary Fig. S3). Our germline hetero-
zygote identification could improve other methods for bulk RNA ana-
lysis, as well, such as CaSpER and SuperFreq. In different statistical
implementations, each of these combine information from not only
total read counts but also BAF dispersion at heterozygotes. Whereas
SuperFreq relies on external data for normalization (e.g. paired nor-
mal RNA samples), CaSpER’s approach works on a sample-by-
sample basis, as does hapLOHseq. We conducted a detailed compari-
son to CaSpER, observing higher sensitivities with our haplotype-
based approach. Ultimately, getting the absolute performance charac-
teristics will depend on improved gold standard datasets. We note
that these methods use information orthogonal to that leveraged by
hapLOHseq and thus may offer improvements when applied in com-
bination, or integrated for joint analyses, an area of future study.

Blood, buccal or adjacent normal samples can serve as represen-
tative of the germline. The first two are non-surgical and more easily
collected, whereas the third may be available for some specimens.
Array-based genotyping of these samples presents an economical ap-
proach for improved tumor SCNA characterization. This is feasible
for existing clinical cohorts with banked patient blood samples or
biobanks with existing genotype data. In our exhibition, we focused
on individuals of European ancestry to assess the performance of
our method in a ‘best case’ scenario given current resources.
However, efforts such as TOPMed (Taliun et al., 2021) will gener-
ate high-density genotype panels for individuals of non-European
ancestry. Our approach further highlights the need for genetic pan-
els of high diversity in biomedical research.

Our approach, as we have demonstrated here, does not attempt
to detect balanced duplications, i.e. those where maternal and pater-
nal chromosome segments are present in equal ratios. This may be
overcome through integration of coverage data with our existing ap-
proach, which would be feasible for large balanced duplications as
shown previously (Serin Harmanci et al., 2020; Stopsack et al.,
2019). While any method for RNA-seq will have natural limitations

Fig. 3. Clinical efficacy of hapLOHseq results demonstrated using TCGA BRCA cohort. (A) Recapitulating the genomic burden distribution across different subtypes: left:

from the supplementary material of the TCGA BRCA paper (Cancer Genome Atlas Network, 2012), right: hapLOHseq results; histogram of sample genomic burden across

the cohort grouped by subtypes. (B) Frequency of chromosome arm level alterations in 1q, 5q and 16q as a fraction of number of samples across different subtypes. (C)

Concordance assessment for the five genes that are frequently affected by SCNA events. Rows represent the genes and columns represent the samples in the cohort
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in detecting alterations that do not span expressed genes, over larger
regions limiting factors will be mitigated or averaged toward gen-
ome levels. Further, molecular alterations caused by focal SCNAs of
key cancer drivers may be detectable through traditional RNA anal-
yses of altered gene expression, including at the pathway level, and/
or identification of specific transcripts.

In summary, we show that the proposed haplotype-based ap-
proach for RNA-derived SCNA calls is robust for detection of
megabase-scale somatic mutations. Overall, detection rates were
generally higher than 85% at specificities high enough for de novo
discoveries and assessments of genomic associations with clinical
phenotypes, across malignancies. Indeed, we successfully recapitu-
lated SCNA features associated with clinical subtypes of breast can-
cer. Our findings show that our method can be used to increase the
utility of bulk RNA-seq by allowing for a more comprehensive mo-
lecular profiling of tumors in settings where DNA analysis is imprac-
tical due to limited tissue sample availability or financial constraints
and enables secondary analyses of existing data from high-value
clinical cohorts.
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