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Abstract
Although functional connectivity and associated graph theory measures (e.g., centrality; how centrally important to the 
network a region is) are widely used in brain research, the full extent to which these functional measures are related to the 
underlying structural connectivity is not yet fully understood. Graph neural network deep learning methods have not yet 
been applied for this purpose, and offer an ideal model architecture for working with connectivity data given their ability 
to capture and maintain inherent network structure. Here, we applied this model to predict functional connectivity from 
structural connectivity in a sample of 998 participants from the Human Connectome Project. Our results showed that the 
graph neural network accounted for 89% of the variance in mean functional connectivity, 56% of the variance in individual-
level functional connectivity, 99% of the variance in mean functional centrality, and 81% of the variance in individual-level 
functional centrality. These results represent an important finding that functional centrality can be robustly predicted from 
structural connectivity. Regions of particular importance to the model's performance as determined through lesioning are 
discussed, whereby regions with higher centrality have a higher impact on model performance. Future research on models of 
patient, demographic, or behavioural data can also benefit from this graph neural network method as it is ideally-suited for 
depicting connectivity and centrality in brain networks. These results have set a new benchmark for prediction of functional 
connectivity from structural connectivity, and models like this may ultimately lead to a way to predict functional connectivity 
in individuals who are unable to do fMRI tasks (e.g., non-responsive patients).
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Introduction

There is now widespread usage of functional connectiv-
ity and associated graph theory measures (e.g., centrality). 
Investigating to what extent the structural connectivity as 
measured by diffusion tensor imaging (DTI) can explain 
functional connectivity as measured by resting state func-
tional magnetic resonance imaging (rsfMRI) is an important 
step towards understanding the structural basis of functional 
macroscale networks (the importance of this problem has 
recently been highlighted; Suárez et al. 2020). Some of the 
first steps towards understanding the relationship between 

structure and function showed moderate correspondence 
when examining direct structural connections, accounting 
for approximately 50% of the variance (Honey et al. 2009), 
or looking at a subset of connections (62%; Hagmann et al. 
2008). However, when examining all functional connections, 
structural connectivity accounts for only 9% of the variance 
using linear regression by one account (Rosenthal et al. 
2018). Novel graph theory measures calculated using struc-
tural connectivity have accounted for 23% of the variance in 
functional connectivity (Goñi et al. 2014), a combination of 
vector encodings of structural connectivity and deep learn-
ing with a fully connected network (FCN) have accounted 
for 36% of the variance in functional connectivity (Rosenthal 
et al. 2018), and simulated fMRI activation using a hybrid 
approach with both DTI and electroencephalography (EEG) 
data has accounted for 53% of the variance in functional con-
nectivity (Schirner et al. 2018). Still, there remains a large 
amount of variance unaccounted for by these models if we 
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are to determine the extent to which functional connectivity 
and measures of centrality based on functional connectivity 
offer insight into the properties of the underlying structural 
network. Recently, a feed-forward FCN deep learning model 
was able to demonstrate that mean structural connectivity as 
input could predict mean functional connectivity account-
ing for 81% of the variance, and that individual-level struc-
tural connectivity could predict individual-level functional 
connectivity accounting for 30% of the variance (Sarwar 
et al. 2021). These findings represent a large improvement in 
prediction of functional connectivity. Further deep learning 
models should be investigated to determine whether there is 
a converging upper limit on functional connectivity predic-
tion, in order to provide a benchmark to work towards with 
more explicit mathematical and simulation methods.

There is a general consensus in the neuroscience com-
munity that rsfMRI functional connectivity measures repre-
sent the effective connectivity between regions in the brain. 
Effective connectivity describes the meaningful result of 
communication between regions that are sparsely connected 
by direct and indirect structural connections (white matter 
tracts). To support this view researchers have noted that pat-
terns of connectivity seem to occur between regions that are 
expected to function together based on previous research 
and neuroanatomy (see van den Heuvel and Hulshoff Pol 
2010 for a review). Modern preprocessing methods are 
able to account for the effects of physiological factors (e.g., 
respiration and cardiac function), in order to increase the 
neuronal basis of the BOLD signal relative to noise (e.g., 
Birn et al. 2008; Chang et al. 2009; Falahpour et al. 2013; 
Golestani et al. 2015; Kassinopoulos and Mitsis 2019; Salas 
et al. 2021). Even with these advances, coordinated func-
tional BOLD signal (functional connectivity) has yet to be 
robustly linked to the organization of the underlying struc-
tural network. Searching for the upper limit in predicting 
functional connectivity from structure remains an important 
goal for investigating to what extent the rsfMRI functional 
connectivity is influenced by the connectivity of the struc-
tural architecture of the brain.

One issue with structural connectivity is that DTI trac-
tography data is sparse, meaning the majority of values 
are zeros. On the other hand, functional connectivity data 
has many more non-zero values, even when thresholded. 
This difference occurs in part because many routes of com-
munication between brain regions are indirect rather than 
direct, and is one reason functional connectivity has been 
widely used. Measures of indirect (‘effective’) connectiv-
ity are available using graph theory, including shortest path 
length, communicability (Estrada and Hatano 2008), and 
novel measures designed for brain research (e.g., search 
information and path transitivity; Goñi et al. 2014), but 
research is still investigating the extent to which these 
measures are based on sound assumptions about how 

functional connectivity results from underlying structure at 
the macroscale.

Research employing graph theory measures have become 
an important focus of recent network neuroscience research 
involving structural and functional connectivity (see For-
nito et al. 2013), including measures of centrality, which 
describe a region’s importance to the network. Some com-
mon centrality measures include degree centrality (number 
of connections to a region), eigenvector centrality (number 
of connections to a region weighted by the centrality of its 
neighbours), and PageRank centrality (a variant of eigenvec-
tor centrality developed for use in ranking web pages, with 
the advantage that it addresses the issue of eigenvector cen-
trality sometimes being excessively high when a low degree 
node is connected to a high centrality node; Page et al. 1999). 
Figure 1A depicts an example graph with labels showing 
which node has the highest centrality for each of these meas-
ures. This example graph is relatively sparse (fewer connec-
tions) like the structural connectivity network of the brain, in 
comparison to functional connectivity networks, which are 
denser (highly connected). Functional connectivity centrality 
has been used to demonstrate age and sex related differences 
(Zuo et al. 2012), differences between patient and control 
groups (for patients with schizophrenia, Chen et al. 2015; 
bipolar disorder, Deng et al. 2019, Zhou et al. 2017; retinitus 
pigmentosa, Lin et al. 2021; and diabetic optic neuropathy, 
Xu et al. 2020), and differences related to genotype (Wink 
et al. 2018). Structural connectivity centrality has also been 
used to demonstrate differences between patient and control 
groups (for patients with prenatal alcohol exposure, Long 
et al. 2020; traumatic brain injury, Raizman et al. 2020; 
gut inflamation, Turkiewicz et al. 2021; and brain tumours, 
Yu et al. 2016), and to demonstrate a relationship between 
structural centrality and functional complexity (e.g., Hurst 
exponent; inversely related to fractal dimension, where a 
fractal dimension exceeding the topological dimension of 
the signal indicates complex functional activity) suggest-
ing that regions integrating information from many sources 
have more complex functional activity (Neudorf et al. 2020). 
An important question that has not yet been explored, to 
our knowledge, is to what extent variance in functional 
connectivity-based centrality measures can be accounted 
for by structural connectivity and structural connectivity-
based centrality.

The problem of developing a deep learning model 
approach to using brain connectivity for prediction has been 
a focus of recent research. In a graph neural network model 
for deep learning, the structure of the connectivity data as 
a network (graph) is maintained, making this model ideal 
for prediction problems related to connectivity data. One 
implementation of this model architecture (not using addi-
tional global values in this case), Graph Nets (Battaglia et al. 
2018), trains a small FCN edge update function to update 
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the value of each edge. This edge update function takes as 
input the current value of the edge as well as the values of 
each connected node. Another trainable FCN node update 
function updates the value of each node. This node update 
function takes as input the current value of the node as well 
as the aggregated value of all connected edges (see Fig. 1B). 
These two FCN functions can produce very good predic-
tion results even at a very constrained scale, given only two 
layers with 16 nodes each (many fewer parameters to train 
than previous deep learning models predicting functional 
connectivity from structural connectivity; e.g., 4 layers with 
350 nodes each in Rosenthal et al. 2018; 8 layers with 1024 
nodes each in Sarwar et al. 2021), owing to the ability of 
the model to preserve the network structure of the data. Any 
number of updates can be performed, each using the updated 
values from the last step, before calculating the loss func-
tion and training the update functions (message passing). 
Graph neural network approaches to deep learning have been 
consistently outperforming other models of deep learning 
with brain connectivity data, as evidenced by higher predic-
tion accuracy. Some applications of a graph neural network 
model to brain connectivity data include demonstrations of 
sex prediction from functional connectivity (88% accuracy; 
Arslan et al. 2018), a similarity metric learning model for 
predicting the similarity between two functional connectiv-
ity networks (63% accuracy; Ktena et al. 2017), prediction 
of Alzheimer’s disease from functional connectivity that 

outperformed previous methods (81% accuracy; Bi et al. 
2020; Parisot et al. 2018), and prediction of Autism Spec-
trum Disorder outperforming previous methods (61% to 
71%; Arya et al. 2020; Parisot et al. 2018; Wang et al. 2021; 
Zhang and Wang 2020). To understand why graph neural 
network approaches have consistently outperformed other 
deep learning methods in neuroscience, it is important to 
understand that unlike FCN methods used previously, the 
graph neural network approach maintains the network struc-
ture of structural and functional connectivity. Conversely, 
the drawback of a FCN method is that all edge values are 
reduced to a single dimensional vector, which discards the 
vital network level patterns of connectivity. By maintaining 
the network structure, the graph neural network approach is 
able to produce superior performance using a much more 
constrained architecture with many fewer parameters (an 
edge and a node update function with only 2 layers of 16 
nodes each, compared to FCN methods for example with 8 
layers of 1024 nodes each). Additionally, because the graph 
neural network update functions apply the same function for 
every edge and node, this model applies a graph theory func-
tion that may represent a plausible explicit structure–func-
tion relationship to be explored with future research.

Considering the ultimate goal of relating DTI structural 
connectivity to resting state functional connectivity, a graph 
neural network deep learning approach has not yet been 
established, and based on past successes predicting other 

Fig. 1   Graph neural network deep learning architecture. A An exam-
ple graph illustrating degree centrality, eigenvector centrality, and 
PageRank centrality. B Depiction of Graph Nets update functions, 
where e′

k
 refers to the updated edge value, and where vi and v′

i
  refer 

to the node being updated and then its updated value. Adapted from 
Battaglia et  al. (2018). C and D Depiction of the steps in the edge 

prediction model (C), and centrality prediction model (D), where �e 
represents the FCN update function for edges taking an edge and 2 
connected nodes as input, �v represents the FCN update function for 
nodes taking a node and the aggregated value of connected edges as 
input, and ρe→v represents the aggregation of edge values. Adapted 
from Battaglia et al. (2018)
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measures using brain connectivity this type of model is a 
promising candidate. This research uses a Graph Nets (Batt-
aglia et al. 2018) deep learning model to determine to what 
extent structural connectivity can predict functional connec-
tivity, as well as functional connectivity derived centrality 
measures.

Methods

Dataset

High quality DTI and resting state fMRI data for 998 sub-
jects were obtained from the Human Connectome Project 
(HCP) database (Van Essen et al. 2013; please see this paper 
for ethics statements). The HCP preprocessed rsfMRI data 
was used, which has been FSL FIX (Salimi-Khorshidi et al. 
2014) preprocessed, along with the DTI preprocessed data 
(see HCP preprocessing pipelines for more information on 
preprocessing steps, Glasser et al. 2013). The mean activa-
tion at each timepoint was calculated for each region of the 
Desikan-Killiany 66 region atlas (DK; Desikan et al. 2006; 
removed the corpus collosum region as in recent updates; 
e.g., Destrieux et al. 2010; Klein and Tourville 2012) and of 
the Automated Anatomical Labelling 90 region atlas (AAL; 
Tzourio-Mazoyer et al. 2002). The DK atlas was used in the 
previous best prediction attempt (Sarwar et al. 2021), and 
multiple atlases were examined as the structure–function 
relationship is known to be atlas dependent (Messé, 2020). 
Each of the 4 rsfMRI sessions was then z-score standardized 
for each region independently from each other session. Each 
region was then bandpass filtered for each session separately 
to keep frequencies between 0.01 and 0.1 Hz (see Hallquist 
et al. 2013).

Connectivity measures

The Pearson correlation coefficient was then calculated 
for each pair of regions using the 4800 total time points 
(all 4 sessions concatenated), as a measure of functional 
connectivity. DSI Studio’s (http://​dsi-​studio.​labso​lver.​org) 
deterministic tracking algorithm that uses quantitative ani-
sotropy (Yeh et al. 2013) as the termination index was used 
to produce structural connectivity matrices of streamline 
count. For reconstruction in DSI Studio the Generalized 
Q-sampling (Yeh et al. 2010) method was used, and tracking 
was performed using a fiber count of 1 million fibers, maxi-
mum angular deviation of 75 degrees, and a minimum and 
maximum fiber length of 20 mm and 500 mm respectively. 
A whole brain seed was used to calculate the structural con-
nectivity matrix as the count of streamlines between each 
combination of the atlas regions.

Graph theory centrality measures of degree central-
ity, eigenvector centrality, and PageRank centrality were 
calculated using the NetworkX python library (Hagberg 
et al. 2008; using functions degree, eigenvector_central-
ity, and pagerank). These measures were calculated using a 
thresholded functional connectivity matrix, with the lower 
threshold set to the critical correlation coefficient for R 
with p = 0.0001 (see Zuo et al. 2012). Likewise, the DTI 
structural connectivity matrix was used to calculate degree, 
eigenvector, and PageRank centrality for each atlas region. 
The structural and functional centrality measures were then 
z score standardized and rescaled to have values between 
− 1 and 1.

Model architecture

The Graph Nets (Battaglia et al. 2018) python library, which 
relies on Tensorflow (Abadi et al. 2015), was used with a 
message passing design, using 10 message passing steps 
(as in the default model defined by Battaglia et al. 2018; 
accessible at https://​github.​com/​alber​totono/​graph_​nets; the 
code used to apply this library is available upon reasonable 
request). Following Battaglia et al. (2018) two latent layers 
were used with 16 nodes in each layer for the update func-
tions. Seventy percent of the data was used as a training set, 
with 10 percent used for validation during training and 20 
percent saved for testing (as done previously; e.g., Wang 
et al. 2020). The Adam (Kingma and Ba 2017) optimizer 
was used with default values (learning rate = 0.001, β1 = 0.9, 
β2 = 0.999, and ε = 1 * 10–7). Training was performed using 
batch gradient descent, with a batch size of 32 used for train-
ing the models. The loss function used was the mean squared 
error (MSE) of the functional measures compared to the 
predicted values. One epoch was completed when enough 
batches were completed to randomly sample as much unique 
test data as possible (21 batches for batch size of 32). For the 
edge prediction models, structural connectivity values were 
given as the input edges, all input nodes were initialized with 
a value of 1.0, and functional connectivity measures were 
compared to the output edges to calculate loss (see Fig. 1C). 
For the centrality prediction models, structural connectiv-
ity values were given as the input edges, structural central-
ity measures were given as the input nodes, and functional 
centrality measures were compared to the output nodes to 
calculate loss (see Fig. 1D). In order to encourage the model 
to find an effective solution in as few steps as possible, the 
loss was calculated as the mean MSE for all 10 message 
passing steps. A Nvidia GTX 3080 graphical processing unit 
(GPU) was used to train the models and required approxi-
mately 11 h to run 3000 epochs for the centrality prediction 
models and approximately 83 h to run 5000 epochs for the 
edge prediction model.

http://dsi-studio.labsolver.org
https://github.com/albertotono/graph_nets
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Results

Edges

The edge prediction model was trained for 5000 epochs, 
and there was no evidence for overfitting of the model to 
the training set, as the validation set decreased its loss along 
with the training set (Figs. 2A, 3A). Figures 2B, 3B depict 
the empirical versus the mean predicted values of functional 
connectivity, accounting for 89.4% (DK) and 81.3% (AAL) 
of the variance in the 201 subject test group. Furthermore, 
functional connectivity was predicted at the individual-level 
accounting for 55.7% (DK) and 47.8% (AAL) of the variance 
(see Supplementary Figs. 1 and 2). The structural connectiv-
ity of each individual atlas region was iteratively lesioned, 
and this lesioned network was given to the previously trained 
model as input. The MSE lesioned loss was then calcu-
lated, whereby an increase in loss following a removal of 
that region indicates the importance of that region to model 

performance (see Figs. 2C, 3C). For the DK atlas the top 
10 regions that impacted the model performance the most 
included bilateral superior frontal cortex, bilateral precentral 
gyrus, superior parietal lobe, insula, and lingual gyrus. For 
the AAL atlas the top 10 regions that impacted the model 
performance the most included the bilateral middle occipital 
gyrus, RH angular gyrus, LH precentral gyrus, RH superior 
frontal lobe, RH middle cingulum, RH olfactory cortex, LH 
insula, LH middle temporal pole, and RH lingual gyrus. In 
order to gain a better understanding of what features of the 
regions make them important for model performance, we 
tested a hypothesis that higher structural degree centrality 
(more centrally important to the network as a whole because 
of the high number of connections) may be related to higher 
impact on model performance. This was the case, as it was 
observed that the centrality of a region was positively related 
to lesion loss (Figs. 2D, 3D; DK: R(64) = 0.774, p < 0.001; 
AAL: R(88) = 0.322, p = 0.002), indicating that high cen-
trality regions were more important for model performance 
(see Fig. 2D).

Fig. 2   DK atlas edge prediction model performance. A Edge predic-
tion model MSE loss for training and validation sets as a function of 
the number of training epochs. B Predicted rsfMRI functional con-
nectivity as a function of empirical rsfMRI functional connectivity 
(R2 = 0.894). C Functional connectivity loss (MSE) related to lesion-
ing structural connectivity to each atlas region, where dark blue indi-

cates a lesser effect on the model performance and dark red indicates 
a greater effect. Larger sphere size also indicates a greater effect 
of lesion on model performance. Figure produced using BrainNet 
Viewer (Xia et al. 2013). D Lesioned functional connectivity loss as 
a function of structural connectivity degree centrality (R(64) = 0.774, 
p < .001)
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Using the predicted functional connectivity, measures of 
centrality for degree, eigenvector, and PageRank were cal-
culated by unstandardizing first before following the same 
thresholding and centrality calculation as described in the 
Methods. The mean predicted values for degree centrality 
accounted for 88.2% (DK) and 80.8% (AAL) of the variance 
in the empirical data (see Figs. 4A, 5A), for eigenvector 
centrality accounted for 89.9% (DK) and 84.0% (AAL) of 
the variance in the empirical data (see Figs. 4B, 5B), and for 
PageRank centrality accounted for 88.9% (DK) and 80.0% 
(AAL) of the variance in the empirical data (see Figs. 4C, 
5C). The individual-level predicted values for degree cen-
trality accounted for 81.0% (DK) and 73.1% (AAL) of the 
variance in the empirical data (see Supplementary Figs. 3 
and 4), for eigenvector centrality accounted for 55.3% (DK) 
and 53.0% (AAL) of the variance in the empirical data (see 
Supplementary Figs. 5 and 6), and for PageRank centrality 
accounted for 55.0% (DK) and 50.8% (AAL) of the variance 
in the empirical data (see Supplementary Figs. 7 and 8). 
These results demonstrate that the model has accounted for 

a large amount of variance in connectivity as well as cen-
trality, but in order to determine if even better performance 
could be produced, the model designed to directly predict 
centrality was utilized.

Degree centrality

The degree prediction model was trained for 3000 epochs, 
and there was no evidence for overfitting of the model to 
the training set, as the validation set decreased its loss 
along with the training set (Figs. 6A, 7A). Figures 6B, 7B 
depict the empirical versus the predicted mean values of 
functional degree centrality, accounting for 99.3% (DK) 
and 99.0% (AAL) of the variance in the 201 subject test 
group. The individual-level functional degree central-
ity was predicted accounting for 63.7% (DK) and 64.7% 
(AAL) of the variance (Supplementary Figs. 9 and 10). 
This alternative model performed better than the previous 
model predicting the mean centrality, which accounted 
for 88.2% (DK) and 80.8% (AAL) of the variance, but 

Fig. 3   AAL atlas edge prediction model performance. A Edge predic-
tion model MSE loss for training and validation sets as a function of 
the number of training epochs. B Predicted rsfMRI functional con-
nectivity as a function of empirical rsfMRI functional connectivity 
(R2 = 0.813). C Functional connectivity loss (MSE) related to lesion-
ing structural connectivity to each atlas region, where dark blue indi-

cates a lesser effect on the model performance and dark red indicates 
a greater effect. Larger sphere size also indicates a greater effect 
of lesion on model performance. Figure produced using BrainNet 
Viewer (Xia et al. 2013). D Lesioned functional connectivity loss as 
a function of structural connectivity degree centrality (R(88) = 0.322, 
p = .002)
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performed worse than the previous model predicting the 
individual-level centrality, which accounted for 81.0% 
(DK) and 73.1% (AAL) of the variance.

Eigenvector centrality

The eigenvector prediction model was trained for 3000 
epochs, and there was no evidence for overfitting of the 
model to the training set, as the validation set decreased 
its loss along with the training set (Figs. 6C, 7C). Fig-
ures 6D, 7D depict the empirical versus the predicted 
mean values of functional eigenvector centrality, account-
ing for 99.4% (DK) and 98.1% (AAL) of the variance in 
the 201 subject test group. The individual-level functional 
eigenvector centrality was predicted accounting for 62.3% 
(DK) and 61.2% (AAL) of the variance (Supplementary 
Figs. 11 and 12). This alternative model performed bet-
ter than the previous model, which accounted for 89.9% 

(DK) and 84.0% (AAL) of the mean variance and 55.3% 
(DK) and 53.0% (AAL) of the individual-level variance.

PageRank centrality

The PageRank prediction model was trained for 3000 epochs, 
and there was no evidence for overfitting of the model to the 
training set, as the validation set decreased its loss along with 
the training set (Figs. 6E, 7E). Figures 6F, 7F depict the empir-
ical versus the predicted mean values of functional PageRank 
centrality, accounting for 99.2% (DK) and 99.0% (AAL) of 
the variance in the 201 subject test group. The individual-level 
functional PageRank centrality was predicted accounting for 
64.0% (DK) and 64.9% (AAL) of the variance (Supplemen-
tary Figs. 13 and 14). This alternative model performed better 
than the previous model, which accounted for 88.9% (DK) 
and 80.0% (AAL) of the mean variance and 55.0% (DK) and 
50.8% (AAL) of the individual-level variance.

Fig. 4   DK atlas edge prediction model derived centrality meas-
ure performance. A Degree centrality measures calculated from the 
predicted functional connectivity values as a function of empirical 
degree centrality (R2 = 0.882). B Eigenvector centrality measures cal-

culated from the predicted functional connectivity values as a func-
tion of empirical eigenvector centrality (R2 = .899). C PageRank cen-
trality measures calculated from the predicted functional connectivity 
values as a function of empirical PageRank centrality (R2 = 0.889)
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Discussion

Resting state fMRI has been used to calculate functional 
connectivity networks in brain research for many years, and 
graph theory measures such as centrality have been calcu-
lated for these functional networks, yet a clear relationship 
between the physical structural connectivity derived values 
and what is assumed to be the ‘effective’ functional connec-
tivity has been elusive. The most successful previous effort 
to predict mean functional connectivity from mean structural 
connectivity at the whole-brain level was able to account for 
81% of the variance in functional connectivity, and individ-
ual-level functional connectivity was predicted from individ-
ual-level structural connectivity accounting for 30% of the 
variance. The importance of continuing efforts to improve 
model prediction performance has been recently highlighted 
(Suárez et al. 2020). By using the Graph Nets (Battaglia 
et al. 2018) deep learning model architecture, which is well 
suited to modeling network datasets, mean functional con-
nectivity was predicted from individual-level structural 
connectivity accounting for 89% of the variance (surpass-
ing the previous attempt, without relying on mean structural 

connectivity as input), and individual-level functional con-
nectivity was predicted from individual-level structural con-
nectivity accounting for 48% of the variance (far surpassing 
the previous attempt). In addition, mean functional centrality 
was predicted from individual-level structural connectivity 
and centrality data accounting for up to 99% of the vari-
ance, and up to 81% of individual-level functional centrality 
variance was accounted for from individual-level structural 
connectivity, demonstrating that these functional centrality 
measures can be robustly derived from the underlying struc-
tural connectivity and structural centrality measures. These 
results demonstrate that it is possible to account for nearly 
all of the mean-level variance in functional centrality with 
structural connectivity and centrality measures, suggesting 
that by calculating graph theory measures, information from 
the whole network is integrated, bridging the gap that is 
much more difficult to cross between structure and function 
at the edge level, and should encourage further research to 
explicitly define the nature of this relationship using graph 
theory and simulation modelling. Note that there is still vari-
ance left to be accounted for in predicting centrality at the 
individual level, which is not surprising considering that 

Fig. 5   AAL atlas edge prediction model derived centrality meas-
ure performance. A Degree centrality measures calculated from the 
predicted functional connectivity values as a function of empiri-
cal degree centrality (R2 = 0.808). B Eigenvector centrality meas-
ures calculated from the predicted functional connectivity values as 

a function of empirical eigenvector centrality (R2 = 0.840). C Pag-
eRank centrality measures calculated from the predicted functional 
connectivity values as a function of empirical PageRank centrality 
(R2 = 0.800)
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local structural connectivity at the microscale very likely 
contributes to functional centrality in a way that cannot be 
captured using macroscale methods. These results set an 

important benchmark in what should be a continuing effort 
in the network neuroscience community to determine the 
extent to which functional connectivity and graph theory 

Fig. 6   DK atlas centrality prediction model performance. A Degree 
centrality model MSE loss for training and validation sets as a func-
tion of the number of training epochs. B Predicted rsfMRI functional 
connectivity degree centrality as a function of empirical rsfMRI 
functional connectivity degree centrality (R2 = 0.993). C Eigenvector 
centrality model MSE loss for training and validation sets as a func-
tion of the number of training epochs. D Predicted rsfMRI functional 

connectivity eigenvector centrality as a function of empirical rsfMRI 
functional connectivity eigenvector centrality (R2 = 0.994). E PageR-
ank centrality model MSE loss for training and validation sets as a 
function of the number of training epochs. F Predicted rsfMRI func-
tional connectivity PageRank centrality as a function of empirical 
rsfMRI functional connectivity PageRank centrality (R2 = 0.992)

Fig. 7   AAL atlas centrality prediction model performance. A Degree 
centrality model MSE loss for training and validation sets as a func-
tion of the number of training epochs. B Predicted rsfMRI functional 
connectivity degree centrality as a function of empirical rsfMRI 
functional connectivity degree centrality (R2 = 0.990). C Eigenvector 
centrality model MSE loss for training and validation sets as a func-
tion of the number of training epochs. D Predicted rsfMRI functional 

connectivity eigenvector centrality as a function of empirical rsfMRI 
functional connectivity eigenvector centrality (R2 = 0.981). E PageR-
ank centrality model MSE loss for training and validation sets as a 
function of the number of training epochs. F Predicted rsfMRI func-
tional connectivity PageRank centrality as a function of empirical 
rsfMRI functional connectivity PageRank centrality (R2 = 0.990)
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measures such as centrality can be derived from structural 
connectivity, and therefore to what extent we can infer func-
tional connectivity from structural connectivity.

The regions of the brain that are particularly important 
for the performance of the edge prediction model were high-
lighted by iteratively lesioning each region. In order to test 
whether the centrality may affect how important a region is 
to model performance, degree centrality was compared to 
lesion loss. Indeed, higher centrality was associated with 
greater importance for model performance, indicating that 
part of what makes a region more important to the model is 
the extent to which the region is centrally important to the 
network, connected to many other regions. As with all deep 
learning approaches, the limitations of this model include 
the nonlinear, underlying function that acts on the structural 
connectivity to predict the functional connectivity. Although 
we have addressed this limitation in part by showing a brain 
map of the regional importance to model performance via 
iterative lesioning, future research is needed using explicit 
graph theory measures and simulation models to define the 
nature of the structure–function relationship.

Future directions

The graph neural network deep learning model architecture 
is one that is designed with networks in mind, and maintains 
the structure of the brain connectivity data, whereas other 
commonly used deep learning approaches do not. We have 
demonstrated that this is an effective deep learning model 
for use with structural and functional connectivity data, 
whether the edge-, node-, or participant-level measures are 
of interest. Future research predicting patient, demographic, 
or behavioural data should also make use of this method in 
order to improve on past deep learning attempts using the 
“global” participant-level output available for training in the 
graph neural network model. Prediction of task activation 
from structural connectivity has also been explored in recent 
research using linear regression modelling approaches (e.g., 
Ekstrand et al. 2020; Osher et al. 2016; Wu et al. 2020). 
The use of a graph neural network model to predict fMRI 
task activation from structural connectivity represents an 
important advancement that could lead to improvements in 
task activation prediction.

As this model is further developed to account for more 
variance in individual-level functional connectivity, this 
approach may also lead to predictive functional mapping 
for patients who are unable to follow fMRI instructions. 
Alternatively, there may be an upper limit on the amount of 
information about functional connectivity that is contained 
in structural connectivity measures. This upper limit may 
exist due to a number of factors. Neuromodulation selec-
tively inhibits and excites neurons throughout the brain net-
work, leading to dynamic patterns of functional connectivity, 

so although the underlying structure does not change during 
MRI scanning, the functional connectivity is in constant flux 
(Bell and Shine 2016; Shine 2019). The low spatial resolu-
tion of the atlas used also means that the precise structural 
and functional connectivity patterns between neurons can-
not be measured. In addition, functional boundaries vary 
across individuals and between sessions, as does the exact 
location of structural connections (Gordon et al. 2017; Lau-
mann et al. 2015; Mueller et al. 2013; Salehi et al. 2020; 
Suárez et al. 2020; Wang et al. 2015), so the use of atlases 
is a source of error for this reason as well. The temporal 
dynamics also differ from one region to the next, affecting 
the calculation of functional connectivity (Gollo et al. 2015; 
Keitel and Gross 2016; Murray et al. 2014; Shafiei et al. 
2019; Suárez et al. 2020). Depending on how unimodal or 
transmodal a region is, there may be a higher (unimodal) 
or lower (transmodal) degree of coupling between structure 
and function (Margulies et al. 2016; Preti and Van De Ville 
2019; Suárez et al. 2020; Vázquez-Rodríguez et al. 2019). 
Based on our deep learning model results, there is clearly a 
large amount of variance in functional connectivity that can 
be accounted for by structural connectivity. Although the 
relationship discovered by deep learning is difficult to inter-
pret directly, further graph theory and simulation modeling 
research can define this relationship explicitly, accounting 
for increased variance until maximal levels of variance are 
accounted for.

Conclusion

Our graph neural network deep learning model provides a 
new benchmark for prediction of rsfMRI functional connec-
tivity (89% of mean variance; 56% of individual-level vari-
ance) and functional centrality (99% of mean variance; 81% 
of individual-level variance) from DTI structural connectiv-
ity, which far exceeds the individual-level performance of 
the non graph neural network models previously reported by 
others (81% of mean variance; 30% of individual-level vari-
ance). This research has not only brought us closer to finding 
the upper limit on prediction of connectivity and centrality 
of function from structural connectivity, it has opened new 
doors for understanding the structure–function network rela-
tionships in the human brain.
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