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A B S T R A C T   

Objective: In this study, we aimed to utilize computed tomography (CT)-derived radiomics and 
various machine learning approaches to differentiate between invasive mucinous adenocarci-
noma (IMA) and invasive non-mucinous adenocarcinoma (INMA) preoperatively in solitary 
pulmonary nodules (SPN) ≤3 cm. 
Methods: A total of 538 patients with SPNs measuring ≤3 cm were enrolled, categorized into 
either the IMA group (n = 50) or INMA group (n = 488) based on postoperative pathology. 
Radiomic features were extracted from non-contrast-enhanced CT scans and identified using the 
least absolute shrinkage and selection operator (LASSO) algorithm. In constructing radiomics- 
based models, logistic regression, support vector machines, classification and regression trees, 
and k-nearest neighbors were employed. Additionally, a clinical model was developed, focusing 
on CT radiological features. Subsequently, this clinical model was integrated with the most 
effective radiomic model to create a combined model. Performance assessments of these models 
were conducted, utilizing metrics such as the area under the receiver operating characteristic 
curve (AUC), DeLong’s test, net reclassification index (NRI), and integrated discrimination 
improvement (IDI). 
Results: The support vector machine approach showed superior predictive efficiency, with AUCs 
of 0.829 and 0.846 in the training and test cohorts, respectively. The clinical model had AUCs of 
0.760 and 0.777 in the corresponding cohorts. The combined model had AUCs of 0.847 and 0.857 
in the corresponding cohorts. Furthermore, compared to the radiomic model, the combined 
model significantly improved performance in both the training (DeLong test P = 0.045, NRI 
0.206, IDI 0.024) and test cohorts (P = 0.029, NRI 0.125, IDI 0.032), as well as compared to the 
clinical model in both the training (P = 0.01, NRI 0.310, IDI 0.09) and test cohorts (P = 0.047, 
NRI 0.382, IDI 0.085). 
Conclusion: the combined model exhibited excellent performance in distinguishing between IMA 
and INMA in SPNs ≤3 cm.  
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1. Introduction 

Within the spectrum of lung adenocarcinoma (LADC), invasive mucinous adenocarcinoma (IMA) is recognized as a distinct his-
tological subtype distinguished by its unique clinical, radiological, histopathological, and molecular features [1]. Compared with 
invasive non-mucinous adenocarcinoma (INMA), IMA is less prevalent, constituting approximately 3–10 % of all LADC cases [2,3]. 
Despite its rarity, IMA presents with significant prognostic heterogeneity. Certain investigations have hinted at a reduced overall 
survival (OS) in IMA patients in contrast to those with INMA [4,5]. However, contradictory evidence has surfaced, proposing a more 
promising prognosis for IMA patients when juxtaposed with their INMA counterparts [6,7]. Subgroup analysis further substantiated 
that patients with IMA have an elevated risk of intrapulmonary recurrence, exacerbating the prognosis relative to INMA [8]. Addi-
tionally, patients with IMA display a disease-free survival (DFS) rate between that of low- (lepidic predominance) and 
intermediate-grade (acinar/papillary predominance) INMA. Notably, their OS aligns with that of patients with intermediate-grade 
INMA [9]. 

Extensive inquiry has shed light on the distinguishing characteristics of IMA, elucidating its unique genomic, pathological, and 
histological attributes relative to INMA. Histologically, IMA showcases reduced occurrences of lymphatic permeation, pleural 
involvement, and vascular invasion, while displaying an increased spread through air spaces [10,11]. Pathologically, IMA is char-
acterized by goblet-shaped or columnar cells and a profusion of mucin in the cytoplasm [2,12]. Patients diagnosed with IMA exhibit 
mutation patterns tailored to their specific cases, including alterations in EGFR, ALK, and KRAS [13–16]. Consequently, targeted 
therapies hold substantial promise for the treatment of patients with IMA. Recognizing the unique characteristics, the classification of 
IMA as a distinct subtype of LADC was officially established by the World Health Organization (WHO) in 2015 [17]. 

Previous research endeavors have extensively explored the imaging characteristics of IMA, categorizing them into two primary 
types discerned from computed tomography (CT) morphological features: solitary pulmonary nodules (SPN) and pneumonia-type 
presentations [18–21]. Notably, pneumonia-type IMA exhibited significantly inferior OS and DFS compared to that seen with 
SPN-type IMA [18–21]. In the past, mucinous bronchioloalveolar carcinoma was often linked with multifocal disease or appeared as a 
pneumonia-like pattern on CT scans [12]. Nevertheless, recent findings indicate that SPN-type IMA is more commonly encountered 
than pneumonia-type IMA [9,19–21]. Prior investigations have proposed certain CT characteristics, such as air bronchograms, 
elevated standardized uptake values, and abnormal vascular alterations, as potential predictive indicators for SPN-type IMA [22]. 
Notably, we must acknowledge that these CT radiological features are highly subjective and lack representation as they rely heavily on 
the experience of radiologists. Specifically, for SPNs ≤3 cm, conventional CT radiological features exhibit greater inconsistency and 
atypicality, rendering the diagnosis of IMA in such nodules challenging. Consequently, achieving an accurate differentiation between 
early-stage (≤3 cm) SPN-type IMA and INMA based solely on preoperative CT images poses a formidable challenge. 

Radiomics, a burgeoning domain within medical imaging, involves extracting and analyzing quantitative characteristics from 
radiographic images. Its distinctive strength lies in its ability to transform medical images into mineable data, enabling a more 
thorough understanding of tumor phenotypes. This approach contributes significantly to building predictive models that are crucial for 
personalized diagnostics, prognosis, and treatment planning in lung cancer [23]. Yu et al. [24] devised a nomogram to distinguish 
pneumonia-type IMA from pneumonia by amalgamating clinical characteristics and CT-based radiomic features. Similarly, Zhang et al. 
[25] exhibited effective diagnostic accuracy in discerning SPN-type IMA from pulmonary tuberculoma using a radiomics-based 
nomogram. While these studies provide groundwork for the preoperative diagnosis of IMA through radiomics, there is still a pre-
dominant emphasis on diagnosing pneumonia-type IMA, resulting in a noticeable gap in the application to SPN-type IMA. In addition, 
there is a lack of radiomic models exploring the differentiation between IMA and INMA in SPNs ≤3 cm. Hence, the objective of this 
investigation was to employ machine learning-boosted radiomics for establishing reliable, highly precise, and efficient predictive 
models [26] to facilitate accurate discrimination between IMA and INMA in SPNs ≤3 cm. This methodology has the potential to 
significantly augment clinical decision-making procedures. 

2. Materials and methods 

2.1. Patient selection 

This research was conducted in accordance with the guidelines set forth in the Declaration of Helsinki and was approved by the 
Ethics Committees at the participating medical institutions (reference numbers: KY2020147 from The Affiliated Hospital of Southwest 
Medical University and 2021-07-009 from Xiangtan Central Hospital). Given the retrospective design of the study, informed consent 
was not required. Between May 1, 2019 and September 1, 2023, a total of 1092 SPN-type LADCs subjected to surgical resection were 
identified at The Affiliated Hospital of Southwest Medical University and Xiangtan Central Hospital. In the most recent categorization 
provided by the WHO, IMA is delineated by two cytological attributes: the existence of tumor cells, comprising both the columnar cell- 
type and foveolar-type (or goblet cell-type), and abundant cytoplasmic mucin. Mucin is usually present within and outside the 
cytoplasm of these cells, typically with their nuclei positioned at the base, and the alveoli surrounding the tumor frequently become 
filled with mucus [3]. 

The criteria for inclusion were established as follows: (1) lesions with diameters ranging from 0.5 to 3.0 cm; (2) confirmation of IMA 
or INMA via postoperative pathology; (3) SPN lacking calcification, cavities, or vacuoles, and without ground-glass density; and (4) 
availability of complete thin-slice CT image data within 14 days before pathological diagnosis. The exclusion criteria comprised (1) 
presence of multiple LADCs in postoperative pathology; (2) prior chemoradiation before CT examination or pathological diagnosis; (3) 
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pathological diagnosis of minimally invasive LADC or LADC in situ; or (4) evidence of lymph node or distant metastases, occurrences 
less common in IMA than in INMA [27]. Ultimately, 538 patients with SPNs ≤3 cm underwent postoperative pathological exami-
nations, resulting in diagnosis of IMA (n = 50) or INMA (n = 488).These cases were then classified as the training (n = 376) and test (n 
= 162) cohorts, following a 70 %:30 % ratio. The detailed patient inclusion process is illustrated in Fig. 1. 

2.2. CT image acquisition 

Preoperative chest CT examinations were conducted using multidetector-row CT systems at the respective hospitals. Xiangtan 
Central Hospital employed either the Revolution CT (GE Healthcare, Chicago, IL) or MX16 CT (Philips Healthcare, Best, The 
Netherlands), while The Affiliated Hospital of Southwest Medical University utilized the uCT550 or uCT760 (Shanghai United Imaging 
Healthcare, Shanghai, China). The imaging protocol included obtaining images in the supine position, covering the area from the lung 
apex to below the costophrenic angle, with breath-hold helical scanning. Volumetric CT parameters consisted of a tube voltage of 120 
kV, a tube current–time product ranging from 180 to 280 mA, a matrix size of 512 × 512, and image preprocessing. CT image 
reconstruction was conducted using a standard algorithm, with a layer thickness of 0.55–0.625 mm and layer interval of 0.55–0.625 
mm. 

2.3. CT radiological feature estimation 

The acquired CT image data were transferred to a dedicated workstation for subsequent processing. Thereafter, multiplanar 
reconstruction was executed to establish lung and mediastinal windows, facilitating further scrutiny. The lung window parameters 

Fig. 1. Flowchart illustrating the patient enrollment process for the study.  
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were set within a width ranging from 1500 to 2000 HU and a level of − 450 to − 600 HU, whereas the mediastinal window spanned a 
width of 250–350 HU and a level of 30–50 HU. Various parameters encompassing size and morphological characteristics were 
documented and appraised during CT image analysis. Pursuant to the 8th edition of tumor, node, and metastasis staging, the lesion’s 
size on the CT image was delineated as the maximum diameter in the axial plane [27]. Morphological attributes such as shape, 
boundary, spiculation, lobulation, vascular convergence signs, and vacuole signs were assessed. 

Two seasoned thoracic radiologists, both accredited and specialized in chest CT imaging with 8 and 12 years of practice (Y.Z. and H. 
L.), independently scrutinized the CT morphological features, oblivious to clinical and histological findings. Should any disparities 
arise in qualitative indicators, consensus was attained through deliberation. 

2.4. Tumor segmentation 

CT images were imported into ITK-SNAP (version 4.0) for tumor segmentation and meticulously delineated by a radiologist with 8 
years of expertise (Y.Z.). To achieve ideal image contrast through curve-based contrast adjustment, we opted for the lung window 
(width: 1500 HU, level: 500 HU) and the mediastinum window (width: 350 HU, level: 40 HU) for observation purposes. The tumor 
boundary underwent meticulous delineation, slice by slice, culminating in the establishment of a precise region of interest (ROI) on the 
CT image in alignment with the mask. Following this, another radiologist (H.L.), with12 years of expertise in the domain, conducted a 
comprehensive review of the lesion delineation, implementing requisite refinements as needed. 

2.5. Radiomic feature extraction 

The original CT image and segmented mask were imported into Spyder (Python version 3.8) for further processing, with the pixel 
values of the images scaled to a range of 0–1. Subsequently, the volumes underwent resampled to a voxel size of 1 × 1 × 1 mm3 using a 
bicubic interpolation algorithm implemented with the “Numpy” package. Following this step, radiomics features were extracted from 
the ROI on the CT image corresponding to the mask utilizing the “PyRadiomics” package. This comprehensive tool facilitated the 
extraction of 1239 distinct radiomic features, covering first-order statistics, shape-based metrics, gray level co-occurrence matrix, the 
gray level dependence matrix, gray level run length matrix, gray level size zone matrix, and neighboring gray tone difference matrix. 
Detailed feature classification with specific explanations is presented in Fig. 2. 

To accommodate the discrepancies inherent in CT images procured from various medical facilities and employing diverse pro-
tocols, normalization of all radiomic feature intensities was efficiently executed via z-score transformation, as delineated by equation 
(1): 

Fig. 2. Detailed classification of features accompanied by specific explanations.  
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z = (x-μ)/σ                                                                                                                                                                               (1)  

2.6. Radiomic feature dimensionality reduction and selection 

Z-score transformation was followed by the implementation of the minimum redundancy-maximum correlation (mRMR) method. 
This method aims to reduce feature dimensionality by selecting a subset of features that demonstrate low redundancy and high 
correlation with the target variable. By iteratively evaluating each feature’s pertinence to the target variable and simultaneously 
considering the redundancy among features, this process determines which features are best suited for inclusion in the reduced feature 
set. Priority is given to features displaying notable relevance to the target variable and minimal redundancy with other selected 
features. This iterative process ensures the retention of the most informative and discriminative features while minimizing redun-
dancy, ultimately resulting in a more efficient and effective representation of the top 100 radiomic features. Then, the least absolute 
shrinkage and selection operator (LASSO) method was then applied to identify features strongly associated with the desired result. The 
selected features with coefficients >0 were identified using a 10-fold cross-validation strategy. These procedures were implemented 
within the training cohort and then extended to the test cohort. Fig. 3 provides a visual representation of the radiomics process, 
illustrating ROI delineation, feature extraction, dimensionality reduction, feature selection, and utilization of machine-learning 
techniques. 

2.7. Machine learning-derived radiomic models 

Given the disproportionate distribution between INMA and IMA cases (344:32 in the training cohort), the models may demonstrate 
a tendency to favor the majority class during the training process. To address this concern, we implemented resampling methodologies, 
particularly employing the synthetic minority oversampling technique (SMOTE), to rectify the imbalance in distribution within the 
training cohort during model development. This approach ensures the prevention of data leakage and maintains the representation of 
real clinical scenarios [28]. Detailed steps regarding the implementation are provided as comments within the provided R code: 

Fig. 3. Framework outlining the essential steps of computed tomography image acquisition, tumor segmentation, feature extraction, dimensionality 
reduction, and subsequent machine-learning analysis that is crucial for the development of a radiomic model. 
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Library (DMwR)  

smote_data < - SMOTE (label ~., data = training cohort, perc.over = 100, k = 5)                                                                                     

In this study, the “DMwR” package was used to perform resampling of both minority (32) and majority classes (344) in the training 
cohort (Fig. 1). The oversampling ratio was set to 100 % of the minority class, resulting in the oversampled samples being twice the 
original minority class size. The label represents IMA and INMA, with the parameter k for selecting neighbors set to 5. Subsequently, 
this algorithm was applied to both the minority and majority classes, which entailed oversampling the minority class and under-
sampling the majority class. The distribution after rebalancing was 64:64, as illustrated in Fig. 4. 

After rebalancing the distribution, the features identified through LASSO regression analysis, which exhibited non-zero co-
efficients, were further refined within the radiomics model conducting machine learning techniques. These refined features were then 
leveraged to construct robust radiomics models to identify exceptional classifiers within the database. The evaluation in this study 
encompassed four prominent training models: logistic regression (LR), classification and regression trees (CARTs), k-nearest neighbors 
(KNN), and support vector machines (SVMs). A comparison of these models involved the utilization of a confusion matrix and the 
calculation of performance metrics such as the area under the curve (AUC), accuracy, precision, and F1 score. The calculation formula 
for the F1 score is as follows, as delineated by equation (2): 

F1 score=
2Precision × 2Recall
Precision + Recall

(2) 

Subsequently, a meticulous screening process was conducted, prioritizing the comparison of AUCs among diverse machine-learning 
approaches. In cases where the AUCs were similar, further comparison based on F1 scores was carried out to determine the optimal 
radiomic model. 

2.8. Construction of the clinical and combined models 

We initially conducted an LR analysis of the training cohort, considering both clinical and CT radiological features as predictor 
variables. Univariate logistic analysis was performed, followed by multivariate LR with a significance threshold of P < 0.1 to identify 
the optimal predictor factors for subsequent model development. Odds ratios (ORs) and their respective 95 % confidence intervals 
(CIs) were calculated for each factor. Following this, chosen predictors were employed to formulate a clinical model. A consolidated 
model was created by integrating a clinical model with an optimized radiomic model. The efficacy of these models was scrutinized and 
validated through receiver operating characteristic (ROC) curve analysis in both the training and test cohorts. Assessment metrics 
including the AUC, accuracy, sensitivity, and specificity were examined. 

Fig. 4. Distribution post rebalancing through the synthetic minority oversampling technique.  
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2.9. Statistical analysis 

Statistical analyses were executed using R version 4.3.1 (R Core Team, Vienna, Austria). Regarding continuous variables, normally 
distributed data were assessed via Student’s t-test, while skewed distributed data were assessed using the Mann–Whitney U test. The 
chi-squared test was used to evaluate categorical variables. Comparisons among models were performed utilizing the DeLong test 
alongside reclassification metrics (the net reclassification index [NRI] and integrated discrimination improvement [IDI]). Statistical 
significance was determined by a P value of <0.05. 

3. Results 

3.1. Baseline characteristics 

This study included a total of 538 patients with SPN-type LADC with a tumor size ≤3 cm, among whom 50 patients (9.3 %) were 
diagnosed with IMA. Among these patients, 376 were assigned to the training cohort and 162 to the test cohort. Importantly, there 
were no notable differences in baseline characteristics between the two cohorts, as shown in Table 1. 

Table 2 provides a comprehensive overview of IMA and INMA characteristics in SPNs ≤3 cm. Across both the training and test 
cohorts, no significant demographic differences were noted concerning age or sex (all P > 0.05). Nevertheless, distinct disparities were 
evident in the CT radiological features (all P > 0.05). Notably, SPN-type IMAs exhibited a heightened prevalence of pleural indentation 
(P = 0.032), vascular convergence signs (P < 0.001), and larger tumor size (P < 0.001) compared to INMAs. 

3.2. Clinical model 

Univariate and multivariate LR analyses identified CT radiological features as independent risk factors, including the vascular 
convergence sign (OR, 1.097; 95 % CI, 1.038–1.159; P = 0.001) and size (OR, 1.006; 95 % CI, 1.002–1.011; P = 0.003). These factors 
were used to develop the clinical model (Table 3). 

Table 1 
Comparative analysis of baseline characteristics between the training and test cohorts.  

Variables Total (n = 538) Training cohort (n = 376) Test cohort (n = 162) p-value 

Location, N (%)   0.34 
RUL 155 (28.8) 109 (29) 46 (28.4)  
RLL 126 (23.4) 81 (21.5) 45 (27.8)  
RML 43 (8) 33 (8.8) 10 (6.2)  
LUL 126 (23.4) 94 (25) 32 (19.8)  
LLL 88 (16.4) 59 (15.7) 29 (17.9)  

Boundary, N (%)   0.988 
Ill-Defined 121 (22.5) 84 (22.3) 37 (22.8)  
Well-Defined 417 (77.5) 292 (77.7) 125 (77.2)  

Shape, N (%)   0.832 
Irregular 291 (54.1) 205 (54.5) 86 (53.1)  
Others 247 (45.9) 171 (45.5) 76 (46.9)  

Lobulation, N (%)   0.864 
Absence 122 (22.7) 84 (22.3) 38 (23.5)  
Presence 416 (77.3) 292 (77.7) 124 (76.5)  

Spiculation, N (%)   0.697 
Absence 154 (28.6) 110 (29.3) 44 (27.2)  
Presence 384 (71.4) 266 (70.7) 118 (72.8)  

Vascular Convergence Sign, N (%)   0.431 
Absence 280 (52) 191 (50.8) 89 (54.9)  
Presence 258 (48) 185 (49.2) 73 (45.1)  

Vacuole Sign, N (%)   0.139 
Absence 431 (80.1) 308 (81.9) 123 (75.9)  
Presence 107 (19.9) 68 (18.1) 39 (24.1)  

Pleural Indentation, N (%)   0.559 
Absence 129 (24) 87 (23.1) 42 (25.9)  
Presence 409 (76) 289 (76.9) 120 (74.1)  

Sex, N (%)   0.558 
Male 257 (47.8) 176 (46.8) 81 (50)  
Female 281 (52.2) 200 (53.2) 81 (50)  

Age, Median (Q1, Q3) 61 (54, 67) 61 (54, 67) 61 (54, 67.8) 0.845 
Size, Median (Q1, Q3) 20.6 (15, 26.6) 20.8 (15, 26.2) 20.4 (15.2, 27.8) 0.5 
Group, n (%)   0.429 
INMA 488 (90.7) 344 (91.5) 144 (88.9)  
IMA 50 (9.3) 32 (8.5) 18 (11.1)  

Abbreviation: LUL Left Upper Lobe, LLL Left Lower Lobe, RUL Right Upper Lobe, RML Right Middle Lobe, RLL Right Lower Lobe, IMA Invasive 
Mucinous Adenocarcinoma, LADC Lung Adenocarcinoma, INMA invasive non-mucinous adenocarcinoma. 
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Table 2 
Comparative analysis of radiological features of IMA and INMA within the training and test cohorts.  

Variables Training cohort Test cohort 

Total (n =
376) 

INMA (n =
344) 

IMA (n = 32) p-value Total (n =
162) 

INMA (n =
144) 

IMA (n =
18) 

p-value 

Location, N (%)    0.878    0.504 
RUL 109 (29) 102 (29.7) 7 (21.9)  46 (28.4) 39 (27.1) 7 (38.9)  
RLL 81 (21.5) 73 (21.2) 8 (25)  45 (27.8) 39 (27.1) 6 (33.3)  
RML 33 (8.8) 30 (8.7) 3 (9.4)  10 (6.2) 9 (6.2) 1 (5.6)  
LUL 94 (25) 86 (25) 8 (25)  32 (19.8) 31 (21.5) 1 (5.6)  
LLL 59 (15.7) 53 (15.4) 6 (18.8)  29 (17.9) 26 (18.1) 3 (16.7)  

Boundary, N (%)    0.297    0.401 
Ill-defined 84 (22.3) 74 (21.5) 10 (31.2)  37 (22.8) 27 (18.8) 10 (55.6)  
Well-defined 292 (77.7) 270 (78.5) 22 (68.8)  125 (77.2) 117 (81.2) 8 (44.4)  

Shape, N (%)    0.984    0.14 
Irregular 205 (54.5) 187 (54.4) 18 (56.2)  86 (53.1) 73 (50.7) 13 (72.2)  
Others 171 (45.5) 157 (45.6) 14 (43.8)  76 (46.9) 71 (49.3) 5 (27.8)  

Lobulation, N (%)    0.24    0.075 
Absence 84 (22.3) 80 (23.3) 4 (12.5)  38 (23.5) 37 (25.7) 1 (5.6)  
Presence 292 (77.7) 264 (76.7) 28 (87.5)  124 (76.5) 107 (74.3) 17 (94.4)  

Spiculation, N (%)    0.117    0.782 
Absence 110 (29.3) 105 (30.5) 5 (15.6)  44 (27.2) 40 (27.8) 4 (22.2)  
Presence 266 (70.7) 239 (69.5) 27 (84.4)  118 (72.8) 104 (72.2) 14 (77.8)  

Vascular Convergence Sign, N 
(%)    

0.001    0.019 

Absence 191 (50.8) 184 (53.5) 7 (21.9)  89 (54.9) 83 (57.6) 6 (33.3)  
Presence 185 (49.2) 160 (46.5) 25 (78.1)  73 (45.1) 61 (42.4) 12 (66.7)  

Vacuole Sign, N (%)    0.89    0.144 
Absence 308 (81.9) 281 (81.7) 27 (84.4)  123 (75.9) 112 (77.8) 11 (61.1)  
Presence 68 (18.1) 63 (18.3) 5 (15.6)  39 (24.1) 32 (22.2) 7 (38.9)  

Pleural Indentation, N (%)    0.032    0.048 
Absence 87 (23.1) 85 (24.7) 2 (6.2)  42 (25.9) 39 (27.1) 3 (16.7)  
Presence 289 (76.9) 259 (75.3) 30 (93.8)  120 (74.1) 105 (72.9) 15 (83.3)  

Sex, N (%)    1    0.803 
Absence 176 (46.8) 161 (46.8) 15 (46.9)  81 (50) 71 (49.3) 10 (55.6)  
Presence 200 (53.2) 183 (53.2) 17 (53.1)  81 (50) 73 (50.7) 8 (44.4)  

Age, Median (Q1, Q3) 61 (54, 67) 61 (54, 67) 59 (52.5, 
65.2) 

0.285 61 (54, 67.8) 60 (53.8, 67) 64 (56.8, 
71) 

0.191 

Size, Median (Q1, Q3) 20.8 (15, 
26.2) 

20.2 (14.6, 
25.6) 

23.5 (21.1, 
30) 

<0.001 20.4 (15.2, 
27.8) 

19.5 (15, 
25.9) 

29 (22.9, 
30) 

<0.001 

Abbreviation: LUL Left Upper Lobe, LLL Left Lower Lobe, RUL Right Upper Lobe, RML Right Middle Lobe, RLL Right Lower Lobe, IMA Invasive 
Mucinous Adenocarcinoma, LADC Lung Adenocarcinoma, INMA invasive non-mucinous adenocarcinoma. 

Table 3 
Univariate and Multivariate Logistic Analysis Differentiating IMA from INMA in SPNs ≤3 cm.  

Variables Odd Ratio (95%CI) p-value Odd Ratio (95%CI) p-value 

Univariate analysis Multivariate analysis 

Location 1.6 (0.55–4.6) 0.39   
Boundary 0.6 (0.27–1.3) 0.21   
Shape 0.93 (0.45–1.9) 0.84   
Lobulation 2.1 (0.72–6.2) 0.17   
Spiculation 2.4 (0.89–6.3) 0.084   
Vascular convergence sign 4.1 (1.7–9.7) 0.0014 1.097(1.038–1.159) 0.001 
Vacuole sign 0.83 (0.31–2.2) 0.71   
Pleural indentation 4.9 (1.2–21) 0.031 1.054(0.986–1.127) 0.121 
Sex 1 (0.48–2.1) 0.99   
Age 0.98 (0.94–1) 0.18   
Size 1.1 (1–1.2) 0.001 1.006(1.002–1.011) 0.003 

Abbreviation: IMA invasive mucinous adenocarcinoma, LADC lung adenocarcinoma, SPN solitary pulmonary nodules. INMA invasive non-mucinous 
adenocarcinoma. 
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The clinical model integrating the key risk factors attained an AUC of 0.760 (95 % CI: 0.677–0.843) and an F1 score of 0.256 in the 
training cohort, and an AUC of 0.777 (95 % CI: 0.695–0.860) and an F1 score of 0.4 in the test cohort. 

3.3. Radiomic model 

To construct the final model, an optimized subset of features was selected using LASSO regression using the mRMR method to 
eliminate redundant and irrelevant features. To determine the optimal hyperparameter λ, a 10-fold cross-validation process was 
conducted, as shown in Fig. 5(a b). The optimal value of λ was found to be 0.017, resulting in the selection of 14 features for further 
analysis, as illustrated in Fig. 6. 

Figs. 7(a b) and 8(a.b) show the ROC curves and visualization plots of the AUC, accuracy, precision, and F1 score of the four 
radiomics models (SVM, KNN, CART, and LR) in both the training and test cohorts. From this analysis, it was evident that the SVM 
model showcased superior overall performance, boasting an AUC of 0.829 (95 % CI: 0.766–0.891) and an F1 score of 0.426 in the 
training cohort, as well as an AUC of 0.846 (95 % CI: 0.759–0.934) and an F1 score of 0.382 in the test cohort (Table 4). 

3.4. Combined model construction and validation 

The integration of clinical and SVM-derived radiomic models in the combined model enhanced the comprehensiveness of diag-
nostic assessment and improved the overall efficacy. Fig. 9(a b) displays the ROC curves of the three models (clinical, radiomic, and 
combined) for both the training and test cohorts. The combined model demonstrated a significantly improved discriminative capacity, 
providing a more comprehensive evaluation compared to both the clinical and radiomic models. This enhancement was supported by 
an AUC of 0.847 (95 % CI: 0.785–0.909) and an F1 score of 0.457 for the training cohort, and an AUC of 0.857 (95 % CI: 0.773–0.940) 
and an F1 score of 0.476 for the test cohort, as outlined in Table 5. In comparison to the radiomic model, the combined model notably 
enhanced the holistic assessment in both the training cohort (Delong test, P = 0.045; NRI of 0.206, IDI of 0.024) and the test cohort 
(Delong test, P = 0.029; NRI of 0.125, IDI of 0.032). Similarly, it outperformed the performance of the clinical model in the training 
cohort (Delong test, P = 0.01; NRI of 0.310, IDI of 0.09) and the test cohort (Delong test, P = 0.047; NRI of 0.382, IDI of 0.085). 

4. Discussion 

In this study, the SVM-derived radiomic approach demonstrated superior performance compared with that of other machine- 
learning models when classifying SPN-type IMA and INMA among SPNs ≤3 cm. To further enhance the overall diagnostic efficacy, 

Fig. 5. Utilization of LASSO regression (a) and 10-fold cross-validation (b) to facilitate the selection of radiomic features. LASSO, least absolute 
shrinkage and selection operator. 
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we developed a combined model, integrating the clinical model with the SVM-derived radiomic model. This combined model suc-
cessfully achieved satisfactory classification outcomes for SPN-type IMA and INMA, presenting a viable, reliable, and non-invasive 
approach to evaluating management strategies and treatment options in patients with SPN-type LADC tumors ≤3 cm in size. 

The predominant presentation of invasive mucinous adenocarcinoma on computed tomography imaging is commonly identified as 

Fig. 6. Radiomic features selected based on the outcomes of LASSO regression. LASSO, least absolute shrinkage and selection operator.  

Fig. 7. ROC curve analysis performed on the radiomic model derived from various machine-learning models to differentiate between IMA and 
INMA in SPNs ≤3 cm within both the training cohort (a) and the test cohort (b). ROC, receiver operating characteristic; IMA, invasive mucinous 
adenocarcinoma; INMA, invasive non-mucinous adenocarcinoma; SPN, solitary pulmonary nodule. 
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Fig. 8. Visual representations generated to demonstrate the accuracy, AUC, F1 score, precision, and recall values corresponding to various machine 
learning models within both the training cohort (a) and the test cohort (b). AUC, area under the receiver operating characteristic curve. 

Table 4 
Diagnostic Performance of Various Machine Learning Models in Distinguishing IMA from INMA in SPNs ≤3 cm.  

Model Cohorts AUC Accuracy Precision Recall F1 score 

SVM Training 0.829 0.835 0.303 0.719 0.426 
Test 0.846 0.660 0.239 0.944 0.382 

CART Training 0.743 0.732 0.200 0.719 0.313 
Test 0.636 0.735 0.245 0.667 0.358 

KNN Training 0.829 0.620 0.172 0.906 0.288 
Test 0.662 0.525 0.168 0.833 0.280 

LR Training 0.826 0.663 0.190 0.906 0.314 
Test 0.809 0.741 0.286 0.889 0.432 

Abbreviation: IMA invasive mucinous adenocarcinoma, LADC lung adenocarcinoma, AUC area under the curve, INMA invasive non-mucinous 
adenocarcinoma, SVM support vector machine, CART classification and regression trees, KNN k-nearest neighbors, LR logistic regression, SPN sol-
itary pulmonary nodule. 

Fig. 9. ROC curve analysis conducted on radiomic, clinical, and combined models for discriminating between IMA and INMA in SPNs ≤3 cm within 
both the training cohort (a) and the testing cohort (b). ROC, receiver operating characteristic; IMA, invasive mucinous adenocarcinoma; INMA, 
invasive non-mucinous adenocarcinoma; SPN, solitary pulmonary nodule. 
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a SPN, with ground-glass opacity nodules being less frequently encountered [3]. The distinction in presentation is likely linked to 
histological characteristics, which include the presence of tumor cells rich in mucin, fibrosis, and central fibrosis with mucin-filled 
alveolar spaces, resulting in increased CT density [3]. Recent research has reported a higher prevalence of SPN-type IMA compared 
to pneumonia-type IMA [9,19–21]. However, a comprehensive investigation into the ability of preoperative CT radiological features to 
differentiate between IMA and INMA in SPNs ≤3 cm is lacking. In our study, multivariate logistic analysis identified independent risk 
factors for distinguishing between IMA and INMA, encompassing CT radiological features such as the vascular convergence sign and 
tumor size. These discoveries align with earlier studies [22,29,30], indicating that the seepage of mucus from the nodule’s edge and the 
movement of macrophages along alveolar walls contribute to vascular convergence. However, the clinical model based on CT 
radiological features exhibited only moderate diagnostic effectiveness, yielding an AUC of 0.760 for the training cohort and 0.770 for 
the test cohort. This constraint could be attributed to the subjective interpretation of radiological features, lacking consistency, 
typicality, and generalizability, especially in early-stage SPNs (≤3 cm), where atypical presentations are more common. 

Radiomics is an advanced non-invasive approach that uses intelligent algorithms to build models from original medical images, 
capturing tumor heterogeneity to reveal additional insights [23]. To enhance the stability and generalization of the radiomic model, 
we incorporated four machine-learning models: KNN, LR, CART, and SVM. Our findings underscored the superior performance of the 
SVM-derived radiomic model compared with that of other machine-learning approaches. For these machine-learning approaches, LR is 
utilized in binary classification tasks by estimating the probability of a binary outcome based on predictor variables. CART, a decision 
tree type, partitions data into subsets recursively considering predictor variables’ values, forming a tree-like structure suited for 
predictions, particularly in handling non-linear relationships. KNN, recognized for its simplicity, predicts datapoint classification by 
majority voting of the K-nearest neighbors and is especially effective in non-linear separable data scenarios. SVM, a robust algorithm 
for both linear and non-linear tasks through dimensional mapping, excels in maximizing class margins, notably in high-dimensional 
spaces, making it a powerful supervised learning model for classification and regression tasks. Employing the kernel trick, SVM 
efficiently captures and optimizes complex relationships owing to its strong mathematical foundation. The resilience of SVM against 
overfitting demonstrates comparable performance to models trained on larger datasets, particularly in high-dimensional and complex 
data distributions of radiomic features [31,32]. In this study, utilizing SMOTE for resampling addressed the disproportionate distri-
bution between INMA and IMA cases, highlighting the superiority of SVM due to its ability to address overfitting issues effectively even 
with a constrained sample size. 

Ultimately, a combined model was devised by amalgamating vital data from both clinical and radiomic models, showcasing su-
perior efficacy in contrast to employing solely clinical or radiomic models. Our premise rested on the notion that the fusion of diverse 
and plentiful information within the composite model would heighten diagnostic proficiency in distinguishing between IMA and 
INMAs. This composite approach leverages integrated insights from various modalities, presenting a holistic perspective for improved 
diagnostic accuracy. 

This study has several limitations. Primarily, we must acknowledge the retrospective nature of our investigation, constrained by the 
relative scarcity of IMA cases, thus leading to a low incidence rate. There may exist potential selection biases due to the exclusive 
inclusion of patients with postoperative pathological results. Furthermore, our focus solely on IMA and INMA in SPNs ≤3 cm might 
restrict the generalizability of our conclusions to different disease stages. The integration of data from two centers introduced vari-
ability in acquisition parameters, image quality, and possible co-registration errors, potentially confounding the analysis. Additionally, 
artifacts and technical limitations might have influenced the reliability and reproducibility of radiomic features. Lastly, the relatively 
short postoperative follow-up period precluded the development of predictive models for disease outcomes. 

In conclusion, our investigation showcased the enhanced diagnostic accuracy of SVM within a radiomic framework, surpassing 
alternative machine-learning techniques. The amalgamated model, merging clinical insights with radiomic features, offers a holistic 
strategy for distinguishing between IMA and INMA within SPNs of ≤3 cm. Such an approach holds promise in refining clinical 
management, predicting patient outcomes, and guiding treatment strategies, thereby aligning with the ethos of precision medicine to 
optimize personalized and effective healthcare interventions. 

Ethics approval and consent to participate 

This research upheld the guidelines set forth in the Declaration of Helsinki and obtained authorization from the Ethics Committees 
of the involved hospitals (with reference numbers: KY2020147 from The Affiliated Hospital of Southwest Medical University and 

Table 5 
Diagnostic Performance of Diverse Models in Discriminating Between IMA and INMA in SPNs ≤3 cm.  

Model Cohorts AUC Accuracy Sensitivity Specificity Precision Recall F1 

Clinical Training 0.760 0.641 0.844 0.622 0.172 0.844 0.256 
Test 0.777 0.741 0.778 0.736 0.269 0.778 0.4 

Radiomicsa Training 0.829 0.835 0.719 0.846 0.303 0.719 0.426 
Test 0.846 0.660 0.944 0.625 0.239 0.944 0.382 

Combined Training 0.847 0.867 0.656 0.887 0.351 0.656 0.457 
Test 0.857 0.796 0.833 0.792 0.334 0.833 0.476 

Abbreviation: SPN solitary pulmonary nodules, IMA invasive mucinous adenocarcinoma, LADC lung adenocarcinoma, AUC area under the curve, 
INMA invasive non-mucinous adenocarcinomas. 

a Represents models were constructed using support vector machine (SVM). 
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