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Abstract 
Small and isolated populations face several intrinsic risks, such as genetic drift, inbreeding depression, and reduced gene flow. Thus, patterns 
of genetic diversity and differentiation have become an important focus of conservation genetics research. The golden snub-nosed monkey 
Rhinopithecus roxellana, an endangered species endemic to China, has experienced rapid reduction in population size and severe population 
fragmentation over the past few decades. We measured the patterns of genetic diversity and population differentiation using both neutral micro-
satellites and adaptive major histocompatibility complex (MHC) genes in 2 R. roxellana populations (DPY and GNG) distributed on the northern 
and southern slopes of the Qinling Mountains, respectively. Eight MHC-linked haplotypes formed by 5 DQA1 alleles, 5 DQB1 alleles, 5 DRB1 
alleles, and 4 DRB2 alleles were detected in the 2 populations. The larger GNG population showed higher genetic variation for both MHC and 
microsatellites than the smaller DPY population, suggesting an effect of genetic drift on genetic variation. Genetic differentiation index (FST) 
outlier analyses, principal coordinate analysis (PCoA), and inferred population genetic structure showed lower genetic differentiation in the MHC 
variations than microsatellites, suggesting that pathogen-mediated balancing selection, rather than local adaptation, homogenized the MHC 
genes of both populations. This study indicates that both balancing selection and genetic drift may shape genetic variation and differentiation in 
small and fragmented populations.
Key words: balancing selection, genetic diversity, major histocompatibility complex, population differentiation, Rhinopithecus roxellana.

In 2021, 38,543 species were classified as being “at some level 
of risk of extinction,” representing 28% of all 138,374 species 
assessed on the IUCN Red List of Threatened Species (IUCN 
2021). Serious factors affecting most endangered species are 
habitat destruction and fragmentation, resulting in small 
and isolated populations (Moqanaki and Cushman 2017). 
Small and isolated populations may experience a reduction of 
genetic diversity within populations, which may have negative 
effects. Genetic diversity reduction occurs due to increased 
rates of genetic drift and inbreeding, and decreased rates of 
gene flow when populations become small and isolated (Potter 
et al. 2017; Zhai et al. 2019; Princepe et al. 2022; Weeks et 
al. 2022). Genetic diversity is closely related to the ability of 
a population to cope with environmental changes (Hoffman 
et al. 2020; Manel et al. 2020; Satake et al. 2022). The higher 
the genetic diversity of a population, the higher the adaptabil-
ity and flexibility of a population to a changing environment. 
When habitat fragmentation occurs, small and isolated pop-
ulations are thus more likely to fall into an extinction spiral 
amid declining genetic variation (Willi et al. 2006; Nabutanyi 
and Wittmann 2021). Extinction can occur when population 
size drops below a specific threshold (Courchamp et al. 2008), 

which has been shown in several species with population sizes 
of 50–500 individuals (Courchamp et al. 1999; Wittmann et 
al. 2018; Wang et al. 2022).

In addition to the effects within individual populations, 
habitat fragmentation also increases genetic differentiation 
among populations. This is due to several factors, one being 
random genetic drift, which may result in different directions 
of genetic change in each population and thus an overall 
intensification of differentiation among fragmented popu-
lations (Slatkin 1987; Morris et al. 2008; Fitzpatrick et al. 
2020). Another factor is limited gene flow among popula-
tions. Both natural and anthropogenic geographical barriers 
such as rivers, roads, and mountain ranges will increase the 
costs of migration between populations, thus weakening the 
function of gene flow in maintaining genetic polymorphisms 
among populations (Kaufmann et al. 2017).

The major histocompatibility complex (MHC) is a mul-
ti-gene family that encodes cell surface glycoproteins, which 
play an important role in the immune system by recognizing 
foreign antigens and presenting them to T cells, thereby trig-
gering appropriate immune responses (Klein 1987; Ryan and 
Cobb 2012; He et al. 2022a). MHC genes can be divided into 
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2 classes, class I and class II, which bind intracellular (such 
as viruses) and extracellular foreign antigens (such as bacte-
ria and parasites), respectively (Xu et al. 2009; Neefjes et al. 
2011; Wolfert and Boons 2013). MHC genes are highly poly-
morphic, especially at antigen-binding sites (ABSs) (Eizaguirre 
et al. 2012). Variation in the ABSs of different MHC genes 
determines the range of antigens that can be recognized and 
fight off. Therefore, pathogen-driven balancing selection is a 
major factor shaping MHC polymorphism, which is partially 
the result of an arms race between pathogens and the host’s 
immune system (Boyd et al. 2021; Paterson et al. 2021; He 
et al. 2022b). Because MHC genes are subject to selection, 
these genes are ideal adaptive markers for examining adaptive 
genetic variation among and within populations. Compared 
with neutral genes, such as microsatellites (also known as 
Short Sequence Repeats, SSRs), which are not subject to selec-
tion and thus reflect population demographic history (Lan et 
al. 2019; Shortreed et al. 2020; de Groot et al. 2022), adap-
tive MHC genes tend to show different levels of genetic diver-
sity and population differentiation due to balancing selection 
(Lan et al. 2019; Gong et al. 2021).

The golden snub-nosed monkey Rhinopithecus roxellana 
is an endangered primate endemic to China. Although once 
widely distributed across what is now modern China, R. 
roxellana is currently confined to fragmented mixed forest 
in 4 provinces (Sichuan, Gansu, Shaanxi, and Hubei) (Li et 
al. 2002). The population size of R. roxellana has decreased 
significantly over the last 25,000 years (Luo et al. 2012a). In 
the past 400 years, this decline has accelerated sharply, with 
most populations in southwestern, eastern, and central China 
now extinct (Savage and Baker 1996; Li et al. 2002). Due to 
both ecological and anthropogenic factors, the overall popu-
lation of R. roxellana over the last 40 years has been reduced 
by approximately 50%, making this species among the most 
endangered animals in China (Long and Richardson 2021).

Golden snub-nosed monkeys live in a multilevel society 
(MLS), made up of a breeding band and an all-male band (Qi 
et al. 2009; Yang et al. 2022). The breeding band is comprised 
of several one-male units (OMUs), each of which consists of 
one adult male, multiple adult females, subadult individuals, 
and infants (Qi et al. 2009). Bachelor males including adult, 
sub-adult, and juvenile males form an all-male band that 
either shadows a single or multiple breeding bands (Qi et al. 
2014, 2017).

Movement of bachelor males across the landscape, along 
with their associations with several neighboring breeding 
bands, provides a mechanism for promoting gene flow and 
thus maintaining genetic diversity that may counteract the 
effects of population isolation (Haimoff et al. 1987; Li et 
al. 2020). However, research at a larger geographical scale 
has shown that R. roxellana in 5 reserves in the Qinling 
Mountains, Shaanxi Province, are highly structured and form 
at least 3 distinct subpopulations that concur with major top-
ographical features such as mountain ridges. This suggests 
that individual dispersal and gene flow among populations 
is restricted by geographical barriers (Huang et al. 2016) and 
that gene flow is severely restricted among individuals resi-
dent in distant breeding bands. Genetic differentiation will 
then intensify between populations spaced far apart, assum-
ing they also possess independent local adaptations. On 
the other hand, balancing selection favoring adaptive genes 
(e.g., MHC) can reduce population differentiation (Schierup 
et al. 2000). However, little is known about which effect of 

balancing selection and local adaptation is acting on the dif-
ferentiation between R. roxellana populations.

We genotyped 20 SSRs and 4 MHC Class II loci (DQA1, 
DQB1, DRB1, and DRB2) in 2 R. roxellana populations, one 
located on the southern and one on the northern slope of the 
Qinling Mountains. We sought to quantify: (i) the amount of 
genetic diversity and patterns of genetic differentiation of the 
2 populations and (ii) evidence of local adaptation or balanc-
ing selection playing a role in any patterns of genetic differen-
tiation between these 2 populations.

Materials and Methods
Study area and sample collection
Field work was conducted on 2 R. roxellana populations 
(DPY: from 2018 to 2021; GNG: from 2012 to 2018) located 
on 2 slopes of the Qinling Mountains in Shaanxi Province. 
The DPY population is located in the Guanyinshan National 
Nature Reserve on the southern slope (107°52'–108°02' 
E, 33°20'–33°44' N), while the GNG population is in the 
Zhouzhi National Nature Reserve on the northern slope 
(108°14'–108°18' E, 33°45'–33°50' N). During the study 
period, the DPY population composed of a breeding band 
consisting of 6–12 OMUs (in total 17 OMUs) and an all-
male band of between 1 and 13 bachelor males. The GNG 
population composed of a breeding band of between 11 and 
19 OMUs (in total 52 different OMUs) and a single all-male 
band of between 21 and 40 bachelor males (Qi et al. 2017; Li 
et al. 2020). A total of 401 biological samples were collected 
from the 2 study populations (indicated in Figure 1 DPY and 
GNG; Table 1). All samples were collected non-invasively and 
procedures complied with the animal welfare laws and con-
stitutions of China.

Hair samples were collected using a short pole with glue at 
one end so the hair would be removed when a focal animal 
was touched with the stick and the stick then moved care-
fully back toward the field-worker. Each hair sample was 
stored individually with desiccant in a paper envelope. Each 
fresh fecal sample (<50 g) was placed into a vial with 50 mL 
DMSO solution (DETs: 20% DMSO, 0.25 M sodium-EDTA, 
100 mM Tris–HCl, pH 7.5, and NaCl to saturation) and 
stored at –20 °C. We defined a fresh fecal sample as one that 
has been exposed to air for no more than 15 min.

Molecular techniques
DNA extraction
Genomic DNA was extracted from each hair sample accord-
ing to the Chelex protocol (Chelex 100, Bio-Rad) (Allen et al. 
1998). Fecal DNA was extracted using QIAamp DNA Stool 
Mini Kits (Qiagen, Germany).

SSR genotyping
We measured the genetic variation of 20 SSRs (see Huang et 
al. 2016). Each sample was genotyped at these SSRs using 
previously described methods (Huang et al. 2016).

MHC genotyping
We examined exon 2 of 4 MHC loci (DQA1, DQB1, DRB1, 
and DRB2). All 4 loci were amplified with primer pairs used 
previously (DQA1: Zhang et al. 2016; DQB1: Qiu et al. 
2008; DRB1 and DRB2: Luo and Pan 2013). Genotyping 
of DQA1 and DQB1 loci was conducted by cloning and 
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sequencing 12 clones for each individual. PCR reaction mix, 
amplification procedure, amplification products purifica-
tion, and cloning of amplicons were conducted using pre-
viously described methods (Zhang et al. 2016). For DRB1 
and DRB2 loci, we amplified 2 loci using a pair of primers 
and conducted amplicon-based next-generation sequenc-
ing (NGS). Each amplicon was amplified using barcode 

incorporation primers and purified using an AP-PCR-250 
purification kit (AXYGEN). Purified products were quanti-
fied using a Qubit high-sensitivity kit and normalized to 10 
ng/μL final concentration in a mixed amplicons library. The 
library was then sequenced on an Illumina NovaSeq 6000 
platform using 250 bp pair-end reads at Beijing Novogene, 
Beijing, China.

Figure 1. Location of the 2 R. roxellana populations (Shaanxi Province, China) used for this study (The Shaanxi Province map is downloaded from the 
Standard Map Service System at the website http://bzdt.ch.mnr.gov.cn/).

http://bzdt.ch.mnr.gov.cn/
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Prior to each DNA extraction and polymerase chain reac-
tion (PCR) process, the laboratory bench was washed with 
75% ethanol. To avoid contamination with human DNA, all 
tools and consumables were sterilized with UV light for at 
least 30 min before each use. In addition, separate negative 
controls were incorporated for each PCR reaction.

Data analysis

Identification of MHC alleles and haplotype construction
For both traditional sequencing data (DQA1 and DQB1) and 
NGS data (DRB1 and DRB2), we defined any sequence as an 
allele if it was detected in at least 2 individuals. For NGS data, 
raw fastq files were managed using a described bioinformatics 
pipeline (Sommer et al. 2013; Santos et al. 2017; Zhang et 
al. 2023), which enables the separation of true alleles from 
artefacts. The work-flow consisted of the following 4 steps: 
1) preparation of raw files for processing, 2) initial data qual-
ity check and reads filtering, 3) putative MHC alleles and 
artefacts identification, and finally 4) assignment of alleles to 
individuals (Sommer et al. 2013; Santos et al. 2017). MHC-
TYPER V1.0 (Huang et al. 2019) was used to assign DRB 
alleles to a specific locus.

Next, linkage disequilibrium analysis and haplotype con-
struction were performed using SHEsis software (http://anal-
ysis.bio-x.cn/myAnalysis.php; Shi and He 2005).

Genetic diversity of MHC and SSR
The level of genetic variation and polymorphism was cal-
culated for MHC and SSR loci in both populations. The 
number of variable nucleotide sites (VN), number of variable 
amino acid residues (VAA), and polymorphism information 
content (PIC) of 4 MHC loci were obtained using MEGA 
V7.0 (Kumar et al. 2016). The per-site population mutation 
rate (θW) and per-site pairwise diversity (π) were calculated 
with DnaSP V6 (Rozas et al. 2017), using a Jukes–Cantor 
model of substitutions and standard errors calculated with 
5,000 bootstrap replications. The deviation from the Hardy–
Weinberg equilibrium (HWE) was calculated using CERVUS 
V3.0 (Kalinowski et al. 2007). Bonferroni correction was 
used to account for potential type I errors resulting from mul-
tiple tests for the 20 SSR loci. Expected heterozygosity (HE), 
observed heterozygosity (HO), inbreeding coefficient (FIS) 
based on the minimum sample size and each locus, and the 
number of effective alleles (AR) per locus of MHC and SSR 
were calculated with PolyGene (Huang et al. 2020).

Population differentiation
To analyze the genetic differentiation of the 2 populations, 
the F statistics (FST) of both MHC and SSR were calculated 
based on allele frequency using Genepop V4 (Rousset 2008). 
Principal coordinate analysis (PCoA) of the MHC and SSR 
data sets of the 2 populations was performed with GENALEX 

V6.5 (Peakall and Smouse 2012), and the PCoA scatter dia-
gram was drawn using the R package ggplot2 V3.3.5 (https://
github.com/tidyverse/ggplot2). The STRUCTURE V2.2.3 
based on a Bayesian model was used to infer distinct grouping 
structures using SSR and MHC data for the 2 studied popu-
lations (Pritchard et al. 2000). The optimal number of popu-
lations was determined by DeltaK (ΔK), which was calculated 
using STRUCTURE HARVESTER (Evanno et al. 2005; Earl 
and Vonholdt 2012).

Migration and gene flow analysis
Historical gene flow (Nm) between the populations in both 
directions was estimated using MIGRATE-N V4.4.3 (Beerli 
2006) based on SSR and MHC data sets. Recent migration 
rates (within 2–3 generations) between the 2 populations in 
both directions were estimated using a Bayesian method in 
BAYESASS V3.0 (Wilson and Rannala 2003).

Results
Genotyping and determining linked haplotypes
All samples from both populations were genotyped at 20 
SSR loci. After individual identification using CERVUS V3.0, 
306 non-repeating individuals (GNG: 199 individuals; DPY: 
107 individuals) (Table 1) were detected and 287 individuals 
(GNG: 181 individuals; DPY: 106 individuals) were success-
fully genotyped for 4 MHC loci (DQA1, DQB1, DRB1, and 
DRB2) (Figure 2). In the 2 populations in total 4 DRB2 alleles 
were detected, and for each of the other 3 loci 5 alleles were 
found, all alleles having been previously identified in other R. 
roxellana populations (Supplementary Table S1). The number 
and frequency of alleles for each MHC locus in each popula-
tion are shown in Figure 2.

Each Rhro-DQA1, -DQB1, -DRB1, and -DRB2 sequence 
was aligned with the whole genome sequence of R. roxellana 
(GenBank accession numbers: NC_044552). All 4 loci are 
located on chromosome 4 (Figure 3). By using SHEsis the D' 
values were found to all exceed 0.93 (Supplementary Figure 
S1), thus showing strong linkage disequilibrium among all 4 
MHC loci. Finally, we identified 8 MHC haplotypes in all 
individuals (H01–H08) (Table 2), with 3 haplotypes (H01, 
H02, and H04) shared between both populations.

Diversity of MHC genes
The nucleotide and amino acid sequences of the 4 MHC loci 
were highly variable. The sequences of the 4 MHC loci dif-
fered at 27–36 of nucleotide positions (average = 32) in the 
DPY population and differed at 37–47 of nucleotide posi-
tions (average = 42) in the GNG population (Table 3). For 
the amino acid levels, the 4 MHC loci sequences differed 
at 14–24 of amino acid positions (average = 18.3) in DPY, 
whereas these loci sequences differed at 19–29 of amino acid 
positions (average = 23) in GNG (Table 3). The frequencies of 
all 4 MHC loci in both populations concurred with the expec-
tations under HWE. The PIC, expected heterozygosity and 
observed heterozygosity of the GNG population all exceeded 
0.5 (average PIC = 0.62, HE = 0.67, HO = 0.72), with the 
mean number of effective alleles (AR) at 4 loci being 3.10 
(Table 3). This showed high genetic polymorphism and high 
levels of heterozygosity in the GNG population. However, in 
the DPY population, the PIC, expected heterozygosity, and 
observed heterozygosity values were all lower than 0.5 (aver-
age PIC = 0.42, HE = 0.47, HO = 0.47), with the mean number 

Table 1. Summary of 2 study populations

Population Sampling 
time

Population 
size

Samples Sampled 
individuals

GNG 2012–
2018

130–150 
individuals

238 (193 hairs, 
45 feces)

199

DPY 2015–
2021

70–95 
individual

163 (132 hairs, 
31 feces)

107

http://analysis.bio-x.cn/myAnalysis.php
http://analysis.bio-x.cn/myAnalysis.php
https://github.com/tidyverse/ggplot2
https://github.com/tidyverse/ggplot2
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoad043#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoad043#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoad043#supplementary-data
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of effective alleles at 4 loci was only 1.87 (Table 3). This 
showed moderate levels of polymorphism and heterozygosity 
in the DPY population. The genetic diversity levels of linked 
haplotypes in both populations almost equaled that of a sin-
gle locus (GNG: PIC = 0.67; HE = 0.72, HO = 0.77, AR = 3.52; 

DPY: PIC = 0.42, HE = 0.46, HO = 0.47, AR = 1.87) (Table 3). 
Furthermore, nucleotide diversity was actually high for each 
MHC locus in both populations (GNG: π = 0.055–0.066, 
θW = 0.024–0.030; DPY: π = 0.028–0.043, θW = 0.019–0.025) 
suggesting that the alleles of these loci are highly divergent. 
The mean value of the inbreeding coefficient (FIS) for MHC-
linked haplotype was –0.053, indicating that there is little or 
no inbreeding in both R. roxellana populations (Table 5).

SSR diversity
After Bonferroni correction, we found no evidence that any 
SSR locus deviated from Hardy–Weinberg expectations. The 
GNG population showed high levels of both polymorphism 
(PIC = 0.50) and heterozygosity (HE = 0.56, HO = 0.57), 
with the mean number of effective alleles (AR) at SSRs being 
2.55 (Table 4). The DPY population showed moderate poly-
morphism (PIC = 0.46) and high heterozygosity (HE = 0.53, 
HO = 0.54), with the mean number of effective alleles (AR) at 
SSRs being 2.30 (Table 4). The mean value of the FIS for 20 
SSRs was –0.015, indicating that there is little or no inbreed-
ing in each of these R. roxellana populations (Table 5).

Population differentiation
Three methods were used to detect the differentiation between 
the 2 populations (DPY and GNG). First, we found that 
estimates of differentiation between the 2 populations were 
reduced when measured using adaptive MHC genes than for 
SSR (FST: MHC = 0.082, SSR = 0.163) (Table 5). Then, when 
using STRUCTURE V2.2.3, DeltaK reached a peak when 
K = 2 for both MHC and SSR. Both populations had mixed 
colors of MHC genes, showing that these 2 populations have 

Figure 2. Allele frequencies of 4 MHC loci (DQA1, DQB1, DRB1, and DRB2) in 2 Rhinopithecus roxellana populations in the Qinling Mountains. The dark 
green and light green columns represent the DPY and the GNG population, respectively.

Figure 3. Relative location of 4 MHC class II genes investigated in this 
study within the full genomic region of Rhinopithecus roxellana on 
chromosome 4 (Wang et al. 2019).
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mixed genetic lineages (Figure 4). Differentiation is higher for 
SSR, showing almost uniform color for each of the 2 pop-
ulations, indicating that both populations have a relatively 
pure genetic lineage for SSR. Finally, our PCoA analysis also 
showed high differentiation between populations for SSR, 
but this was not significant for MHC genes (Figure 5). In the 
PCoA scatter plot, the 95% confidence intervals for MHC 
genes of both populations overlap considerably, whereas for 
SSR there is complete segregation. Overall, the results of 3 
different methods (FST, Structure, and PCoA) all showed 
that the differentiation of SSRs between the 2 populations is 
greater than that of MHC.

Gene flow between 2 populations
The recent gene flow of MHC between the 2 populations was 
significantly greater than that of SSR (Table 6). The recent 
migration rate of MHC genes from the DPY population to 
GNG population was more than 140 times that of the SSR 
population (MHC: 0.2513; SSR: 0.0017), and more than 

20 times that in the opposite direction (MHC: 0.0833; SSR: 
0.0031) (Table 6). For historical gene flow, the migration 
rate of both MHC and SSRs from the DPY population to the 
GNG population was higher than that in the opposite direc-
tion (MHC: DPY → GNG: 291.7 > GNG → DPY: 48.3; SSR: 
DPY → GNG: 211.0 > GNG → DPY: 94.3) (Table 6).

Discussion
We measured genetic variation at 4 MHC loci and 20 SSRs 
in 2 wild R. roxellana populations (GNG and DPY). We 
detected 8 four-loci-linked haplotypes (01, 02, 03, 04, 
05, 06, 07, and 08) formed by 5 DQA1 alleles, 5 DQB1 
alleles, 5 DRB1 alleles, and 4 DRB2 alleles. The GNG 
population showed high genetic polymorphism and high 
levels of heterozygosity in both MHC and SSR (MHC: 
PIC = 0.67, HE = 0.72; SSR: PIC = 0.50, HE = 0.56) (Table 
3), while the DPY population showed moderate levels of 
diversity and heterozygosity in MHC, and moderate levels 
of diversity and high levels of heterozygosity in SSR (MHC: 
PIC = 0.42, HE = 0.47; SSR: PIC = 0.46, HE = 0.53) (Table 
3). The genetic diversity of R. roxellana is lower than that 
of the rhesus macaque M. mulatta, which in China has a 
population size 5 times larger than R. roxellana (Liu et al. 
2018). For example, there are 23 MHC-DQB1 alleles and a 
higher level of DQB1 heterozygosity (HE > 0.71) in 5 wild 
M. mulatta populations in the west of Sichuan province in 
China (Yao et al. 2014). The genetic diversity of R. roxel-
lana is also lower than that of a wild chacma baboon Papio 
ursinus population in Tsaobis Leopard Park in Southern 
Africa, which has 16 different MHC-DRB sequences and 
higher heterozygosity (0.83) (Huchard et al. 2006, 2010). 
Such differences may be due to M. mulatta and P. ursinus 
having wider distributions, larger population sizes, and 
occupying more wider ecological niches than R. roxellana 

Table 2. Composition of DQA1, DQB1, DRB1, and DRB2 linked 
haplotypes

Haplotype Composition

H01 DQA1*01~DQB1*04~DRB1*03~DRB2*04

H02 DQA1*02~DQB1*17~DRB1*14~DRB2*08

H03 DQA1*05~DQB1*08~DRB1*09~DRB2*04

H04 DQA1*08~DQB1*09~DRB1*17~DRB2*16

H05 DQA1*03~DQB1*01~DRB1*02~DRB2*05

H06 DQA1*05~DQB1*08~DRB1*09~DRB2*08

H07 DQA1*02~DQB1*08~DRB1*14~DRB2*08

H08 DQA1*02~DQB1*04~DRB1*14~DRB2*08

Table 3. Genetic diversity of 4 MHC loci and their linked haplotypes (DQA1, DQB1, DRB1, and DRB2) in the 2 study populations

Population Locus VN VAA PIC HE HO AR π θW

DPY DQA1 30 16 0.42 0.47 0.47 1.87 0.028 0.021

DQB1 35 19 0.42 0.47 0.47 1.87 0.037 0.023

DRB1 36 24 0.42 0.47 0.47 1.87 0.043 0.025

DRB2 27 14 0.42 0.47 0.47 1.87 0.043 0.019

Mean of 4 genes 32 18 0.42 0.47 0.47 1.87 0.038 0.022

Linked haplotype 128 73 0.42 0.47 0.47 1.87 0.038 0.022

GNG DQA1 43 23 0.66 0.70 0.77 3.38 0.066 0.027

DQB1 41 21 0.66 0.70 0.76 3.37 0.064 0.025

DRB1 47 29 0.66 0.70 0.77 3.38 0.065 0.030

DRB2 37 19 0.50 0.56 0.57 2.26 0.055 0.024

Mean of 4 genes 42 23 0.62 0.67 0.72 3.10 0.063 0.027

Linked haplotype 168 92 0.67 0.72 0.77 3.52 0.062 0.026

Total DQA1 43 23 0.61 0.65 0.66 2.84 0.059 0.025

DQB1 41 21 0.60 0.65 0.66 2.83 0.060 0.023

DRB1 47 29 0.61 0.65 0.66 2.84 0.060 0.028

DRB2 37 19 0.48 0.53 0.53 2.15 0.051 0.022

Mean of 4 genes 42 23 0.57 0.62 0.63 2.66 0.058 0.025

Linked haplotype 168 92 0.61 0.65 0.66 2.88 0.058 0.025

VN, number of variable nucleotide sites; VAA, number of variable amino acid residues; PIC, the polymorphism information content; HE, expected 
heterozygosity; HO, observed heterozygosity; AR, effective alleles; π, per site pairwise nucleotide diversity; θW, per site population mutation rate.
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(Oldenbroek 2007; Vangenot et al. 2020). However, the 
giant panda, Ailuropoda melanoleuca, a species that inhab-
its much the same habitat and thus has a similar distri-
bution to R. roxellana (National Forestry and Grassland 
Administration 2015; Zhao et al. 2018) has similar levels 
of genetic diversity (MHC: HE = 0.44–0.71) to R. roxellana 
(Zhang et al. 2015), even though it is a solitary mammal. 
In addition, some other endangered vertebrate species have 
lower levels of MHC diversity than R. roxellana and may 
be the result of more severe habitat degradation and loss, 

faster population declines, lower rates of gene flow among 
populations, and stronger genetic drift within popula-
tions. For example, in 7 relict European and Asian beaver 
Castor fiber populations DRB diversity in 6 populations 
had become fixed to a unique allele, with only one popu-
lation being polymorphic and containing 4 alleles, which 
may have resulted from superimposition of a bottleneck on 
preexisting genetic structure due to population subdivision 
(Babik et al. 2005). In African wild dogs Lycaon pictus, the 
DLA–DQA1 locus and the DLA–DQB1 locus are mono-
morphic and dimorphic, respectively, due to extensive pop-
ulation bottlenecks and population declines (Marsden et al. 
2009). Overall, population demographic history, habitat 
range, habitat diversity, and population structure shaped 
the level of genetic diversity of different species.

In the present study, we found that the DPY population 
has fewer alleles for each MHC locus and fewer linked hap-
lotypes than the GNG population (DPY: 12 alleles formed 
3 haplotypes; GNG: 19 alleles formed 8 haplotypes) (Figure 
2 and Table 3). Each allele for haplotype H08 also occurs 
in the DPY population. However, these alleles formed H01 
and H02, rather than H08 (a recon of H01 and H02 with 
one time of crossover) in DPY. Due to our use of deep sam-
pling, the probability of missing H08 was low, but it cannot 
be excluded that H08 exists in offspring within the DPY pop-
ulation. The DPY population losing some MHC alleles and 
haplotypes may be due to at least 3 factors. First, the popula-
tion size of DPY is only about half of that of the GNG pop-
ulation (Table 1). Compared with the GNG population, the 
DPY population is thus likely to be at greater risk of allele loss 
and genetic variation reduction due to genetic drift (Ouborg 
et al. 2010) (Arroyo-Rodriguez and Dias 2010; Ouborg et 
al. 2010; Rosas et al. 2011; Luo et al. 2012b). Second, there 
is significant divergence between the DPY and its neighbor 
population (FST = 0.034, P < 0.05; Huang et al. 2016); while 
the GNG population shows little divergence with its neighbor 

Table 5. Summary of F-statistics and GST for 4 MHC genes linked 
haplotype and SSR of the 2 study populations (DPY and GNG)

Gene FIS FIT FST

MHC –0.053 0.034 0.082

SSR –0.015 0.150 0.163

FIS, inbreeding coefficient within individuals; FIT, mean inbreeding 
coefficient within 2 populations; FST, inbreeding coefficient within 
populations.

Table 4. Genetic diversity of 20 SSRs of the 2 study populations (DPY 
and GNG)

Population NA PIC HE HO AR

GNG 5.75 0.50 0.56 0.57 2.55

DPY 4.40 0.46 0.53 0.54 2.30

Total 7.00 0.54 0.60 0.56 2.74

NA, average number of alleles; PIC, the polymorphism information 
content; HE, expected heterozygosity; HO, observed heterozygosity; AR, 
effective alleles.

Figure 4. Structure analysis for MHC (A) and SSR (B) genes. Bar plots for K = 2. Results of the run with the highest value of LnPD were used.
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population (FST = 0.003, P > 0.05; Huang et al. 2016). This 
suggests the GNG population may have more gene flow 
with its neighbor population than that of the DPY popula-
tion. Moreover, the GNG population has been reported to 
experience periodic fission–fusion events (individuals merge 
together to form a large population and then split into dis-
crete smaller populations) with neighboring populations (Qi 
et al. 2014). The GNG and its neighboring populations may, 
therefore, exchange individuals during such events to pro-
mote gene flow among populations, which may help maintain 
a higher level of genetic variation in the GNG population (Qu 
et al.1993; Savage and Baker 1996; Li et al. 2020). Finally, 
the mountain slope inhabited by the DPY population expe-
rienced a greater degree of deforestation and hence habitat 
fragmentation during the 1950s–1980s than the slope inhab-
ited by the GNG population (Yang et al. 2016). Because R. 
roxellana is largely arboreal, this species has clearly been neg-
atively affected over the last few decades by deforestation. 
Population isolation due to increased habitat fragmentation 
on the slope where the DPY population resides is may thus 
have decreased individual migration and gene flow than on 
the slope with more intact forest inhabited by the GNG pop-
ulation. Thus, it is most likely that the DPY population pos-
sesses fewer MHC alleles due to its smaller population size 
and lower gene flow with its neighboring populations.

The results of all 3 different methods (FST, structure, and 
PCoA) showed lower genetic differentiation in the MHC 
measurements than SSRs, suggesting that pathogen-medi-
ated balancing selection may have homogenized the MHC 
genes in the 2 populations, which is consistent with previ-
ous research (Luo et al. 2012b; Song et al. 2016; Zhang et 

al. 2018). Balancing selection tends to maintain genetic var-
iation within a population and can reduce the likelihood 
of population divergence when different populations each 
experience homogeneous selection pressures such as similar 
pathogens (Kubota and Watanabe 2013). Several other verte-
brate species also have lower levels of genetic differentiation 
in MHC genes than neutral loci, such as Chinese alligators 
A. sinensis, domestic cats Felis silvestris catu, domestic goats 
Capra hircus, and guppies Poecilia reticulata (Fraser and Neff 
2010; Morris et al. 2014; Zhai et al. 2017; Gong et al. 2021; 
Herdegen-Radwan et al. 2021). Nevertheless, opposite trends 
are present in golden pheasants Chrysolophus pictus, crested 
ibises Nipponia nippon, chinook salmon Oncorhynchus 
tshawytscha, and northern leopard frogs Rana pipiens, where 
levels of divergence of MHC genes exceed those of neutral 
genes among populations (Evans et al. 2010; He et al. 2017; 
Lan et al. 2019; Trujillo et al. 2021), which can be attrib-
uted to disruptive selection for local adaptations (Aguilar 
and Garza 2006; Awadi et al. 2018). Balancing selection and 
local adaptation thus have the potential to shape patterns of 
divergence of MHC genes among populations (Hansen et al. 
2007; Cortázar-Chinarro et al. 2017). In any specific study, 
the dominant process requires identification. Based on lower 
genetic differentiation in MHC genes than SSRs, we conclude 
that balancing selection, rather than local adaptation, shapes 
genetic differentiation of MHC genes between the 2 R. roxel-
lana populations (Ashby and Boots 2017).

Recent gene flow also supports balancing selection for 
MHC genes. In recent generations, gene flow measured by 
MHC genes was higher than when measured by SSRs (27 fold 
from GNG to DPY, 148 fold from DPY to GNG), may reflect 
reduced differentiation between the 2 populations at MHC 
genes resulting from balancing selection (Table 6).

In conclusion, we investigated genetic variation, popu-
lation differentiation, and gene flow of 2 wild R. roxellana 
populations using adaptive MHC genes and neutral SSRs. 
Overall, we found a higher level of genetic diversity in the 
larger GNG population compared with the smaller DPY 
population, and evidence that patterns of differentiation for 
MHC genes between the 2 populations are shaped by balanc-
ing selection rather than local adaptation. Follow-up studies 
using more MHC loci and expanding the geographical scale 
will likely improve knowledge of the conservation genetics 
of this species. Our study provides a better understanding of 

Figure 5. Principal coordinates analysis (PCoA) results.

Table 6. Estimates of recent migration rate (M) and historical immigrants 
per generation (Nm) between the 2 study populations

Software Marker GNG → DPY DPY → GNG

Migrate-n (Nm) MHC 48.3 (14.7–98.7)a 291.7 (229.3–442.0)

SSR 94.3 (87.3–94.6) 211.0 (210.0–231.3)

BAYESASS (M) MHC 0.0833 0.2513

SSR 0.0031 0.0017

aValues in parentheses brackets represented the 2.5–97.5% CI.
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the effects of balancing selection and genetic drift in small 
and fragmented populations, and additional genetic data for 
conservation of similar vertebrate populations in the absence 
of long-distance migration.
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