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Purpose: Although many factors determine the prognosis of papillary thyroid carcinoma (PTC), cervical lymph node metastasis 
(CLNM) is one of the most terrible factors. In view of this, this study aimed to build a CLNM prediction model for papillary thyroid 
microcarcinoma (PTMC) with the help of machine learning algorithm.
Methods: We retrospectively analyzed 387 PTMC patients hospitalized in the Department of Medical Oncology, Enshi Tujia and 
Miao Autonomous Prefecture Central Hospital from January 1, 2015, to January 31, 2022. Based on supervised learning algorithms, 
namely random forest classifier (RFC), artificial neural network(ANN), support vector machine(SVM), decision tree(DT), and extreme 
gradient boosting gradient(XGboost) algorithm, the LNM prediction model was constructed, and the prediction efficiency of ML- 
based model was evaluated via receiver operating characteristic curve(ROC) and decision curve analysis(DCA).
Results: Finally, a total of 24 baseline variables were included in the supervised learning algorithm. According to the iterative analysis 
results, the pulsatility index(PI), resistance index(RI), peak systolic blood flow velocity(PSBV), systolic acceleration time(SAT), and 
shear wave elastography elastic index(SWEEI), such as average value(Emean), maximum value(Emax), and minimum value(Emix) 
were candidate predictors. Among the five supervised learning models, RFC had the strongest prediction efficiency with area under 
curve(AUC) of 0.889 (95% CI: 0.838–0.940) and 0.878 (95% CI: 0.821–0.935) in the training set and testing set, respectively. While 
ANN, DT, SVM and XGboost had prediction efficiency between 0.767 (95% CI: 0.716–0.818) and 0.854 (95% CI: 0.803–0.905) in the 
training set, and ranged from 0.762 (95% CI: 0.705–0.819) to 0.861 (95% CI: 0.804–0.918) in the testing set.
Conclusion: We have successfully constructed an ML-based prediction model, which can accurately classify the LNM risk of patients 
with PTMC. In particular, the RFC model can help tailor clinical decisions of treatment and surveillance.
Keywords: papillary thyroid microcarcinoma, cervical lymph node metastasis, shear wave elastography elastic index, machine 
learning algorithm, prediction model

Introduction
Worldwide, thyroid cancer, as the most common endocrine malignancy, accounts for about one-third of the total number of 
head and neck malignancies.1–3 In all cases of thyroid cancer, more than four-fifths of new cases are papillary thyroid 
carcinoma (PTC).4,5 Alarmingly, one-third of new cases of thyroid cancer are papillary thyroid microcarcinoma (PTMC), 
whose diameter is less than or equal to 1 cm.6 Because of its invasive and metastatic characteristics, as well as poor early 
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diagnosis, the prognosis of PTMC is still fatal. So far, surgery is still the first choice for the treatment of PTMC, but the 
treatment of cervical lymph nodes is still controversial.7,8 It is worth mentioning that although PTMC is considered to be an 
inert tumor, some cancer cells will metastasize to lymph nodes around the thyroid gland, including central lymph nodes and 
lateral cervical lymph nodes. Therefore, it is of great significance for improving the prognosis of patients to evaluate cervical 
lymph node metastasis(CLNM) reasonably and accurately before elective surgery.

For a long time, several studies have been proposed to evaluate the risk of CLNM in PTMC patients, among which 
imageomics is the most famous.9,10 With the continuous improvement of diagnostic technology, especially the improve-
ment of ultrasonic resolution, the detection rate of thyroid nodules is also increasing. Previous studies have shown that 
preoperative ultrasound is a valuable tool to evaluate CLNM in patients with PTMC, which can provide relatively 
reliable lateral neck information to assist in surgical treatment.11 Nevertheless, as a non-invasive diagnostic method, the 
accuracy of ultrasonic diagnosis still needs to be further improved. Previous studies have shown that preoperative 
ultrasound can detect only about one-third of central cervical lymph nodes, and may change the surgical procedure in 
only one-fifth of patients.12–14 Given this situation, there is an urgent need for a non-destructive and effective method to 
predict the LNM risk of PTMC patients and guide the clinical diagnosis and treatment process.

Recently, ultrasound-based shear wave elastography (SWE) and machine learning(ML) algorithms have been widely 
used in medical research.15–18 It is worth mentioning that the prediction model built based on machine learning algorithm 
can iterate on valuable potential variables for many times, and finally realize the optimization of the prediction model to 
improve the accuracy of its prediction.19 In this study, we established a prediction model of machine learning algorithm 
based on B-mode ultrasound images of shear wave elastography elastic index(SWEEI) to predict the CLNM risk of 
PTMC patients. We expected that the prediction model based on machine learning can provide relatively reliable lateral 
neck information to assist surgical treatment in the future.

Methods
Process of the Patient Enrollment
We retrospectively analyzed 387 PTMC patients hospitalized in the Department of Medical Oncology, Enshi Tujia and 
Miao Autonomous Prefecture Central Hospital from January 1, 2015, to January 31, 2022. Patient inclusion criteria were 
as follows:(i) Patients underwent thyroid cancer surgery for the first time;(ii) Classic PTMC was confirmed by pathology 
after operation;(iii) Patients with complete clinical, pathological and ultrasonic imaging information. The exclusion 
criteria were as follows:(i) Patients had PTMC with other cell subtypes;(ii) PTMC with tumors of other systemic 
systems;(iii) Patients with serious heart, liver, kidney, or other serious systemic diseases;(iv) Patients with incomplete 
clinical data. This study followed the declaration of Helsinki and was approved by the Ethics Committee of the Central 
Hospital of Enshi Tujia and Miao Autonomous Prefecture(EN-20220109). Patients/participants have provided written 
informed consent to participate before operation and the privacy of all patients is also guaranteed in this study. The 
construction steps of the screening and prediction model for patients were shown in Figure 1.

Acquisition of Shear Wave Elastic(SWE) Imaging
Step1: Ultrasonic examination. In this study, a color ultrasonic diagnostic instrument (French sound imaging company, 
model: aixplorer; probe frequency:5.6~10.0 MHz) was used to obtain the ultrasonic image data of patients. The patient 
was in the supine position, with the patient’s head tilted back to fully expose the neck, and the neck and thyroid were 
explored. The size, location, morphology, aspect ratio, boundary, the relationship between capsules, blood flow, and 
calcification of thyroid nodules were observed, and the suspicious lesions were located. Step2: SWE inspection. After 
locating the suspicious lesions, adjust the ultrasound to SWI mode, and the probe frequency is 5.6~10.0 MHz; The preset 
Young’s modulus value is 0~180 kPa; Move the signal frame to the target lesion, including the surrounding normal 
thyroid tissue and muscle tissue as far as possible; The patient held breath and stood for 3~5 seconds, then intercepted the 
image, repeated for more than 3 times, each time lasting for more than 10 seconds, and excluded the unqualified image. 
Step3: Parameter acquisition. The computer system automatically calculates SWE parameters, including average value 
(Emean), maximum value (Emax), minimum value (Emix), and takes the final measurement average, etc.
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Construction of ML-Based Prediction Model
In this study, with the help of supervised learning, each instance is composed of an input object (ie SWEEI) and a desired output 
value (ie CLNM). In short, the supervised learning algorithm analyzes the training data and generates an inference function, 
which can be used to map out new instances. Based on supervised learning algorithms, namely random forest classifier(RFC), 
artificial neural network(ANN), support vector machine(SVM), decision tree(DT), and extreme gradient boosting gradient-
(XGboost) algorithm, the CLNM prediction model was constructed.20–25 Additionally, the prediction efficiency of the ML- 
based model was evaluated via receiver operating characteristic curve(ROC) and decision curve analysis(DCA).

Statistical Analysis
For continuous and discontinuous data, interquartile range(IQR) and percentage (%) are used respectively. Chi-square 
test, Mann–Whitney U-test, or Wilcoxon test were used for statistical analysis between CLNM and non- CLNM groups, 
respectively. In addition, the caret software package was used to randomly divide all data into the training set and 
verification set in proportion (7:3). The data analysis and visualization involved in this study were completed with the 
help of R software(version 4.0.4, http://www.r-project.org/). All P values were two-tailed, and P <0.05 was considered 
statistically significant.

Results
Baseline Characteristics and SWE Data of Patients With or Without CLNM
In this study, following the principle of random grouping via caret package, a total of 387 inpatients were randomly divided into 
a training set and a testing set according to a 70% to 30% ratio (Table 1). The incidence of CLNM in the training set and the 

Figure 1 The flow chart of patient inclusion and CLNM prediction model construction.
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Table 1 Clinicopathological Features and Ultrasonic Indexes of Patients

Variables Training Set P-value Testing Set P-value

Overall 

(N=270)

Yes(N=77) No(N=193) Overall 

(N=117)

Yes(N=34) No(N=83)

Age (median [IQR]), year 42.00  

[31.25, 53.00]

39.00  

[31.00, 50.00]

43.00  

[34.00, 54.00]

0.035 42.00  

[32.00, 53.00]

39.00  

[27.00, 52.75]

46.00  

[33.00, 52.50]

0.304

Sex (%)

Male 108 (40.0) 60 (77.9) 48 (24.9) <0.001 46 (39.3) 27 (79.4) 19 (22.9) <0.001

Female 162 (60.0) 17 (22.1) 145 (75.1) 71 (60.7) 7 (20.6) 64 (77.1)

Course of disease (%), 

month

≥6 109 (40.4) 54 (70.1) 55 (28.5) <0.001 47 (40.2) 26 (76.5) 21 (25.3) <0.001

<6 161 (59.6) 23 (29.9) 138 (71.5) 70 (59.8) 8 (23.5) 62 (74.7)

Number of lesions (%)

≥1 98 (36.3) 55 (71.4) 43 (22.3) <0.001 49 (41.9) 26 (76.5) 23 (27.7) <0.001

<1 172 (63.7) 22 (28.6) 150 (77.7) 68 (58.1) 8 (23.5) 60 (72.3)

Hashimoto (%)

Yes 58 (21.5) 19 (24.7) 39 (20.2) 0.52 22 (18.8) 7 (20.6) 15 (18.1) 0.956

No 212 (78.5) 58 (75.3) 154 (79.8) 95 (81.2) 27 (79.4) 68 (81.9)

TSH (%), μIU/mL

Normal 200 (74.1) 58 (75.3) 142 (73.6) 0.887 90 (76.9) 29 (85.3) 61 (73.5) 0.257

Abnormal 70 (25.9) 19 (24.7) 51 (26.4) 27 (23.1) 5 (14.7) 22 (26.5)

Capsule invasion (%)

Yes 93 (34.4) 61 (79.2) 32 (16.6) <0.001 42 (35.9) 27 (79.4) 15 (18.1) <0.001

No 177 (65.6) 16 (20.8) 161 (83.4) 75 (64.1) 7 (20.6) 68 (81.9)

Location of disease (%)

Glandular lobe 215 (79.6) 59 (76.6) 156 (80.8) 0.544 96 (82.1) 31 (91.2) 65 (78.3) 0.167

Isthmus 55 (20.4) 18 (23.4) 37 (19.2) 21 (17.9) 3 (8.8) 18 (21.7)

Focus scope (%)

Unilateral 198 (73.3) 65 (84.4) 133 (68.9) 0.014 96 (82.1) 29 (85.3) 67 (80.7) 0.749

Bilateral 72 (26.7) 12 (15.6) 60 (31.1) 21 (17.9) 5 (14.7) 16 (19.3)

Calcification (%)

Yes 79 (29.3) 30 (39.0) 49 (25.4) 0.039 24 (20.5) 5 (14.7) 19 (22.9) 0.457

No 191 (70.7) 47 (61.0) 144 (74.6) 93 (79.5) 29 (85.3) 64 (77.1)

Aspect ratio (%)

<1 122 (45.2) 55 (71.4) 67 (34.7) <0.001 45 (38.5) 22 (64.7) 23 (27.7) <0.001

≥1 148 (54.8) 22 (28.6) 126 (65.3) 72 (61.5) 12 (35.3) 60 (72.3)

Blood flow (%)

Abundant 101 (37.4) 53 (68.8) 48 (24.9) <0.001 47 (40.2) 26 (76.5) 21 (25.3) <0.001

Insufficient 169 (62.6) 24 (31.2) 145 (75.1) 70 (59.8) 8 (23.5) 62 (74.7)

Blood flow typing (%)

Without blood flow 41 (15.2) 8 (10.4) 33 (17.1) 0.176 14 (12.0) 7 (20.6) 7 (8.4) 0.028

Peripheral 100 (37.0) 28 (36.4) 72 (37.3) 46 (39.3) 16 (47.1) 30 (36.1)

Central type 92 (34.1) 33 (42.9) 59 (30.6) 38 (32.5) 10 (29.4) 28 (33.7)

Mixed type 37 (13.7) 8 (10.4) 29 (15.0) 19 (16.2) 1 (2.9) 18 (21.7)

Echo intensity (%)

Medium-high 103 (38.1) 50 (64.9) 53 (27.5) <0.001 50 (42.7) 23 (67.6) 27 (32.5) 0.001

Low 167 (61.9) 27 (35.1) 140 (72.5) 67 (57.3) 11 (32.4) 56 (67.5)

Tumor diameter (%), mm

>5 111 (41.1) 59 (76.6) 52 (26.9) <0.001 50 (42.7) 29 (85.3) 21 (25.3) <0.001

≤5 159 (58.9) 18 (23.4) 141 (73.1) 67 (57.3) 5 (14.7) 62 (74.7)

Lesion margin (%)

Regular 160 (59.3) 17 (22.1) 143 (74.1) <0.001 73 (62.4) 10 (29.4) 63 (75.9) <0.001

Irregular 110 (40.7) 60 (77.9) 50 (25.9) 44 (37.6) 24 (70.6) 20 (24.1)

BRAF (%)

Mutant 62 (23.0) 21 (27.3) 41 (21.2) 0.366 25 (21.4) 11 (32.4) 14 (16.9) 0.108

Wild type 208 (77.0) 56 (72.7) 152 (78.8) 92 (78.6) 23 (67.6) 69 (83.1)

(Continued)
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validation set were 28.52% and 29.06% respectively. Among the patients with CLNM, there were 87 (78.38%) central and 24 
(21.62%) lateral CLNM, respectively (Supplementary Table 1). In the comparison of SWE between CLNM and non-CLNM 
patients, aspect ratio, blood flow, blood flow typing, echo intensity, pulsatility index (PI), and resistance index (RI) were 
statistically significant (P<0.05). In addition, relevant indicators based on SWEEI, including average value(Emean), maximum 
value(Emax) and minimum value(Emix), statistically significant (P < 0.01). Previous studies have shown that LNM in the lateral 
cervical region usually has typical ultrasonic features, including microcalcification, partial cystic appearance, increased vascu-
larization, and hyperecho.26 As shown in the Supplementary Table 1, based on the candidate variables detected by SWEEI, there 
was no significant statistical significance in the central and lateral CLNM (P>0.05), which suggested that there was no objective 
bias in the prediction of central and lateral CLNM by SWEEI.

Screening of Candidate Predictive Variables for ML-Based Prediction Model
As previously reported, the Pearson correlation analysis is a concise analysis method to measure the relationship between 
quantitative data, which can analyze the relationship between variables and the strength of the relationship.27 As shown 
in Figure 2A, CLNM, as a dependent variable, was significantly correlated with the SWEEI, including Emean(r=0.704), 
Emax(r=0.778), and Emix(r=0.467). Similarly, the iterative algorithm of RFC drew the same conclusion, in which the 
top seven candidate variables were PI, peak systolic blood flow velocity(PSBV), RI, Emax, Emix, and systolic 
acceleration time(SAT), see Figure 2B. Consistent with the conclusions of other machine learning algorithms, this 
shows that ultrasonic image acquisition data combined with SWEEI is expected to become a potential predictor of 
CLNM (Supplementary Figure 1).

Construction of ML-Based Prediction Model Based on Training Set
For training data, each patient has a result (CLNM or non-CLNM), and the final judgment result was output. As shown in 
the formula: Gini Dð Þ ¼ 1 � ∑

m

i¼1
P2

i . The RFC algorithm represents a computational method for effectively navigating the 
free parameter space to obtain a robust model (Figure 2A). The variable Gini index in the RFC model was depicted in 
Supplementary Table 2. As shown in Figure 3, data mining through the DT model was very useful, as shown by impurity 

analysis: Gini pð Þ ¼ ∑
K

K¼1
Pk 1 � Pkð Þ. Among the candidate variables related to PSBV, Emean, Emax, and Emix also 

played an important role in DT as “branch weight”, which can be used as an important predictor of CLNM. At the same 
time, the ANN model also showed more robust prediction efficiency than other models, but it was slightly inferior to 
RFC (Figure 4).

Table 1 (Continued). 

Variables Training Set P-value Testing Set P-value

Overall 

(N=270)

Yes(N=77) No(N=193) Overall 

(N=117)

Yes(N=34) No(N=83)

SAT (median [IQR]), AT/ms 138.00  

[126.00, 147.75]

134.00 

[125.00, 146.00]

138.00 

[127.00, 149.00]

0.142 139.00 

[125.00, 147.00]

132.50 

[121.25, 146.75]

140.00 

[126.50, 147.50]

0.115

PSBV (median [IQR]), cm/s 31.00  

[26.00, 41.00]

45.00  

[42.00, 47.00]

28.00  

[24.00, 32.00]

<0.001 31.00  

[27.00, 39.00]

44.00  

[40.00, 47.50]

29.00  

[25.00, 31.00]

<0.001

PI (median [IQR]) 1.48 [1.25, 1.98] 2.35 [2.11, 2.64] 1.34 [1.18, 1.50] <0.001 1.49 [1.30, 2.03] 2.54 [2.17, 2.69] 1.37 [1.23, 1.52] <0.001

RI (median [IQR]) 59.00 

[0.83, 63.00]

0.77  

[0.72, 0.80]

61.00  

[59.00, 64.00]

<0.001 60.00  

[0.83, 63.00]

0.76  

[0.73, 0.80]

62.00  

[60.00, 63.00]

<0.001

Emean (median [IQR]) 85.00  

[74.00, 93.00]

105.00  

[93.00, 116.00]

80.00  

[70.00, 88.00]

<0.001 86.00  

[77.00, 94.00]

107.00  

[92.50, 121.00]

84.00  

[73.00, 89.00]

<0.001

Emax (median [IQR]) 98.00  

[83.00, 110.00]

126.00  

[113.00, 138.00]

91.00  

[80.00, 100.00]

<0.001 98.00  

[84.00, 110.00]

130.00  

[111.25, 141.25]

92.00  

[78.00, 100.00]

<0.001

Emix (median [IQR]) 65.00  

[58.00, 72.00]

74.00  

[65.00, 82.00]

63.00  

[55.00, 68.00]

<0.001 65.00  

[59.00, 71.00]

68.00  

[60.25, 78.00]

65.00  

[57.00, 69.00]

0.01

Abbreviations: IQR, inter-quartile range; TSH, thyroid stimulating hormone; SAT, Systolic acceleration time; PSBV, Peak systolic blood flow velocity; PI, Pulsatility Index; RI, 
Resistance index; Emean, Average value; Emax, Maximum value; Emix, Minimum value.
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Figure 2 Correlation analysis between candidate variables and lymph node metastasis (A) Spearman correlation matrix analysis (B) Weight ranking of random forest 
classifier.

Figure 3 Visualization of lymph node metastasis prediction model based on decision tree classifier. 
Notes: According to the weight of the candidate variables, the corresponding weight is allocated to each branch of the decision tree. According to the probability that the 
weight accounts for 50% respectively, the next node is finally entered, and the final input result (whether lymph node metastasis) is obtained through multiple iterations.
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Figure 4 Visualization of lymph node metastasis prediction model based on neural network algorithm (A) Hierarchical model visualization of neural network model (B) 
Weight distribution of candidate variables.
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Prediction Performance of ML-Based Prediction Model
To explore the effectiveness of five supervised learning models for postoperative pf evaluation, we used the area under 
curve(AUC) and decision curve analysis(DCA) for evaluation, which was consistent with the results of the included 
candidate variables. Even if different prediction models included the same variables, there were certain differences in 
their prediction effectiveness, as shown in Table 2 and Figure 5. In addition, the prediction efficiency of RFC was the 
best (0.889, 95% CI:0.838–0.940) compared with the other four prediction models, followed by ANN (0.854, 95% 
CI:0.803–0.905), DT (0.812, 95% CI:0.761–0.863), XGboost (0.792, 95% CI:0.741–0.843), and SVM (0.767, 95% 
CI:0.716–0.818) in the training set. In the internal validation set, we also tested five machine learning prediction models, 
and the results were highly consistent with the training set. Undoubtedly, the iterative algorithm analysis using supervised 
learning, RFC, and ANN, as well as DT (machine learning aided decision support) models were properly used to guide 
postoperative CLNM prediction.

Discussion
PTMC, as an inert tumor, LNM will occur in the early stage, so it needs to be paid enough attention. Clinically, the 
decision of lymph node metastasis(central or lateral cervical region) during thyroidectomy usually depends on whether 
the lymph nodes suspected of malignancy can be identified before surgery.11,28,29 Given this situation, unnecessary lymph 
node dissection will lead to more recurrent laryngeal nerve injury, leading to serious postoperative complications, which 
will affect the prognosis and quality of life of patients with PTMC.30 Vigilantly, CLNM is not only an important indicator 
of PTMC prognosis, the scope, and mode of surgery but also an important risk factor for patients with high recurrence 
rates and low survival rates. Therefore, it is urgent to adopt predictive methods for accurate preoperative evaluation. The 
main outstanding contributions of our research are as follows: First, the elasticity index based on SWEEI predicts 
cervical lymph node metastasis of papillary thyroid cancer, which improves the prediction efficiency of ultrasound 
imaging. Second, with the help of machine learning algorithm, the iterative analysis of SWEEI can be applied to different 
clinical scenarios.

Previous studies have reported potential prognostic biomarkers that can be used for disease recurrence in patients with 
papillary thyroid cancer, such as the role of PD-L1 immunohistochemistry and Hashimoto’s thyroiditis as a potential 
prognostic biomarker for disease recurrence in patients with papillary thyroid cancer.31,32 Nowadays, newly studies have 
shown that there may be a strong correlation between some characteristics of ultrasound examination and CLNM, but the 
conclusions of these studies are contradictory, and there are still doubts about the accuracy of predicting CLNM.11,33 

Similarly, some prediction models show that ultrasound features, including tumor size, thyroid infiltration, and microcalci-
fication, can also be potential predictors of CLNM.34,35 In this study, the CLNM prediction model based on SWEEI has ideal 

Table 2 Efficiency Evaluation of Prediction Model Based on Five Machine Learning Algorithms

Training Model AUC Mean AUC 95% CI Sensitivity Specificity PPV NPV

RFC 0.889 0.838–0.940 0.883 0.943 0.861 0.953

ANN 0.854 0.803–0.905 0.818 0.907 0.778 0.926

DT 0.812 0.761–0.863 0.753 0.881 0.716 0.899
XGboost 0.792 0.741–0.843 0.727 0.891 0.727 0.891

SVM 0.767 0.716–0.818 0.753 0.891 0.734 0.901

Training Model AUC Mean AUC 95% CI Sensitivity Specificity PPV NPV

RFC 0.878 0.821–0.935 0.882 0.928 0.833 0.951
ANN 0.861 0.804–0.918 0.794 0.892 0.750 0.914

DT 0.809 0.752–0.866 0.706 0.867 0.686 0.878

XGboost 0.787 0.730–0.844 0.676 0.843 0.639 0.864
SVM 0.762 0.705–0.819 0.647 0.843 0.629 0.854

Abbreviations: RFC, Random Forest Classifier; ANN, Artificial Neural Network; DT, Decision Tree; XGboost, eXtreme Gradient 
boosting; SVM, Support Vector Machine; AUC, Area Under Curve; 95% CI, 95% confidence interval; PPV, positive predictive value; NPV, 
negative predictive value.
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Figure 5 Efficiency evaluation of prediction model based on machine learning algorithm. 
Notes: Decision curve distribution of five prediction models in (A) training set and (B) testing set.
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prediction accuracy, which highlights the advantages of machine learning iterative algorithm compared with the traditional 
prediction model. It also suggested that even the same ultrasonic imaging indicators can be applied to LNM prediction after 
adopting optimized algorithm input. We summarized our experience as follows. On the one hand, when moving to the new 
iteration layer, machine learning algorithm can avoid the overfitting problem in the training data set, so as to reduce the 
amount of data required for modeling. On the other hand, it improves the generalization ability of modeling, so as to make 
the model more robust. In addition, our model also was confirmed in the validation set, which prompted us to verify the 
clinical availability of the machine learning algorithm model in cross-machine and non-operator scenarios.

It is no wonder that machine learning has been widely used in the field of medicine, especially in clinical prediction 
models. In addition, with the solution of technical problems, the application of automatic algorithms in thyroid pathology 
will increase and be adopted after appropriate validation studies.36 In view of this, the focus of our research is to 
determine how to change medical practice through statistical learning methods, and discuss how to overcome these 
obstacles, and then find a better prediction model.19 Among the five prediction models we have established, we are 
surprised to find that the prediction efficiency of RFC is the best, which is consistent with the results of previous 
studies.37–39 For instance, a random forest can generate a large number of decision trees based on the random sub- 
samples of the training set, and also randomly change the characteristics used in the tree, so the iteration is uncertain.40 

Therefore, the random forest model can be regarded as a set of many decision tree models. In this study, we found that 
SWEEI can become the entropy of RFC. As the depth of the tree increases, the entropy should be reduced (the faster the 
entropy is reduced, the higher the efficiency of the decision tree). Therefore, the candidate entropy finally included 
includes PI, PSBV, RI, Emax, Emix, and SAT. Coincidentally, even in the ANN model, these entropy values also show 
strong prediction efficiency but are slightly inferior to the RFC model. Taken together, we are reminded that SWEEI 
combined with other ultrasonic image indicators can be used as a predictor of CLNM, but the algorithm is also an 
important factor that cannot be ignored in building the prediction model.

Our research also inevitably has the following limitations. First, Our current study is limited by retrospective analysis, 
which may be confused by selection bias. Second, the CLNM prediction of PTMC patients based on multimodal 
ultrasound is mainly applied to the limited and single-center cohort. In the future, it is expected to further improve the 
performance of the prediction model, which needs to be verified by the multi-center scenario. Third, some captured 
features on the ultrasound image data set show defects, which may mask the potential correlation between LNM and 
some variables. In the future, it still needs to be further optimized, such as symbiotic gray matrix, to improve the 
utilization efficiency of ultrasound image omics.

Conclusion
In conclusion, based on ultrasound imaging technology(such as SWEEI) and machine learning algorithm, we have developed 
a stable and powerful feature code for evaluating CLNM and the benefits of PTMC-based patients. Among them, the RFC 
model has the best prediction efficiency and the strongest practicability. This prediction model is a promising tool to optimize 
the decision-making and monitoring scheme of whether a single PTMC patient merges CLNM.
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