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Background: Functional remodeling may vary with tumor aggressiveness of glioma.
Investigation of the functional remodeling is expected to provide scientific relevance
of tumor characterization and disease management of glioma. In this study, we aimed
to investigate the functional remodeling of the contralesional hemisphere and its utility
in predicting the malignant grade of glioma at the individual level with multivariate
logistic regression (MLR) analysis. Subjects and Methods: One hundred and twenty-
six right-handed subjects with histologically confirmed cerebral glioma were included
with 80 tumors located in the left hemisphere (LH) and 46 tumors located in the right
hemisphere (RH). Resting-state functional networks of the contralesional hemisphere
were constructed using the human brainnetome atlas based on resting-state fMRI data.
Functional connectivity and topological features of functional networks were quantified.
The performance of functional features in predicting the glioma grade was evaluated
using area under (AUC) the receiver operating characteristic curve (ROC). The dataset
was divided into training and validation datasets. Features with high AUC values in
malignancy classification in the training dataset were determined as predictive features.
An MLR model was constructed based on predictive features and its classification
performance was evaluated on the training and validation datasets with 10-fold
cross validation. Results: Predictive functional features showed apparent hemispheric
specifications. MLR classification models constructed with age and predictive functional
connectivity features (AUC of 0.853 ± 0.079 and 1.000 ± 0.000 for LH and RH group,
respectively) and topological features (AUC of 0.788 ± 0.150 and 0.897 ± 0.165 for LH
and RH group, respectively) achieved efficient performance in predicting the malignant
grade of gliomas. Conclusion: Functional remodeling of the contralesional hemisphere
was hemisphere-specific and highly predictive of the malignant grade of glioma. Network
approach provides a novel pathway that may innovate glioma characterization and
management at the individual level.

Keywords: cerebral glioma, resting state functional MRI, functional connectivity, topological feature, multivariate
logistic regression

Frontiers in Neuroscience | www.frontiersin.org 1 January 2021 | Volume 14 | Article 611075

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.611075
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.611075
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.611075&domain=pdf&date_stamp=2021-01-13
https://www.frontiersin.org/articles/10.3389/fnins.2020.611075/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-611075 January 2, 2021 Time: 14:57 # 2

Cai et al. Glioma: Alteration of Functional Network

INTRODUCTION

Cerebral glioma is the most frequently identified intracranial
tumor in adults. As gliomas with different malignancy may
progress in distinct proliferation kinetics (Tubiana, 1989;
Louis et al., 2016), it is necessary to preoperatively estimate
the biological aggressiveness of gliomas for the therapeutic
formulation. With the burgeoning development of artificial
intelligence and radiomics, a combination of high dimensional
features derived from multimodal neuroimaging has achieved
plausible accuracy in reflecting the biological aggressiveness
of glioma (Tian et al., 2018; Yang et al., 2018). However,
disadvantages of these analysis paradigms still remain. Texture
feature analysis is usually lesion-oriented and needs boundary
delineation. This may over- or underestimate the malignancy
of glioma, as non-neoplastic components such as peritumoral
reaction and intratumoral necrosis would complicate the feature
extraction. In addition, the effect of glioma-induced functional
remodeling and its relevance to the clinical profile were largely
overlooked. Recent studies demonstrated that the interaction
between glioma and active neurons promotes tumor growth and
shapes the overall patient survival (Venkatesh et al., 2015, 2019).
This interaction may trigger network plasticity that varies with
tumor kinetics and the biological aggressiveness (Kong et al.,
2016). Therefore, characterization of the network remodeling
is promising to provide useful markers to signify the tumor
malignancy and disease dynamic of glioma.

Connectivity-based analysis is an approach of choice for
exploring the functional remodeling of cerebral gliomas at
both local and global levels. Brain networks of default
mode, language and hand-motor showed profoundly reduced
functional integrity (Briganti et al., 2012; Mallela et al., 2016;
Kocher et al., 2020), and altered inter- and intra- network
connectivity in the contralesional hemisphere in subjects with
advanced gliomas (De Baene et al., 2017; Fox and King,
2018; Yuan et al., 2020). These connectivity-based findings
indicate that the growth of glioma triggers both intra-
and inter-hemispheric functional remodeling. In addition, the
optimization of glioma treatment targeting maximal tumor
removal while maximally preserving the subject’s functional
integrity remains ungrounded (Müller et al., 2019). Connectivity-
based analysis would enable itemizing the ascription of an
individual brain area to the pathological network configuration
and its relevance to the malignant grade of glioma. Therefore,
characterization of the network remodeling is promising to
provide useful markers to signify the tumor malignancy
of glioma and new insights to infer the relevance of the
functional remodeling to the spectrum of neuropsychological
or psychiatric profiles that cannot be fully interpreted by
the tumor itself (De Baene et al., 2019; Yuan et al., 2019).
Moreover, brain asymmetry and tumor laterality may account
for the divergent functional disturbance and neuroplasticity
induced by gliomas in a different hemisphere (Gotts et al.,
2013; Zhang et al., 2016). In this study, we aimed to investigate
the hemispheric specifications of glioma-induced functional
remodeling and its relevance to tumor aggressiveness based
on the functional connectivity and topological features of the

resting-state functional networks, employing the structurally
intact contralesional hemisphere as the alternative to the whole-
brain maneuver.

MATERIALS AND METHODS

Subjects
This retrospective study was approved by the local institutional
review board. All participants provided written informed consent
prior to the MRI examination. Preoperative resting-state fMRI
(rs-fMRI) data of the subjects with cerebral glioma from March
2012 to February 2017 were consecutively retrieved, resulting in
126 subjects (male/female 72/54, aged 42.21 ± 12.74 years) for
further analysis with the following criteria: 1) right-handed; 2)
rs-fMRI was performed within 7 days prior to the surgery; 3)
No mass effect to the contralesional hemisphere according to the
neuroradiology report; 4) No previous history of neurovascular
disease or psychiatric illness in the medical record; 5) No history
of drug, coffee or alcohol abuse. Out of the 126 tumors, 80 were
located in the left hemisphere (LH), 46 in the right hemisphere
(RH). Tumors were grouped as high grade (WHO III and IV,
HGG) and low grade gliomas (WHO II, LGG).

Image Acquisition and Data
Preprocessing
Rs-fMRI was performed using gradient echo-echo planar
imaging (GE-EPI) sequence (Siemens Verio 3.0T, Germany)
with a 12-channel phased array head coil. The major
imaging parameters were TR/TE 2000/35ms, FA 90◦, FOV
210 mm × 210 mm, matrix 64 × 64, slick thickness 4.0mm, 240
volumes. High resolution T1-weighted images were obtained
using 3D magnetization prepared rapid gradient echo sequence
(MPRAGE) with parameters of TR/TE/TI 1900/2.93/900ms, FA
9◦, FOV 218× 250 mm, in-plane resolution 0.5× 0.5× 1.0 mm.
In addition, to identify the glioma lesions, T2 FLAIR images
were obtained with parameters of TR/TE/TI 9000/96/2500ms,
flip angle 150◦, FOV 187 × 240 mm, in-plane resolution
0.5× 0.5× 2.0 mm.

Tumor region was manually delineated slice by slice on T2
FLAIR images for each subject by a neuroradiologist with 25-
years of experience to generate a binary tumor mask using ITK-
SNAP 1. The tumor masks were smoothed and co-registered to
the T1 weighted images. Rs-fMRI data was preprocessed using
DPARSF (Data Processing Assistant for Resting-State fMRI2) and
software package of SPM83. The major steps included: 1) the
first 10 volumes data were discarded for scanner calibration; 2)
slice timing to remove the temporal differences between slices;
3) realignment to correct head movement; 4) T1 images and
tumor mask were co-registered to the mean functional images
and segmented into gray matter, white matter, and cerebrospinal
fluid maps. The value of voxels within the tumor region was
set to 0 while the value of voxels outside the tumor was set to

1http://www.itksnap.org
2http://www.restfmri.net
3http://www.fil.ion.ucl.ac.uk/spm
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1, to generate the cost function masking image; 5) T1 images
and functional images were normalized to the standard Montreal
Neurological Institute template using source weighted image and
resampled to 3 × 3 × 3 mm (Andersen et al., 2010); 6) spatially
smoothed with a 4 mm full-width half-maximum Gaussian
filter; 7) regression of nuisance variables, including Friston 24-
parameter model and signals of white matter and cerebrospinal
fluid (Friston et al., 1996); 8) linear trend removing; 9) band-pass
filtering (0.01–0.08 Hz).

Functional Connectivity and Topological
Features
The brain of each subject was segmented into 210 cortical and
36 subcortical subregions based on the human brainnetome atlas
(BN, with 123 subregions in each hemisphere) (Fan et al., 2016).
These subregions of the contralesional hemisphere were defined
as the nodes of functional network. Time series of voxels in each
area were averaged and assigned as the node signals. Pearson
correlation coefficient between each time series were calculated
and defined as the edges of the network. Fisher’s Z transform
was applied to normalize the correlation coefficient to follow
standard normal distribution. This process generated a 123× 123
functional connectivity (FC) matrix and 7,503 (123 × 122/2)
edges that were assigned as FC features for each subject.

Functional connectivity matrices were converted into binary
undirected graphs with an empirically defined range of sparsity
(0.01 ≤ sparsity ≤ 0.34, interval = 0.01) (Zhu et al., 2017).
Area under the curve (AUC) of topological feature (TF) with
defined threshold range was employed to avoid the bias of
any predetermined threshold (He et al., 2009; Zhu et al.,
2017). Typical global and nodal TFs of functional networks
were calculated using GRETNA (Graph Theoretical Network
Analysis toolbox4): (1) Gamma (γ), Lambda (λ), Sigma (σ),
the clustering coefficient (Cp) and the shortest length (Lp)
that quantitate the “small-worldness” of network; (2) the global
efficiency (Eg) and the local efficiency (Eloc) that characterize
the ability of the network to integrate and separate information;
(3) the Betweeness centrality (Bc), Degree centrality (Dc), nodal
global efficiency (NEg) and nodal local efficiency (NEloc) that
characterize the importance of each node in the network to
process information (Watts and Strogatz, 1998; Humphries and
Gurney, 2008; Zhu et al., 2017). This process generated seven
global TFs (aGamma, aLambda, aSigma, aCp, aLp, aEg, and
aEloc) and 492 local TFs (4 × 123, aBc, aDc, aNEg, and aNEloc
of 123 nodes) for each subject.

Feature Selection and Multivariate
Logistic Regression Analysis
Data was divided into training and validation datasets. The
process of feature selection includes three steps (Figure 1).
(1) Firstly, the training dataset was further subdivided into two
subgroups of train-train dataset and train-test dataset with the
inner five-fold cross validation (CV). The ROC curve and AUC
analysis were utilized to estimate the classification performance of

4https://www.nitrc.org/projects/gretna

each single functional or demographic feature in discriminating
LGGs and HGGs. (2) Secondly, the normal distribution function
of all FC features or TFs was estimated. One-sided confidence
interval (CI) was set to threshold the AUCs. Features with high
AUC values in discriminating LGGs and HGGs in the train-
train dataset were selected as candidate predictive features. (3)
Finally, the inner CV process was repeated 100 times and the
frequency of each feature being selected as a candidate feature
was recorded and ranked. The candidate predictive features with
top frequencies of being selected were identified as predictive
features, the corresponding brain regions were singled out as the
most sensitive regions to tumor-induced functional remodeling.

Given the high dimension of functional features, a series of
one-sided CIs of AUC values (from 95 to 99.9%) were employed
to identify candidate predictive features. A range of thresholds
were set from the top 1 to top 20% for the selection of predictive
features from the candidate features. The process of feature
selection was illustrated in Supplementary Figure 1.

A multivariate logistic regression (MLR) model was
constructed on the training dataset based on different subsets
of predictive features selected with different thresholds. The
classification performance of the MLR model was evaluated
on training and validation datasets separately by ROC analysis
with 10-fold CV.

The aforementioned process was applied to the LH and
RH groups separately. Synthetic minority oversampling
technique (SMOTE) was employed to tackle the data imbalance
(Chawla et al., 2002).

Hemispheric Specificity of Functional
Remodeling
In order to investigate the potential hemisphere-specific effect,
MLR models constructed based on the training dataset of
the LH group were validated by both the validation dataset
of the LH group and the RH group, and vice versa for the
MLR models constructed with the training dataset of the RH
group. The classification performance of the MLR model on two
kinds of validation datasets were quantified by ROC and AUC
analysis and the intergroup difference was assessed by two-tailed
t-test analysis.

RESULTS

Demographics and tumor information are summarized in
Table 1. The LH group with tumors in the LH included
36 LGGs (male/female 20/16, aged 38.54 ± 10.88 years) and
44 HGGs (male/female 28/16, aged 45.06 ± 13.21 years).
The RH group with tumors in the RH included 32 LGGs
(male/female 16/16, aged 39.48 ± 10.46 years) and 14 HGGs
(male/female 8/6, aged 51.25 ± 17.81 years). Sex distribution
was comparable between LGGs and HGGs (Chi-square test,
p > 0.05). Age of subjects with HGG was significantly
larger than that of subjects with LGG for both LH and
RH groups (Mann–Whitney U test, p < 0.05). The ROC
curves of age, sex, and tumor location to differentiate LGGs
and HGGs were shown in Figure 2. Age was identified as
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FIGURE 1 | Illustration of the workflow of data analysis. LH, tumor located in left hemisphere; RH, tumor located in right hemisphere; CH, contralesional hemisphere;
LGG, low grade glioma; HGG, high grade glioma; CV, cross validation.

TABLE 1 | Summary of the demographic information

WHO Grade Cellular Type Sex (male/female)a Age(mean ± SD)b

LH RH LH* RH*

LGG II Astrocytoma (n = 30) 20/16 16/16 38.54 ± 10.88 39.48 ± 10.46

Oligodendroglioma (n = 16)

Oligoastrocytomas (n = 22)

HGG III Anaplastic astrocytoma (n = 19) 28/16 8/6 45.06 ± 13.21 51.25 ± 17.81

Anaplastic oligodendroglioma (n = 1)

Anaplastic oligoastrocytomas (n = 8)

IV Glioblastoma (n = 30)

aChi-square test.
bMann–Whitney U test.
∗Significant difference between LGGs and HGGs with p < 0.05.
LGG, low grade glioma; HGG, high grade glioma; LH, tumor located in left hemisphere; RH, tumor located in right hemisphere.
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one of the predictive features outperforming sex and tumor
location in malignant grade discrimination (LH: AUC = 0.696,
RH: AUC = 0.810).

Both predictive FC features and TFs varied with tumor
hemisphere. The performance of malignant grade classification
of the MLR models was summarized in Supplementary Material
in detail (Supplementary Figures 2–5). MLR models with age
feature significantly outperformed the MLR models without age
in differentiating LGGs from HGGs for both LH and RH groups
(paired t-test, p < 0.05) (Supplementary Table 3).

Predictive FC Features
The MLR model constructed with predictive FC features
of LH group achieved the best performance of malignant
grade estimation with AUC of 0.853 ± 0.079 on validation
dataset (one-sided CI = 99.6%, top 5%) (Table 2). Subsets of
predictive FC features changed during the 10-fold CV process
with 50 spatially distributed FC features defined as predictive
(Supplementary Table 1), among which 17 FC features were
selected as predictive feature for at least five times (Figure 3).
These predictive FC features mainly involve the functional
connectivity between thalamus (Tha.R8_5/6)-occipital lobe,

thalamus (Tha.R8_5/6/7)-postcentral area of superior parietal
lobe (SPL.R5_4), and between distributed areas of cortices.

The MLR model constructed with predictive FC features of
RH group achieved an AUC of 1.000 ± 0.000 on validation
dataset (one-sided CI = 99.7%, top 5%) (Table 2). Twelve FC
features were defined as predictive features (Figure 4), mainly
involving FC between medioventral occipital cortex (MVOcC.L)-
middle frontal gyrus (MFG.L), FC between inferior temporal
gyrus (ITG.L7_1/7)-parahippocampal (PhG.L6_3), FC between
orbital gyrus (OrG.L)-precuneus (PCun.L), superior and inferior
parietal lobe (SPL.L and IPL.L), FC between rostral area of middle
temporal gyrus (MTG.L4_2)-ventromedial putamen (Puta.L2_1),
and FC between caudal area of inferior parietal lobe (IPL.L6_1)-
ventral caudate (Cau.L2_1). The subsets of predictive FC features
of RH group were summarized in Supplementary Table 2.

Predictive Topological Features
For the LH group, the MLR model constructed with predictive
TFs achieved the best performance of malignancy estimation
with an AUC of 0.788 ± 0.150 on the validation dataset
(one-sided CI = 98%, top 15%) (Table 2). Twenty-eight
nodal TFs were selected as predictive features and the
corresponding cerebral regions mainly involved orbital

FIGURE 2 | Receiver operating characteristic curve (ROC) of demographic features to discriminate low grade and high-grade gliomas for LH (A) and RH group (B),
respectively. LH, tumor located in left hemisphere; RH, tumor located in right hemisphere; AUC, area under the curve.

TABLE 2 | Performance of multivariate logistic models to predict malignancy degree of gliomas.

Features One-sided CI (%) Top (%) AUC (mean ± std) Two-sample t-test (p value, FDR)*

Train dataset Validation dataset Dataset of another group

LH Age + FC 99.6 5 0.996 ± 0.003 0.853 ± 0.079 0.626 ± 0.082 <0.05

Age + TF 98 15 0.896 ± 0.016 0.788 ± 0.150 0.629 ± 0.040 <0.05

RH Age + FC 99.7 5 1.000 ± 0.000 1.000 ± 0.000 0.577 ± 0.028 <0.05

Age + TF 99 20 0.968 ± 0.010 0.897 ± 0.165 0.640 ± 0.032 <0.05

CI: confidence interval to select candidate predictive features. Top: features with top high frequencies of being selected as candidate predictive features. ∗Significant
intergroup difference between MLR model performance on validation dataset and the performance on dataset of another group.
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FIGURE 3 | Predictive functional connectivity features of LH group. LH, tumor located in left hemisphere; the number label of ribbons represented the frequency of
the functional connectivity feature being selected as predictive feature during 10-fold cross validation process; the full names of subregions are summarized in the
Supplementary Table 4.

gyrus (OrG.R6_2/5), superior frontal gyrus (SFG.R7_4/7),
inferior frontal gyrus (IFG.R6_1/6), paracentral lobule
(PCL.R2_1), intraparietal area of superior parietal lobule
(SPL.R5_5), rostrodorsal area of inferior parietal lobule
(IPL.R6_3), rostral area of hippocampus (Hipp.R2_1), medial
area of superior temporal gyrus (STG.R6_1), PCun.R4_4, and
PhG.R6_5 (Figure 5).

For the RH group, the MLR model constructed with
predictive TFs achieved the best performance of malignancy
estimation with an AUC of 0.897 ± 0.165 on the validation
dataset (one-sided CI = 99%, top 20%) (Table 2). Sixteen
nodal TFs were selected as predictive features and the
corresponding cerebral regions were centralized located
in the inferior and medial part of left temporal lobe
(rostroventral area of left fusiform gyrus: FUG.L3_1;
PhG.L6_1/2/3; intermediate lateral area of inferior temporal
gyrus: ITG.L7-4), dorsal and caudal area of cingulate gyrus
(CG.L7_1/6), basal ganglia (ventral caudate BG.L6_1 and

nucleus accumbens BG.L6_3), ventral area of inferior
frontal gyrus (IFG.L6_6), and lateral pre-frontal thalamus
(Tha.L8_8) (Figure 6).

Hemisphere-Specific Effect of Gliomas
on Functional Remodeling
Predictive FC features and TFs of the functional network of
contralesional hemisphere showed distinct hemisphere-specific
distribution (Figures 3–6). MLR models constructed based on
the training dataset and predictive features of LH group were
validated by the validation dataset of the LH group and the RH
group. The AUC values of the validation dataset of the LH group
were significantly higher than those of the dataset of the RH
group (two-tailed t-test, p < 0.05, FDR) (Table 2). The MLR
models constructed based on the training dataset of the RH group
were also validated by the validation dataset of the RH group and
the dataset of the LH group, respectively. MLR models showed
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FIGURE 4 | Predictive functional connectivity features of RH group. RH, tumor located in right hemisphere; the full names of subregions are summarized in the
Supplementary Table 4.

significantly better classification performance on the validation
dataset of the RH group, as compared with the dataset of the LH
group (two-tailed t-test, p < 0.05, FDR) (Table 2).

DISCUSSION

Growth of glioma may trigger neural plasticity at variable
levels, which underpins the functional remodeling and clinical
profiles (Derks et al., 2017; Fox and King, 2018). This study
investigated the functional remodeling and its relevance to
the malignancy grade of glioma based on the contralesional
functional network. Functional remodeling patterns were found
to be hemisphere-specific and highly predictive of the biological
aggressiveness of glioma.

Physiological Underpinnings of
Functional Remodeling Induced by
Glioma
Neuroplasticity is hypothesized to pivot functional remodeling,
but the exact mechanisms were not completely known (Duffau,
2014). Recent study found that the interaction of glioma cells
and active neurons changes the excitability of the brain, thus
may alter the neurovascular coupling and subsequently results
in varied functional connectivity (Venkatesh et al., 2019). In
addition, the growth of glioma changes the topological features of
cerebral vessel network, possibly by hemodynamic remodeling,
extended effect of aberrant metabolite and neurotransmitter, or
other unknown mechanisms (Bowden et al., 2018; Hahn et al.,
2019). Functional plasticity occurs at various levels in response
to glioma growth with different kinetics (Duffau, 2014). The
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FIGURE 5 | The spatial distribution of brain regions with nodal topological features selected as predictive features for LH group [(A): aBc, (B): aDc, (C): aNEg,
(D): aEloc]. LH: tumor located in left hemisphere; the full names of subregions are summarized in the Supplementary Table 4.

gradual growth of LGGs leaves time for the brain to reconstruct
the network integrity, partially by recruiting the contralesional
areas more efficiently than the fast growing HGGs (Duffau, 2014).
Tantillo et al. found an increase in slow network oscillations in
mouse visual cortex with GL261 glioma implantation (Tantillo
et al., 2019). These findings suggest a cellular and molecular
basis underpinning the network plasticity during the dynamic
of glioma progress. As a result of glioma-neuron interaction,
the pattern of functional remodeling may represent a part of
the neoplastic entity rather than the secondary consequence of
cerebral gliomas.

Predictive Performance of Functional
Features
Human brain network features small-worldness and high
efficiency of parallel information processing with global
integration and local specialization (Achard et al., 2006). FC
features and TFs characterize functional networks from different
aspects and offer complementary information of functional
remodeling. FC features focus on the direct measurement of the
synchronicity between cerebral regions, while TFs quantify the
nodal importance and the efficiency of information processing
over the network at both global and local levels (Watts and
Strogatz, 1998). Abundant studies indicate that brain pathology

is associated with FC alterations, nodal TF disturbance and
efficiency decline of parallel information processing (Mallela
et al., 2016; Derks et al., 2017; Zhu et al., 2017). In this study,
both predictive FC features and TFs showed efficient ability
signifying the malignancy degree of gliomas. The MLR model
with predictive FC features resulted in a better malignancy
grade differentiation as compared with MLR-TFs. As feature
selection algorithms and classification models are designed with
different criteria, their performances vary in pattern recognition
(Lee, 2009). This may suggest a better sensitivity of linear
combination of connectivity features in this study in capturing
the biological aggressiveness of glioma. Future work with
advanced classification models and improved feature selection
algorithms combining filter and wrapper methods may further
improve the performance of TFs in glioma characterization.

Hemispheric Specification of Functional
Remodeling
Both predictive features and MLR models showed hemispheric
specification between LH and RH group in this study. For LH
group, the cerebral regions with predictive FC features were
sparsely distributed and changed with the trianing dataset, and
the regions with predictive TFs were located in the frontal
and parietal lobes which are mainly associated with higher
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FIGURE 6 | The spatial distribution of brain regions with nodal topological features selected as predictive features for RH group [(A): aBc, (B): aDc, (C): aNEg,
(D): aEloc]. RH: tumor located in right hemisphere; the full names of subregions are summarized in the Supplementary Table 4.

cognitive and emotional functions and involved in the default
mode network and frontal-parietal network (Yeo et al., 2011;
Kocher et al., 2020). Altered topological features of these regions
were found to be associated with severe cognitive deficits of
HGGs as compared with LGGs (Noll et al., 2014), especially
for subjects with tumors located in the LH (Hendrix et al.,
2017). In contrast, the predictive FC features of RH group stably
involved the FC between MTG.L-MVOcC.L and FC between
OrG.L-parital lobule (PCun.L/IPL.L/SPL.L), unvarying with the
training dataset. The predictive TFs of the RH group were
centralized in the parahippocampus and basal ganglia. These
areas are mainly associated with memory processing, visuospatial
attention, and face recognition (Rolls, 2004; Baumann and
Mattingley, 2016; Weiner and Zilles, 2016). As the healthy
human brain is functionally lateralized (Gotts et al., 2013),
the altered network features with hemispheric specifications
found in this study may partially underpin 1) the scope of
neuro-psychological symptoms that cannot be solely explained
by the tumor itself, and 2) the lower self-perceived quality
of life of glioma subjects (Moody et al., 2005), although the
mechanisms underpinning the hemispheric specification of the
functional remodeling remain unclear. Factors including the

lobar and hemispheric heterogeneity of glioma incidence and
the dynamic lateralization of cerebral blood flow may partially
substrate the different patterns of glioma-induced functional
remodeling (Moody et al., 2005; Larjavaara et al., 2007). As
functional connectivity and network topology disturbances
precede the onset of some neurological diseases (Harrington
et al., 2015), therapeutic schemes targeting the hemisphere-
specific functional remodeling may provide a new opportunity
to innovate the patient management and further optimize the
disease outcome of glioma.

Limitations
There are limitations for our study. First, it is elusive to avoid
overfitting with the limited sample size. The extraordinary high
AUC of MLR model in predicting the malignancy grade of
gliomas of the RH group may be attributable to the introduction
of simulation samples by SMOTE. A hemisphere-specific
analysis with a larger cohort and advanced machine learning
model may yield a more reliable classification performance.
Second, functional networks of the human brain are believed to
be scale-free with distinct importance for each subregion.
Functional impairment may vary with different nodes
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being attacked. Network statistical analysis based on more
detailed anatomical specifications would be helpful in
clarifying the disturbance induced by glioma with better
functional representations. Lastly, molecular pathologies were
not available for all the subjects, as the histopathology
analysis was largely conducted before WHO issued the new
guidelines on the classification of central nervous system
tumor (Louis et al., 2016). Future work integrating the
morphological, functional and molecular data would enable a
more intensive comprehension of the glioma-induced functional
remodeling with malignancy relevance with histopathological
and genetic specifications.

CONCLUSION

Focal glioma induces extensive functional disturbance with
hemispheric specification. The clinical and biological effects
of focal glioma may need to be interpreted in terms of the
global changes. Disturbance in the functional network of rs-
fMRI may substrate the pathophysiological mechanism of tumor
progress at the tissue level. A network approach with machine
learning provides a novel pathway and potential biomarker for
high-dimensional imaging data analysis toward better tumor
characterization of glioma.
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