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Chronic inflammation and resulting tissue damage underlie the vast majority of acquired 
cardiovascular disease (CVD), a general term encompassing a widely diverse array 
of conditions. Both innate and adaptive immune mechanisms contribute to chronic 
inflammation in CVD. Although maladies, such as atherosclerosis and cardiac fibrosis, 
are commonly conceptualized as disorders of inflammation, the cellular and molecular 
mechanisms that promote inflammation during the natural history of these diseases in 
human patients are not fully defined. Autoantibodies (AAbs) with specificity to self-derived  
epitopes accompany many forms of CVD in humans. Both adaptive/induced iAAbs 
(generated following cognate antigen encounter) and also autoantigen-reactive natural 
antibodies (produced independently of infection and in the absence of T cell help) have 
been demonstrated to modulate the natural history of multiple forms of CVD including 
atherosclerosis (atherosclerotic cardiovascular disease), dilated cardiomyopathy, and 
valvular heart disease. Despite the breadth of experimental evidence for the role of AAbs 
in CVD, there is a lack of consensus regarding their specific functions, primarily due to 
disparate conclusions reached, even when similar approaches and experimental models 
are used. In this review, we seek to summarize the current understanding of AAb function 
in CVD through critical assessment of the clinical and experimental evidence in this field. 
We additionally highlight the difficulty in translating observations made in animal models 
to human physiology and disease and provide a summary of unresolved questions that 
are critical to address in future studies.
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iNTRODUCTiON

Cardiovascular (CV) disease (CVD) has been the most significant cause of morbidity and mortality 
worldwide for over a century and will continue to be for the foreseeable future (1). CVDs are het-
erogeneous and include coronary heart disease (CHD), peripheral vascular disease (PVD), valvular 
heart disease (VHD), and stroke. The main pathological process that underlies the majority of these 
CVD manifestations is atherosclerosis, a chronic inflammatory response to lipid products in the 
walls of large and medium arteries. Atherosclerosis is the single most significant contributor to 
human mortality (2). It has long been hypothesized that immune dysregulation and chronic inflam-
mation contribute to the development of CV pathology independently of traditional atherosclerotic 
cardiovascular disease (ASCVD) risk factors (3). Until recently, however, there was no direct 
clinical evidence supporting the detrimental role for inflammation in this process. Outcomes from 
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the randomized, multicenter Canakinumab Anti-inflammatory 
Thrombosis Outcome Study (CANTOS), completed in late 
2017, provide the strongest evidence to date in support of the 
pro-atherogenic role for inflammation in humans. Canakinumab, 
a monoclonal antibody (mAb) directed against interleukin-1β  
(IL-1β), significantly reduced adverse CV outcomes in patients 
with a history of myocardial infarction (MI) and elevated 
C-reactive protein (CRP) (4). While, CANTOS focused solely 
on the effects of IL-1β blockade in secondary CV prevention, 
this intervention represents only one from many potential 
therapeutic approaches. The CANTOS trial provides confirma-
tion of the “inflammation hypothesis” in CVD through robust 
clinical analysis, a critical milestone on the path toward a more 
comprehensive understanding of the role of inflammation in CV 
pathology. Although the additional clinical trials are currently 
underway that target other inflammatory mediators in CVD (5, 6),  
many unresolved questions remain regarding the specific cellular 
and molecular immune mechanisms that promote chronic CV 
inflammation. Therefore, a significant challenge facing the field 
of CVD research is to define these critical immune mediators, 
particularly those that can be targeted therapeutically.

The specific contributions that humoral immunity (e.g., comp- 
lement, antibodies (Ab), etc.) provides during the natural history 
of CVD remain unresolved. Multiple clinical studies have dem-
onstrated correlative evidence in favor of a CVD-promoting role 
for Abs, and this topic has been reviewed extensively elsewhere 
(7–10). Despite this, no current therapeutic approaches are 
designed to improve CVD outcomes by reducing Ab production 
or activity. Ab with reactivity to self-epitopes [autoantibodies 
(AAbs)] have been observed in many forms of CVD, and have 
diverse epitope reactivities, binding affinities, and isotypes. Abs 
specific to multiple varieties of cardiac/myocardium- and blood 
vessel-related epitopes have been characterized in human CVD, 
including those demonstrating binding affinity to antigens that 
are cardiac-specific [e.g., cardiac troponin-I (cTnI) (11)], cardiac-
associated [e.g., oxidized apolipoproteins (12)], and ones that are 
ubiquitously expressed [e.g., heat-shock proteins (HSPs) (13)]. 
Despite the breadth of evidence demonstrating correlations 
between serum AAb titers and CVD severity, there is no consen-
sus on the specific roles that AAbs play in CVD progression or 
whether they might be appropriate targets for CVD treatment. 
In short, contradictory evidence exists. In addition, determining 
whether AAbs represent causative agents rather than passive 
bystanders during the natural history of CVD is a challenging task, 
particularly in the context of highly heterogeneous manifestations  
of CVD in humans.

The potential mechanisms by which AAbs may promote 
CVD include target opsonization and subsequent recognition 
and activation of immune cells bearing antibody-recognizing 
Fc receptors (i.e., type II hypersensitivity), leukocyte activation 
following immune complex deposition and complement fixation 
(i.e., type III hypersensitivity), and target neutralization/inhibi-
tion. The purpose of this review is to summarize the current 
understanding how AAbs contribute to specific forms of CV 
pathology including ASCVD, dilated cardiomyopathy (DCM), 
and VHD. In addition, we highlight the key recent experimental 
and clinical findings in this field. Finally, we discuss a number of 

the remaining unresolved questions this field faces in pursuit of 
future clinical translation.

THe ReSPONSe TO Cv DAMAGe HAS 
GeNeTiC AND eNviRONMeNTAL 
CONTRiBUTiONS

The induction of an immune response to autoantigens in the 
setting of human CVD is thought to occur as a result of CV 
insults (e.g., MI and atherosclerotic plaque necrosis). Self-
antigens that are normally sequestered within the cardiac 
parenchyma and vascular walls are liberated and/or produced 
during the course of an inflammatory response and its resolu-
tion. Exposure of these immunogenic elements induces innate 
and adaptive immune activation. Coupled with the potent 
inflammatory signals that invariably accompany tissue damage, 
robust immunopathology of CV tissue can ensue, including 
AAb production. Because these self-antigens are present in 
virtually unlimited supply, chronic autoimmunity and tissue 
inflammation can result.

The primary determinants of the magnitude of the induced 
response to self-antigens include the characteristics of the tissue 
insult (e.g., infarct size and microbial burden) and the affected 
individual’s degree of genetic predisposition to autoimmunity 
(14). Experimental studies in mice have provided evidence for 
the contribution of genetics to the development of CV pathol-
ogy. For example, the A/J mouse strain is highly susceptible to 
enterovirus-induced experimental myocarditis whereas C57BL/6 
mice are protected (15). Juvenile male BALB/c mice develop 
more dramatic experimental enterovirus-induced myocarditis 
than females (16), and atherosclerosis occurs most readily in 
the C57BL/6 background whereas the CH3 and BALB/c back-
grounds are protected from this disease (17). The homogeneous 
genetic backgrounds in inbred mouse strains amplify the genetic 
contribution to experimental CVD initiation and progression 
while minimizing the contribution of environmental factors, as 
opposed to the diverse forms of CVD that occur in the exten-
sively outbred human population. For example, monozygotic 
human twins generally develop autoimmune disease with much 
less than 50% concordance, underscoring the putative role for 
environmental factors (18). In addition, experimental animal 
housing conditions generally involve isolation from environ-
mental inputs. While this strict environmental control improves 
the reliability and reproducibility of animal studies, and it does 
not accurately represent the diverse environmental stimuli that 
humans encounter.

The hypothesis that CV damage is a critical predecessor of 
AAb generation in CVD is widely accepted and supported by 
experimental and clinical evidence. However, this hypothesis 
is complicated by the observation that cardiac AAbs can also 
be found in apparently healthy individuals without a personal 
history of CVD, and the presence of these AAbs predicts the 
development of CVD later in life (19). In addition, the presence of 
CV-reactive natural antibodies (NAbs) in the general population 
(elaborated upon later) further complicates the understanding of 
the role for AAbs in CV pathology (20).
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ATHeROSCLeROSiS iS DRiveN  
BY iNFLAMMATiON

Atherosclerosis is a chronic reaction to lipid- and cholesterol- 
rich lipoprotein deposits (i.e., lipid- and cholesterol-rich plaques) 
in the sub-endothelium of large and medium arteries, and it has 
been reviewed extensively (3). It is the main driver of coronary 
artery disease (CAD), peripheral artery disease, and stroke. Of 
note, “cholesterol” refers to a specific chemical entity [i.e., (3β)-
cholest-5-en-3-ol] but it is often conflated, out of convenience, 
with either low- or high-density lipoproteins (LDL and HDL, 
respectively). In fact, LDL and HDL are heterogeneous particles 
containing variable amounts of lipids and phospholipids (PLs) 
packaged within a combination of protein carriers (i.e., apoli-
poproteins). Circulating LDL and HDL have well-substantiated 
direct and inverse correlations, respectively, with CVD risk; 
because of this, significant efforts have been put into under-
standing the specific cellular mechanisms that underpin these 
observations.

The inflammatory nature of atherosclerosis is undisputed  
and supported by a breadth of experimental and clinical obser-
vations. It is well known that patients with systemic inflammatory  
diseases develop accelerated and more aggressive forms of 
ASCVD than the general population (21). Despite this, the 
mechanisms governing ASCVD initiation and progression 
are incompletely understood, particularly with respect to AAb  
generation and function. ASCVD often begins in early ado-
lescence and is initiated by endothelial dysfunction arising 
primarily from disturbed hemodynamics and lipid-induced 
inflammation, in addition to additional environmental factors 
and the individual’s genetic susceptibility. The formation of 
macroscopic “fatty streaks” at arterial branch points and other 
sites of turbulence heralds the early stages of ASCVD. Fatty 
streaks are primarily composed of oxidized lipoprotein particles 
[including oxidized low-density lipoprotein (oxLDL)], foam 
cells (lipid-laden macrophages), vascular smooth muscle cells 
(vSMCs), and lymphocytes. Over an individual’s lifetime, the 
streak composition and structural features evolve due to chronic 
superimposed inflammatory and healing responses. Late-stage 
disease ultimately results in formation of an atheromatous plaque 
(22). Atherosclerosis manifests clinically due to the effects of 
tissue ischemia and/or infarction caused by partial or complete 
plaque occlusion of arterial lumens. While most commonly 
associated with the myocardium, atherosclerotic ischemia and 
infarction can affect any of the body’s tissues (e.g., in the setting  
of PVD).

Efforts to understand the pathophysiology of ASCVD have 
largely relied on one of two mouse models of the disease based  
on genetic disruption of lipid clearance: apolipoprotein-E- and 
LDL receptor-deficient mice (ApoE−/− and Ldlr−/−, respectively). 
When placed on a high-fat (“Western”) diet, these mice rapidly 
develop extreme hyperlipidemia, and lipid-rich plaques form 
shortly thereafter in a predictable distribution. Genetic manipu-
lation of these mouse models has provided significant insight into 
the underlying inflammatory mechanisms that promote ASCVD, 
with the caveat that experimental atherosclerosis in mice exhibits 
substantial differences from the disease in humans (23).

B CeLLS ALTeR THe TRAJeCTORY  
OF ASCvD

The role of B cells during ASCVD initiation and progression has 
been studied extensively and is reviewed in detail elsewhere (24). 
A 2013 genome-wide association study compared 188 patients 
with CHD with 188 healthy controls. Gene ontology enrichment 
analysis demonstrated that B cell activation, differentiation, and 
signaling genes were among the most prominently enriched in 
patients with CHD (25).

The predominant B cell subsets in mice and humans are B-1 
and B-2 cells that produce NAbs and induced (adaptive) anti-
bodies (iAb, iAAb when reactive with self-antigens), respectively. 
The dominant paradigm for understanding the role that B cells 
play during the natural history of ASCVD is based on opposing 
functions of B-1 and B-2 cells, with the former generally being 
disease-ameliorating and the latter disease-promoting. A sche-
matic of how B-1 cell-derived NAbs and B-2 cell-derived iAAbs 
contribute to CAD is shown in Figure 1. The majority of studies 
that have contributed to construction of this paradigm have been 
derived from experimental atherosclerosis in mice, but clinical 
observations do indeed support this diametric model and are 
described in the following sections.

A comparison of B-1 and B-2 cells is shown in Figure 2. In 
mice, B-1 cells are identified and distinguished from the more 
common B-2 B cells based on lower expression of B220 and by 
the presence of CD43 (26). B-1 cells can be further subdivided 
into B-1a and B-1b subsets based on the presence or absence 
of CD5 expression, respectively (27). An analogous population 
of innate-like B-1 cells in humans that appears to have similar 
functional properties to those in mice is identified based on the 
following surface marker profile: CD20+CD27+CD43+CD70− 
(28). Importantly, in humans, CD5 is promiscuously expressed 
on B-1 and B-2 cells in multiple contexts and is not a reliable 
distinguishing feature of these lineages (29). It is thought that 
in mice all three B cell subsets (B-1a, B-1b, and B-2) originate 
from distinct lineages (30), and are thus theoretically targetable 
through conditional and constitutive gene knockout studies to 
dissect their discrete functional differences. Clarifying the role 
of B cells in atherogenesis will require understanding the distinct 
versus overlapping functions of each subset in ASCVD. Table 1 
provides a summary of the heterogeneous AAbs that are most 
actively studied in ASCVD with putative functional roles in the 
disease course highlighted.

NAbs ReSTRAiN ATHeROSCLeROSiS

Cardiovascular-reactive AAbs are produced in both homeostatic 
and disease states. NAbs are an important class of AAbs produced 
during homeostasis in the absence of cognate antigen encounter 
or infection. The biology of NAbs has been reviewed extensively 
elsewhere (31). In multiple experimental ASCVD models, NAbs 
have been shown to be disease-restraining (20, 32–35).

Natural antibodies are derived from B-1 cells (36) that are 
enriched in the spleen, bone marrow (BM), and body cavities 
(e.g., pleural and peritoneal) (31). In the absence of infection, the 
vast majority of serum IgM Ab in mice (between 80 and 90%) are 
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FiGURe 2 | B-1 and B-2 cells as modulators of cardiovascular inflammation through AAb production. Left panel: B-1 B cells inhabiting the body cavities are 
interleukin-5 dependent and produce polyreactive natural antibodies, predominantly of the IgM isotype. Right panel: B-2 lymphocytes generate adaptive 
immunoglobulin under the control of inflammatory cytokine programming. Abbreviations: TH0, naive CD4+ T lymphocyte; TH1, type 1 inflammation-polarized CD4+ 
helper T lymphocyte; TH2, type 2 inflammation-polarized CD4+ helper T lymphocyte; IFN-γ, interferon gamma.

FiGURe 1 | AAbs in myocarditis and dilated cardiomyopathy. Left panel: a diagram of cardiac anatomy with relevant structures labeled, including the coronary 
arteries and associated plaques. Middle panel: a generalized schematic for AAbs in atherogenesis showing opposing roles for B-1 cell-derived IgM NAb and B-2 
cell-derived IgG iAAb. Right panel: foam cell formation and feed-forward inflammatory activation within vessel plaques through enhanced uptake of oxidized lipids 
during atherogenesis. Abbreviations: LDL, low-density lipoprotein; HDL, high-density lipoprotein; NAbs, natural antibodies; iAAb, induced autoantibodies; Ig, 
immunoglobulin; oxLDL, oxidized low-density lipoprotein; OSE, oxidation-specific epitope; RA, right atrium; LA, left atrium; IVC, inferior vena cava; SVC, superior 
vena cava; RV, right ventricle; LV, left ventricle; PA, pulmonary artery.
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NAbs (37). Characteristics of NAbs include (a) low-affinity for 
their target antigens relative to those resulting from the germinal 
center (GC) reaction and (b) polyreactivity with a wide array 
of structurally distinct cellular elements including autoantigens  
(e.g., elements of apoptotic cells and cell membrane components) 
and evolutionarily conserved microbial products (31). Of note, 
NAbs generally exhibit immunoglobulin-encoding gene segments 
in the germline configuration, indicating that their production 
is independent of somatic recombination and hypermutation  
(38, 39). Optimal development and production of NAb from B-1 
cells requires IL-5 signaling (40, 41). The association between Il5 
gene hypomorphisms in humans with ASCVD provides a puta-
tive link to B-1 B cells and NAbs in this disease process (42). NAb 
reactivity with multiple self-derived antigens has been implicated 

in conferring this benefit, with many experimental studies focus-
ing on NAb reactive to LDL derivatives (20, 32, 43–46). Despite 
multiple clinical studies supporting the ASCVD-restraining 
role for NAbs, studies demonstrating disease-promoting activ-
ity of NAbs have also been reported in both humans and in 
experi mental ASCVD (47–50). Thus, it is not possible to reach 
generalizable conclusions regarding the role for NAb during the 
initiation and progression of ASCVD. With this caveat in mind, 
selected key findings that contribute to the understanding of NAb 
function in ASCVD are described below.

Plaque-accumulated lipid and cholesterol deposits are prone 
to oxidation, both spontaneously and enzymatically. Oxidation 
of plaque constituents renders them antigenic through formation 
of oxidation-specific (neo)epitopes (OSEs) when adducted to 
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TABLe 1 | Summary of commonly studied autoantibodies in atherosclerotic cardiovascular disease.

Ab type Antigen Predominant isotype Type of antigen Promoting or restraining References

Natural Phosphatidylcholine IgM Oxidized phospholipid Restraining (64–69)
Malondialdehyde-LDL IgM >> IgG Restraining (48, 49)
Phosphorylcholine (PC) IgM (E06) and IgA (T15) Restraining (78–80)
Cardiolipin IgM and IgA >> IgG Restraining (52)

Induced Endothelial cells (AECA1) IgG Unknown Promoting (138, 146, 147)
Heat-shock protein-60/65 IgG Protein metabolites Promoting (96–98)
Apolipoprotein A-1 IgG Promoting (102, 103)

1AECA, anti-endothelial cell antibody.
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proteins within the plaques (51, 52). OSEs have been implicated 
in a variety of disease states, reviewed elsewhere (53). Some of 
the most widely studied endogenous OSEs within the context 
of ASCVD are derived from PL oxidation, including malon-
dialdehyde (MDA) and phosphocholine (phosphorylcholine 
when functionally adducted) (53). These immunogenic OSEs 
subsequently induce an inflammatory reaction within the plaque 
and vessel wall vicinity. Employing a reductionist approach based 
on these observations, researchers have generated OSEs in vitro, 
such as copper-oxidized LDL (CuOxLDL), a model antigen con-
taining heterogeneous OSEs generated through reacting purified 
LDL particles with copper sulfate (CuSO4) (54–56). CuOxLDL 
reagents have been useful for standardizing assays OSE-reactive 
AAb detection assays (56) and for clarifying OSE-induced 
immune responses through immunization in experimental 
models of ASCVD (57).

Phosphatidylcholine is ubiquitous in mice and humans and is 
a component of cell membranes and cholesterol particles (both 
HDL and LDL). It readily undergoes enzymatic oxidation by 
platelet-activating factor-acetylhydrolase (LP-PLA2) to yield 
immunogenic phosphorylcholine (PC) (58), an OSE that has 
been demonstrated to be an important inflammatory mediator in 
the setting of ASCVD, functioning through activation of T cells, 
monocytes, and endothelial cells following protein adduction 
(51, 59–63). In humans, serum levels of PC-reactive natural IgM 
(anti-PC-IgM) were inversely correlated with the risk of athero-
sclerosis, vein-graft stenosis, and stroke in the general population 
and also in patients with systemic lupus erythematosus (64–69). 
Additional studies in humans have demonstrated associations 
between alternative OSEs and their role in atherogenesis. For 
example, MDA, an OSE produced from the breakdown of 
polyunsaturated fatty acids, is a highly reactive moiety that read-
ily forms immunogenic protein adducts and is recognized by 
circulating IgM AAbs. Multiple observational studies in humans 
have demonstrated inverse correlations between MDA-reactive 
IgM AAbs and atherosclerotic disease. Specifically, low levels of 
MDA-reactive NAbs are correlated with increased carotid intima-
to-media thickness (IMT, a clinical measure of atherosclerosis 
determined using angiography) and increased risk of coronary 
artery stenosis (35, 48). These studies provide preliminary 
evidence that strategies for enhancing NAb production may be 
beneficial for combatting ASCVD.

Studies in Apoe−/− and Ldlr−/− mice have provided evidence 
for the disease-restraining role for NAbs during atherosclerosis 
initiation and progression and provide researchers with the 

ability to dissect the cellular and molecular pathways mediating 
their production. Splenectomized Apoe−/− mice developed more 
aggressive lesions than intact Apoe−/− control mice, a phenotype 
that could be rescued through adoptive transfer of B-1a cells 
(34). Importantly, this protection depended on the ability of the 
transferred B-1 cells to secrete IgM. Recently, B-1b cells were 
shown to be sufficient for atheroprotection in Apoe−/− mice 
via OSE-specific NAb production (70). The authors provided 
evidence implicating DNA-binding protein inhibitor 3 (Id3) as a 
negative regulator of B-1b cell development–conditional deletion 
of Id3 in B cells using Cd19-Cre on the Apoe−/− background led 
to increased B-1b cell numbers, increased titers of oxLDL-NAb, 
and decreased atherosclerotic lesion formation. The study was 
buttressed by the authors’ identification of a hypomorphic Id3 
polymorphism in humans that leads to elevated B-1 cell numbers 
and oxLDL-NAb levels. Interestingly, the same group previously 
reported that constitutive deficiency of Id3 significantly exacer-
bated atherogenesis (71), thus implicating potential alternative 
functions for Id3 in non-B  cell populations during the natural 
history of ASCVD.

Using spleens from Apoe−/− mice, researchers cloned of 13 
oxLDL-reactive NAb (designated “E0” Ab) (44). The E06 antibody 
generated from these studies recognizes phosphorylcholine-
adducted oxidized phospholipids (oxPL) and not free PC or 
reduced/native PLs (72). In vitro studies using the E06 antibody 
demonstrated its ability to prevent macrophage uptake of oxLDL, 
an important element of foam cell formation during athero-
genesis (73, 74). Clone E06 was later shown to competitively 
inhibit CuOxLDL binding to CD36 [a member of the scavenger 
receptor (SR) family of proteins that mediates oxLDL uptake], 
demonstrating not only that CD36 is a receptor for oxPL but also 
that oxPL-specific NAbs inhibit CD36-mediated oxLDL uptake 
(75), which may then interfere with CD36-mediated foam cell 
formation (74). The more recent observation that CD36 ligands 
promote inflammatory responses through activation of a TLR4/6 
signaling cascade provides further insight into potential path-
ways by which NAb (E06 in particular) may mediate ASCVD-
protective effects (76).

The B-1 cell-derived T15 IgA NAb clone has been studied 
extensively and was previously shown to confer enhanced 
Streptococcus pneumoniae immunity in mice through recogni-
tion of PC in the Streptococcus capsule (77, 78). Intriguingly, the 
antigen-binding domains of E06 and T15 are identical and differ 
only in isotype (79). Immunizing Ldlr−/− mice with preparations 
of S. pneumoniae significantly elevated NAb IgM titers and 
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reduced plaque development, thus demonstrating the presence 
of molecular mimicry between S. pneumoniae and oxLDL in 
addition to a potential mechanism by which NAbs generally 
restrain ASCVD progression. In addition, this and other studies 
have provided evidence for a potential vaccine for atherosclerosis 
prevention based on enhancing NAb production (80). Later 
studies showed that passive immunization of Apoe−/− mice with 
monoclonal T15 antibody resulted in significant reductions in 
the development of vein-graft atherosclerosis without altering 
serum cholesterol levels (81), establishing the potential efficacy 
of NAb-based therapies as a treatment for ASCVD.

Many of the molecular and cellular mechanisms that underlie 
the association between NAb and atheroprotection still need 
more investigation. A number of putative, and non-mutually 
exclusive, mechanisms have been proposed based on experi-
mental observations. These include binding and recognition of 
oxidized lipid adducts on the surface of apoptotic cells, thereby 
promoting plaque macrophage- and/or dendritic cell-mediated 
recognition of dead/dying cell debris (43), potentially in a process 
dependent on the complement component, C1q (82). Others have 
demonstrated a role for oxLDL-reactive NAb-mediated inhibition 
of endothelial cell (EC) activation and IL-8 (CXCL8) secretion 
in response to stimulation by dying cells (83). EC expression of 
CD36 has emerged as a potential target in vascular disease due to 
its ability to mediate pro-inflammatory activation, and immune 
cell recruitment (84, 85). It is likely that endothelial CD36 is 
involved in the ameliorative effects of NAbs in atherogenesis. One 
report indicates that oxLDL-NAbs restrain atherogenesis in the 
absence of altered plaque apoptotic cell clearance (34). Thus, it is 
highly likely that NAbs have additional functions in ASCVD that 
remain to be defined.

iAAbs MAY PROMOTe 
ATHeROSCLeROSiS

The most prevalent antibody isotype in human serum is adaptive/
induced IgG produced by B-2 cells. Within the context of CVD, 
iAAbs of the IgG isotype have been studied extensively (24). Like 
atherosclerosis-associated NAb produced during homeostatic 
conditions, iAAbs produced in the setting of inflammation and/
or infection also play a role in atherogenesis. The specific func-
tions of iAAbs are much less clear, due partly to contradictory 
conclusions within the literature. Unlike homeostatically pro-
duced NAb, production of iAAbs requires the concerted interac-
tion of multiple cell types (namely B- and T-lymphocytes and 
antigen presenting cells) and inflammatory signals (cytokines) to 
transform a naive B cell into a class-switched, somatically hyper-
mutated, and antibody-secreting plasma cell.

By contrast to the relative breadth of data demonstrating 
an atheroprotective role for B-1 cell-derived NAb, the role for 
B-2 cell-derived iAAb in atherosclerotic disease remains unre-
solved. Early studies of B cells in ASCVD initially implicated a 
disease-restraining role for B-2 cells: splenectomized Apoe−/− 
mice displayed an exaggerated atherosclerotic phenotype that 
could be rescued through adoptive transfer of splenocytes (86).  
In agreement with these observations, it was also shown that 

atherogenesis was amplified in Ldlr−/− mice reconstituted with 
BM from B cell-deficient animals (Ighm−/−, encoding μMT), rela-
tive to those reconstituted with B cell-replete, wild-type BM (87). 
In contradiction to the disease-restraining role for B-2 cells sug-
gested by these studies, it was later shown that systemic B-2 cell 
depletion with anti-CD20 mAb in either Apoe−/− or Ldlr−/− mice 
significantly reduced atherosclerotic lesion formation (88, 89).  
While multiple explanations could explain these disparate 
observations, including differences in housing conditions and 
microbiota (90), contradictory conclusions exist and are in need 
of further study. It is important to acknowledge the phenotypic 
and functional diversity of B-2 cells, which include marginal zone, 
follicular, and regulatory B cell (Bregs) subsets (91). Clarification 
of the disparate observations highlighted above will likely involve 
determining the discrete roles each of these B-2 cell subsets plays 
during the natural history of ASCVD.

Similar to B-1 cell-derived NAb, iAAbs reactive to OSE have 
been reported in both human atherosclerosis and animal models 
of it (92–95). Demonstration of a clear correlation between 
serum OSE-reactive IgG and disease severity in humans has been 
challenging; while some studies have shown weak positive cor-
relations, and others have shown none. In experimental murine 
atherosclerosis, OSE-reactive IgG titers correlate with plaque 
burden, increasing during plaque growth and decreasing during 
plaque regression (94). This correlative observation says little 
about the specific role for OSE-reactive IgG AAbs throughout the 
disease course, however. While many experimental observations 
have demonstrated a pro-atherogenic role for OSE-reactive IgG 
AAbs, their functional roles in ASCVD are far from resolved.

In addition, strategies investigating vaccination for generating 
adaptive antibody responses to ASCVD-associated epitopes have 
also shown observations that conflict with the putative disease-
promoting role for iAAbs in ASCVD (49, 57). Repeated immu-
nization of Ldlr−/− mice with MDA-adducted LDL (MDA-LDL) 
or native LDL over a period of 7 weeks followed by atherogenesis 
induction using a high-fat diet demonstrated a significant reduc-
tion in atherosclerotic lesion formation in both cases (49). While 
less dramatic in the setting of native LDL immunization, both 
immunization strategies significantly reduced lesion forma-
tion relative to saline-injected control animals. Significantly 
elevated titers of isotype-switched Ab with specificity to oxidized 
lipid products were only observed in the setting of MDA-LDL 
immunization. Both type 1 inflammation-polarized CD4+ 
helper T lymphocyte- and type 2 inflammation-polarized CD4+ 
helper T lymphocyte-associated antibody titers (IgG2a and IgG1, 
respectively) were increased in this setting, and were inversely 
correlated lesion development. Thus, these observations compli-
cate assigning an ASCVD-promoting role for iAAbs.

In addition to OSEs, HSP-60 is an autoantigen that has been of 
interest to the atherosclerosis field. In the setting of atherosclerotic 
inflammation, endothelial cells upregulate expression of HSP-60 
which displays structural similarity (i.e., molecular mimicry) 
with HSP-65 from Mycobacterium and Chlamydia spp. (13).  
In the context of before exposure or infection, the existence of an 
anti-HSP-65 antibody response provides a mechanism for induc-
tion of autoimmunity in the setting of atherosclerotic inflamma-
tion leading to upregulation of endothelial HSP-60. In support 
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of a pro-inflammatory role for HSP-65 AAbs in atherogenesis, 
induction of arterial inflammation in normocholesterolemic rab-
bits was observed following immunization with HSP-65 without 
alterations in serum cholesterol (96). In addition, Ldlr−/− mice 
on regular chow developed atherosclerotic lesions following 
intraperitoneal injections of anti-HSP-65-IgG (97). While one 
epidemiological study in humans demonstrated HSP-65-reactive 
IgG titers correlated with atherosclerosis severity (as measured 
by carotid IMT) (98), and another demonstrated no correlation 
(99). Further exploration is needed to clarify these disparate 
observations.

Antibodies against apolipoprotein A-1 (ApoA1), a main pro-
tein constituent of HDL, were initially observed in patients with 
systemic inflammatory diseases such as right atrium (RA) (100). 
While HDL levels are commonly thought of as being atheroprotec-
tive, induced IgG antibody responses to immunogenic products 
of ApoA1 degradation have demonstrated positive correlations 
with atherogenesis. HDL promotes lipid clearance and disposal 
through reverse cholesterol transport. Whether anti-ApoA1 Ab 
interfere with this process has not been determined. It was shown 
in patients with RA that circulating ApoA1-reactive IgG antibody 
titers are superior predictors of major cardiac events relative to 
more than 15 biomarkers tested in the study including serum 
HDL, LDL, triglycerides, and CRP (101). Using patient studies, 
it has been hypothesized that anti-ApoA1 IgG promotes inflam-
matory activation through stimulation of a toll-like receptor 
2-TLR4-NFκB signaling axis in innate immune cell populations 
(102). Later, it was observed in humans that resting heart rate 
(a prognostic marker used in assessing patients following MI) 
was inversely correlated with anti-ApoA1 IgG titers. Expanding 
on these observations, when rat cardiomyocytes were cultured 
in the presence of aldosterone with or without anti-ApoA1 IgG 
Ab, and spontaneous contraction was shown to decrease in an 
anti-ApoA1 IgG dose-dependent fashion (103). While additional 
studies are necessary to dissect the mechanisms that underlie 
these observations, anti-ApoA1 IgG AAbs also appear to be a 
potential therapeutic target in ASCVD treatment.

A hallmark of late-stage atherosclerotic disease in humans 
and experimental atherosclerosis is the development of arterial 
tertiary lymphoid organs (ATLOs) in the adventitia at the sites of 
plaque formation (104–106). An attractive hypothesis to explain 
their genesis rests on a compensatory response to chronic inflam-
matory stimulation. The definitive functional role of ATLOs in the 
context of atherosclerotic disease has long eluded the CV research 
community. Recently, multiple studies have attempted to address 
this. Using Apoe−/− mice on a Western diet, the authors elegantly 
demonstrate that ATLO contain a T-follicular-helper (TFH)-GC 
B  cell-axis that that governs lesion formation and promotes 
exacerbated disease. The authors additionally demonstrated the 
ATLO TFH-GC B cell-axis is restrained through CD8+ regulatory 
T cells that are restricted to the non-classical major histocompat-
ibility complex Qa-1 [the mouse ortholog of human leukocyte 
antigen-E] (105). Another study from the same year reached the 
opposite conclusion about the function of ATLO in Apoe−/− mice 
(106). Therein, the authors concluded that ATLO formation 
restrains atherosclerosis; disruption of ATLO formation through 
conditional deletion of the lymphotoxin-β receptor in vSMCs 

exacerbated lesion formation (106). The humoral consequences 
of disrupting ATLO formation were beyond the scope of the 
study in question. Nonetheless, the opposing conclusions reached 
by these two studies are in need of further clarification. Resolving 
the role of ATLO in ASCVD will contribute to the understanding 
of humoral immunity and AAbs in this context.

MYOCARDiTiS AND DCM: THe ROLe  
OF AAbs

Myocarditis is inflammation of the myocardium and its most 
common sequela is DCM (107). DCM is the most common cause 
of heart failure in children and young adults, and it is thought 
that as many as one in three cases of myocarditis progress to 
DCM (108). While not all cases of myocarditis result in DCM 
and while not all cases of DCM are the result of myocarditis, 
there exists a clear link between the two disease manifestations 
in a significant proportion of cases. Due to this connection, 
substantial research emphasis has been placed on understanding 
DCM immunopathogenesis and how it progresses from myocar-
ditis. It is currently believed that autoimmune-mediated DCM 
represents the major subtype of the disease (109) with emerging 
evidence that type 3 inflammatory signals [i.e., those mediating 
CD4+ T-helper (TH) polarization toward a TH17 phenotype] play 
a critical role in its pathogenesis (110–114).

Clinical studies have associated multiple AAbs with myocar-
ditis and DCM. This topic has been reviewed in extensive detail 
elsewhere (115). IgG AAbs directed against the β1-adrenergic 
receptor (β1AR) were detected in the sera of DCM patients and 
shown to inhibit catecholamine binding when cultured with 
rat cardiomyocytes in  vitro, whereas sera from patients with 
ischemic CM, VHD, and healthy controls demonstrated no effect 
(116). A later study using a synthetic peptide derived from an 
extracellular domain of β1AR demonstrated elevated anti-β1AR 
AAbs in the sera of DCM patients relative to controls (31 versus 
12%, respectively) (117). Interestingly, anti-β1AR AAbs were 
also detectable in the healthy control group, demonstrating that 
the mere presence of anti-β1AR is not predictive of pathology. 
When Japanese white rabbits were immunized with a synthetic 
peptide corresponding to an extracellular domain of the β1AR, 
induction of anti-β1AR IgG production was observed (118). 
Purified anti-β1AR IgG from these animals inhibited catecho-
lamine responsiveness when cultured on rabbit cardiomyo- 
cytes. At 6-months post-immunization, cardiac hypertrophy 
and abnormal hemodynamics were seen. Additional analyses 
indicated evidence of anti-β1AR AAb-mediated adrenergic over- 
stimulation leading to compensatory downregulation of β1AR 
expression, and concomitant upregulation of proteins that 
inhibit β-adrenergic signaling, thus laying the groundwork for a 
disease-exacerbating positive feedback loop. An additional study 
in a limited patient population demonstrated that a significant 
proportion (36%) of DCM patients with circulating anti-β1AR 
IgG also exhibited elevated anti-M2-muscarinic receptor 
(M2AChR) IgG AAbs (119). Relative to serum samples from 
control patients, anti-M2AChR IgG AAbs were significantly 
elevated in the context of DCM (39% in DCM versus 8% in 
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TABLe 2 | Summary of the most commonly studied cardiac-related 
autoantibodies in myocarditis and cardiomyopathy.

Antigen Proposed pathological mechanism References

Acetylcholine receptor Negative inotropy and bradycardia (128)

Actin Undefined (127)

Adenine-nucleotide 
transporter

Metabolism inhibition (125)

β1-adrenergic-R Negative inotropy (116, 117)

Heat-shock protein-60 Increased recognition clearance of 
stressed cardiomyocytes

(127, 131)

Laminin Undefined (133)

M2 muscarinic AChR Negative inotropy (119, 120)

Mitochondrial M7 Undefined (124)

α/β Myosin heavy chain Negative inotropy and failure of thymic 
self-tolerance

(129, 130)

Myosin light chain-1 Undefined (127)

Na-K ATPase Arrhythmogenicity (126)

Sarcoplasmic 
reticulum-Ca-ATPase

Metabolism alterations (132)

Tropomyosin Undefined (127)

Troponin Negative inotropy (11, 121–123)
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controls) (119). In the myocardium, muscarinic and adrenergic 
signaling exert opposing effects, with muscarinic signaling 
exhibiting negative inotropic and chronotropic effects and 
adrenergic signaling doing the opposite. Overstimulation and 
desensitization of each pathway have been postulated as a func-
tional consequence of circulating anti-M2AChR and anti-β1AR 
AAbs, ultimately leading to heart failure (118, 120). Additional 
studies confirming these hypotheses are needed, however. 
Additional cardiac-related autoantigens with established AAb 
reactivity in human DCM include cTnI (11, 121–123), mito-
chondrial M7 (124), adenine-nucleotide transporter (ANT) 
(125), Na-K ATPase (126), actin (127), acetylcholine receptor 
(128), α/β Myosin heavy chain (129, 130), myosin light chain-1 
(127), HSP-60 (131), sarcoplasmic reticulum Ca2+-ATPase 
(SR-Ca2+-ATPase) (132), laminin (133), and tropomyosin (127). 
A summary of the most studied antigens observed in myocar-
ditis and cardiomyopathy can be found in Table 2. The primary 
mechanism by which AAbs exacerbate disease in DCM remains 
unknown, however, and alternative explanations exist to explain 
their roles that include to target neutralization and adaptation to 
persistent stimulation.

Again, underscoring the inflammatory nature of this DCM, 
as many as one out of three cases of myocarditis ultimately pro-
gresses to DCM. The concept of molecular mimicry is central to 
the understanding of autoimmune responses to cardiac antigens 
and multiple infectious agents have been identified with elements 
bearing epitope similarity to them (134). Known infectious causes 
of human myocarditis that exhibit molecular mimicry of cardiac 
antigens include Trypanosoma cruzi (135), parvovirus B19 (136), 
coxsackievirus (15), and Borrelia spp. (137). In each case, cardiac 
myosin appears to contain dominant epitopes bearing structural 
similarity to pathogen-derived antigens.

Rheumatic heart disease (RHD) provides a prototypical 
example of molecular mimicry in CM. In RHD, untreated 

and repeated infections with Streptococcus pyogenes [group A 
strep (GAS)] may lead to acute rheumatic fever characterized 
by a constellation of symptoms resembling many rheumatic 
conditions including polyarthritis, in addition to carditis (138).  
RF progresses to chronic RHD in as many as 50% of patients (139). 
Cross-reactivity between GAS and components of cardiac proteins 
is currently accepted as a key driver of RHD (140). Determination 
that M proteins (one of the major virulence factors expressed by 
GAS) exhibit structural similarity with cardiac myosin provided 
critical insight into the nature of RHD (141). Since, it has been 
shown that components of GAS [including its carbohydrate 
antigen and N-acetyl-β-d-glucosamine (GlcNAc) (142, 143)] 
display molecular mimicry with additional cardiac antigens, 
such as laminin (144), tropomyosin (145), the endothelium 
(146–148), and others, including those restricted to the cardiac 
valves (144). Generation of adaptive Ab responses to infections 
with cross-reactivity to cardiac antigens is a critical element of 
post-infectious myocarditis and its common sequela DCM.

Much of the understanding of infectious myocarditis and 
DCM has been garnered from animal models of experimental 
autoimmune myocarditis (EAM). Inflammatory HD with many 
histologic features of RHD (including pan-carditis, granuloma-
tous lesion formation, the presence of Anitschkow cells, and late-
stage valvular scarring) was accomplished by immunizing mice 
via intraperitoneal injections of a sonicated preparation of GAS 
(149). Refining the experimental approach, the Cunningham 
group developed a rat model of RF/RHD based on immuniza-
tion of Lewis rats with purified M protein (150–152). In addition 
to myocardial inflammation, cardiac valve pathology was also 
observed in these studies. In addition, identification of CD4+ 
T cells with M protein cross-reactivity lent further insight into 
mechanisms by which infection may induce an adaptive AAb 
response via the support of CD4+ T cell help. The specific cel-
lular and molecular mechanisms by which cardiac-reactive AAbs 
mediate tissue destruction in these model systems (and in human 
RHD) remain unclear, however. Future investigation of EAM 
models that utilize conditional and constitutive gene deletion 
will be useful for mechanistic studies and clarification of these 
observations.

Multiple viruses (enteroviruses, most commonly) have been 
established as causative agents of myocarditis/DCM. The most 
well-studied of these is coxsackievirus B3 (CVB3), a cytolytic 
enterovirus with cardiotropism (153). The presence of detectable 
enteroviral genomic material and enteroviral-reactive Ab has 
been observed in as many as 70% of DCM patients (15). In CVB-
induced EAM, it has long been known that anti-cardiac myosin 
AAbs are generated during the disease course and that cardiac 
myosin-reactive AAb titers correlate with myocarditis severity 
(154). It is unclear what functional role anti-cardiac myosin AAbs 
play during the course of viral myocarditis/DCM; a lack of cross-
reactivity between cardiac myosin-reactive AAbs and CVB3 was 
reported, thus contradicting the mimicry hypothesis as a driver 
of CVB3-myocarditis/DCM (155). It has been postulated that, 
rather than participating as active promoters of enteroviral-
induced cardiac damage, AAbs generated during CVB3 infection 
are bystanders in the disease process, with their titers reflecting 
the degree of tissue damage (153). CVB3 has also been shown 
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to share moderate sequence homology to mitochondrial ANT, 
a postulated alternative target of molecular mimicry during 
CVB3-induced EAM (156). In a limited cohort, anti-ANT AAbs 
were observed in 94% of DCM patients (125). Additional work is 
needed to determine whether this represents a clinically relevant 
antigen for AAb targeting in viral myocarditis/DCM.

Spontaneous endocarditis and valvular carditis occur with 
complete penetrance in the T  cell receptor (TCR) transgenic  
K/B.g7 mouse line (also referred to as K/BxN in some studies), 
without immunization or infection (157). Thus, this model 
provides a useful tool for dissecting the cellular and molecular 
mechanisms that underpin cardiac pathology in the setting of 
sterile systemic inflammation. K/B.g7 mice exhibit expression 
of a transgenic TCR termed “KRN” that recognizes a peptide 
derived from the self-protein glucose-6-phosphate-isomerase 
(GPI, a ubiquitous metabolic enzyme) presented in the context 
of the I-Ag7 major histocompatibility complex II molecule 
from the non-obese-diabetic mouse strain (158–160). Systemic 
GPI-specific T  cell activation leads to production of high-titer 
anti-GPI IgG AAbs. K/B.g7 mice develop erosive polyarthritis, 
endocarditis, and fibrotic valvular carditis with a left-sided 
predilection, primarily affecting the mitral valve (MV) (157, 
161). It was demonstrated that macrophages are the key cellular 
mediators of valve pathology in K/B.g7 mice; animals treated 
systemically with macrophage-depleting clodronate liposomes 
were protected from MV disease (MVD) (161). Using constitu-
tive gene deletion approaches, our group demonstrated that 
activating IgG receptors (FcγRs), specifically FcγRIII (CD16) and 
FcγRIV (CD16.2), act redundantly and are required for MVD; 
protection from disease occurs only in the absence of both (161). 
These results support a model whereby circulating IgG AAbs 
mediate cardiac inflammation through macrophage activation 
downstream of activating FcγR-mediated recognition of circulat-
ing IgG AAbs. Additional studies employing conditional gene 
deletions to dissect the key functional consequences induced 
in macrophages following IgG AAb recognition have provided 
important insight into mechanisms by which AAbs contribute to 
experimental VHD (162). Samples from patients with RHD were 
used to demonstrate correlations of the authors’ experimental 
observations to human inflammatory VHD.

FUTURe DiReCTiONS

Mechanistic insight is needed to better understand the role for 
AAbs in CV pathology. Studies pursuing mechanistic rather 
than descriptive and/or correlative insight will be critical for 
rectification of the seemingly conflicting observations, and 
conclusions that have been seen and reached. Identification of 
therapeutically targetable elements of AAb generation in CVD 
will require cellular and molecular mechanistic insight. Gene 
deletion approaches, both constitutive and conditional, for 

experimental dissection of the pathways by which AAbs func-
tion in the heterogeneous manifestations of CVD will likely 
prove useful to this field. Significant questions that remain unan-
swered include: what determines the quality (i.e., isotype and 
affinity) and quantity (i.e., circulating titers) of an Ab response 
in the setting of CV inflammation, and how do these antibody 
responses engage additional immune cells to restrain or promote 
CV immunopathology. Finally, how does the interplay between 
CVD-associated Ab and the discrete inflammatory lineages 
with which they engage ultimately interface with the underlying 
tissue parenchyma (e.g., myocardium and blood vessel wall) to 
promote or restrain detrimental CV remodeling (e.g., plaque 
formation and fibrosis). Employing lineage-specific gene dele-
tion approaches (e.g., Cre-loxP recombination) will undoubtedly 
prove illuminating. Finally, progress within this field will be well 
served by demonstrating clinical relevance through correlation 
of experimental observations to human disease. In addition to 
their rarity, samples from human disease states are often logisti-
cally complicated to acquire. Despite this, the potential insight 
that can be gained from correlations between experimental 
disease models and human pathology cannot be underscored. 
Future progress in this field will ultimately be made through 
clinical translation. Thus, complementing mechanistic work in 
experimental models with observations in inflammatory human 
CV pathology will be critical.

CONCLUSiON

There is substantial evidence for the disease-modulating role 
that AAbs have in CVD. Despite the breadth of evidence, there is 
little consensus regarding the specific functions that AAbs have 
in the various forms of CVD in which they are implicated, and 
numerous conflicting observations and hypotheses have been 
reported. A large majority of studies have been observational or 
correlative, rather than mechanistic, and therefore have not trans-
lated into therapeutic strategies for human CVD. The field now 
needs to focus on how these AAbs engage particular molecular 
and cellular immune components to influence disease severity; 
the insights provided by this approach will point the way to new 
therapeutic options.
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