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Abstract
Hypertrophic cardiomyopathy (HCM) is a chronic, progressive disease of the cardiomyocyte with a diverse and heterogeneous 
clinical presentation and course. This diversity and heterogeneity have added to the complexity of modeling the pathophysi-
ological pathways that contribute to the disease burden. The development of novel therapeutic approaches targeting precise 
mechanisms within the underlying biology of HCM provides a tool to model and test these pathways. Here, we integrate 
the results of clinical observations with mavacamten, an allosteric, selective, and reversible inhibitor of cardiac myosin, 
the motor unit of the sarcomere, to develop an integrated pathophysiological pathway model of HCM, confirming the key 
role of excess sarcomeric activity. This model may serve as a foundation to understand the role of HCM pathophysiologi-
cal pathways in the clinical presentation of the disease, and how a targeted therapeutic intervention capable of normalizing 
sarcomeric activity and repopulating low-energy utilization states may reduce the impact of these pathways in HCM and 
potentially related disease states.

Key Points 

The pathophysiology of hypertrophic cardiomyopathy 
(HCM) is complex and not yet fully understood.

Mavacamten is a first-in-class, selective, cardiac myo-
sin inhibitor that improved function and symptoms in 
patients with HCM.

We used established biological pathways and the results 
of clinical observations with mavacamten to build an 
integrated pathophysiological pathway model of HCM.

1 Introduction

1.1  Genetics

Hypertrophic cardiomyopathy (HCM) is a chronic, progres-
sive disease of the cardiomyocyte that leads to increased 
ventricular wall thickness, with a diverse and heterogeneous 
clinical presentation and course. Although the pathophysiol-
ogy of HCM is complex and multifactorial [1], HCM is now 
generally recognized as a disease caused by dysfunction of 
the sarcomere, the basic contractile apparatus of the heart 
muscle. Indeed, approximately 40% of affected individuals, 
and a significant portion of those with a family history of 
clinical disease, have at least one mutation in one or more 
genes that encode sarcomere proteins [2–5]. Moreover, sys-
tolic hyperactivity and diastolic dysfunction in HCM have 
been reported regardless of etiology [6, 7], and often herald 
the clinical onset of the disease [8]. In most cases, myofi-
brillar dysfunction resulting from excess sarcomeric myo-
sin–actin cross-bridge formation during systole and, more 
importantly, diastole, leads to hypertrophy, hypercontractil-
ity, and impaired relaxation as well as to myocardial inef-
ficiency and unproductive energy consumption [9].
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1.2  Pathophysiology

In the healthy heart, 40–50% of the myosin heads are in the 
‘off state’ with negligible energy consumption, whereas in 
HCM there is a shift in this ratio, with only 15–20% of the 
myosin heads being in this ‘off state’ [10–12]. The extra 
myosin heads in the ‘on state’ not only consume more aden-
osine triphosphate (ATP) (i.e., energy), but are also primed 
to interact with actin. These effects combine to cause excess 
myosin–actin cross-bridges during both systole and diastole, 
leading to inefficient hyperdynamic contraction and dias-
tolic dysfunction [13]. This sustained sarcomeric hyper-
activity activates pro-hypertrophic, pro-inflammatory, and 
pro-fibrotic pathways, resulting in progressive myocardial 
remodeling, characterized by fibrosis, myofilament disarray, 
and elevated stresses [13–15].

In a subset of patients with HCM, these functional 
derangements and their associated altered intraventricular 
hemodynamics can combine with septal hypertrophy, and/or 
morphological abnormalities of the mitral valvular appara-
tus, favoring anteriorly displacing forces which may lead to 
systolic anterior motion (SAM) of the mitral valve [16]. This 
combination triggers an obstruction to blood flow, creating 
a pressure gradient through the left ventricular outflow tract 
(LVOT), termed obstructive HCM (oHCM) [17]. In other 
cases, obstruction is due to dynamic narrowing within the 
left ventricular (LV) chamber driven by hypertrophy.

1.3  Current Management

Because the LVOT gradient is dynamic, reflecting increases 
in obstructing/anteriorly displacing forces that can occur 
with changes in heart rate, contractile force, and/or loading 
conditions, patients with oHCM are currently prescribed 
negative chronotropes and inotropes (non-vasodilating 
beta-blockers, non-dihydropyridine calcium channel block-
ers, and/or disopyramide). In cases refractory to pharmaco-
logical treatment, invasive therapies such as alcohol septal 
ablation or myectomy can relieve the structural obstruction. 
Conversely, in non-obstructive HCM (nHCM), the thickened 
heart muscle does not block blood outflow from the left ven-
tricle, but does result in impaired relaxation and diastolic 
dysfunction, which is thought to play an important role in 
nHCM pathophysiology. Interestingly, impaired relaxation, 
associated with LV hypertrophy, is also observed in heart 
failure with preserved ejection fraction.

Responses to mavacamten, a first-in-class, precision 
intervention that directly targets the cardiac sarcomere and 
restores its organization and function to a natural state, allow 
us to confirm the role of the sarcomere and to refine our 
understanding of the pathology of HCM. Both preclinical 
(in vitro and in vivo) and clinical data begin to uncover the 

potential inter-relationship between HCM’s impacts on sys-
tolic and diastolic function and, potentially, extend a frame-
work for studying mechanistically related disease states.

1.4  Mavacamten: A Cardiac Myosin Inhibitor

Mavacamten is an allosteric, selective, and reversible inhibi-
tor of cardiac myosin, the motor unit of the sarcomere [18]. 
Mavacamten decreases the number of myosin heads that can 
enter the on-actin (power-generating) state, thus reducing the 
probability of cross-bridge formation in HCM, and shifts the 
overall myosin population towards the energy-sparing ‘off 
state’ (see the Electronic Supplementary Material, Fig. S1) 
[12]. Consequently, and as observed in preclinical studies, 
mavacamten decreases overall ATP turnover (utilization) at 
the sarcomere level, reduces diastolic tensions, and promotes 
relaxation. As a result of these direct, salutary diastolic, sys-
tolic, and energy-sparing attributes, mavacamten increases 
the ventricular chamber size and reduces the velocity of 
myocardial contraction. This reduces anteriorly displacing 
forces that favor SAM and, therefore, creates an optimal 
intraventricular mechanical environment to reduce LVOT 
obstruction [12, 18, 19].

Because mavacamten has been studied in patients with 
oHCM and in patients with nHCM, we have aimed to map 
the related findings to pathophysiological pathways, exam-
ining the effects of pharmacological therapy that may be 
directly related to the impact of HCM on systolic and dias-
tolic function [20–22]. In compiling the pathways, we aimed 
to describe a potential interdependent systolic and diastolic 
pathophysiology of HCM, and the resultant potential impact 
of cardiac myosin-directed intervention.

2  Data Source

2.1  Studies

Data from five phase 2/3 clinical trials of mavacamten were 
examined; these studies were as follows: PIONEER-HCM 
(NCT02842242) [20]; PIONEER-open-label extension 
(OLE) ( NCT03496168; data cut-off June 4, 2020) [23]; 
MAVERICK-HCM (NCT03442764) [21]; EXPLORER-
HCM (NCT03470545) [22] and its cardiac magnetic reso-
nance (CMR) sub-study [24]; and MAVA-long-term exten-
sion (LTE) (NCT03723655; data cut-off October 30, 2020) 
[25]. Most patients enrolled in these studies were receiving 
background HCM treatments (beta-blockers and/or non-
dihydropyridine calcium channel blockers). The designs 
and study populations are summarized in Table 1. Briefly, 
MAVA-LTE is an ongoing, extension study of mavacamten 
in patients who completed either EXPLORER-HCM or 
MAVERICK-HCM. Site personnel and patients remained 
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blinded to treatment assignment and dosing in the respective 
parent studies.

2.2  Study Population

Overall, 331 unique patients were enrolled in the five clini-
cal studies; the majority of patients participated in one of 
the extension studies. Each parent study included a post-
treatment washout period of 4 weeks (PIONEER-HCM) 
or 8 weeks (MAVERICK-HCM and EXPLORER-HCM), 
and subsequent re-screening and enrolment into the respec-
tive extension studies. Eligible patients were 18 years old 
or older (and < 70 years for the PIONEER-HCM study 
only). All patients must have received a diagnosis of HCM 
(hypertrophied and non-dilated left ventricle in the absence 
of systemic or other known cause) with a maximum LV wall 
thickness of 15 mm or more at screening, or 13 mm or more 
with a positive family history of HCM. Patients in the MAV-
ERICK-HCM study were required to have LVOT gradients 
under 30 mmHg at rest, during Valsalva maneuver, and post-
exercise with no interventricular gradient (obstruction below 
the level of the LVOT [e.g., mid-cavity]). Eligible patients in 
the PIONEER-HCM study had a resting LVOT gradient of 
30 mmHg or higher and a post-exercise LVOT gradient of 50 
mmHg or higher, and these patients were eligible to enroll in 
the PIONEER-OLE study. Patients in the EXPLORER-HCM 
study had a Valsalva gradient of 30 mmHg or higher and 
at least one peak LVOT gradient of 50 mmHg or higher at 
rest, after Valsalva maneuver, or post-exercise. LV ejection 
fraction (LVEF) must have been 55% or more at baseline in 
all patients. The full eligibility criteria have been described 
previously [20–22]. Upon completion of the MAVERICK-
HCM and EXPLORER-HCM studies, patients were eligible 
to enroll in the MAVA-LTE study.

2.3  Treatments

In total, 163 unique patients received mavacamten (PIO-
NEER-HCM, n = 21; PIONEER-OLE, n = 13; MAVER-
ICK-HCM, n = 40; EXPLORER-HCM, n = 123) and 147 
received placebo (MAVERICK-HCM, n = 19; EXPLORER-
HCM, n = 128). In addition, the 267 patients who enrolled 
in MAVA-LTE (data cut-off October 30, 2020) all received 
mavacamten. This includes 224 patients from EXPLORER-
HCM (112 of whom previously received placebo) and 43 
patients from MAVERICK-HCM (15 of whom previously 
received placebo). A summary of the dosage regimen used 
in each study is presented in the electronic supplementary 
material (Supplementary Table S1).

2.4  Outcomes

The outcomes of interest for the present article were as 
follows: LVOT gradient (for oHCM); maximum LV wall 
thickness; early diastolic mitral annular velocity (e´) and the 
ratio between early mitral inflow velocity (E) and e´; minute 
ventilation to carbon dioxide production slope (VE/VCO2); 
left atrial (LA) volume index (LAVI); N-terminal pro B-type 
natriuretic peptide (NT-proBNP) level; and cardiac troponin 
I (cTnI) level (Table 1).

3  Observations/Findings

3.1  Sarcomeric Hyperactivity and LVOT Obstruction

In oHCM, the asymmetrically hypertrophied septum can 
lead to a dynamic systolic obstruction, commonly at the 
LVOT, that requires increased cardiac work to maintain 
cardiac output (Fig. 1A). Because the dynamic obstruction 
is the result of HCM-mediated hypertrophy, sarcomeric 
hyperactivity, and hypercontractility, the need to increase 
work (contractile force) to sustain cardiac output can result 
in a maladaptive positive feedback loop that may further 
increase sarcomeric overdrive and the obstruction (Fig. 1A) 
[26, 27]. Therefore, the reduction in sarcomeric hyperactiv-
ity and hypercontractility observed with mavacamten, meas-
ured by a normalization in LVEF, would be expected to lead 
to a decrease in peak LVOT gradients.

Indeed, mavacamten lowered the LVEF in patients with 
HCM, bringing it within the normal range in PIONEER, 
MAVERICK-HCM, EXPLORER-HCM, and MAVA-LTE 
(see the electronic supplementary material, Supplementary 
Table S2). Additionally, mavacamten was shown to decrease 
peak LVOT gradients in patients with oHCM [20, 22]. In 
the EXPLORER-HCM study, the mean (standard deviation) 
changes in post-exercise and Valsalva LVOT peak gradi-
ent from baseline to week 30 were − 47 (40) mmHg and 
– 49 (34) mmHg, respectively, in the mavacamten group 
and − 10 (30) mmHg and − 12 (31) mmHg, respectively, 
in the placebo group (Fig. 1B) [22]. These findings were 
confirmed in the MAVA-LTE study at week 48. In addi-
tion, in EXPLORER-HCM, more patients receiving mava-
camten (80.9%; n = 76/94) versus placebo (34.0%; n = 
33/97) showed complete resolution of mitral valve SAM 
after 30 weeks (difference, 46.8%; p < 0.0001) [28]. The 
changes in LVOT peak gradients from baseline to end of 
treatment observed in the PIONEER-HCM, PIONEER-OLE, 
EXPLORER-HCM, and MAVA-LTE studies are presented 
in the electronic supplementary material (Supplementary 
Table S2). Notably and consistent with the normalization 
of sarcomeric activity, overall contractile state, and load-
ing conditions, patients treated with mavacamten displayed 
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greater improvements in peak oxygen consumption (pVO2), 
a multidimensional index dependent on cardiac output, than 
those receiving placebo [22].

3.2  Sarcomeric Hyperactivity and LV Hypertrophy

The sarcomeric hyperactivity that occurs in HCM and that 
leads to hypercontractility of the heart has also been linked 
to an increase in pro-hypertrophic signaling [29], which in 
turn results in LV hypertrophy (Fig. 2A). Maximum LV 
wall thickness is a commonly accepted indicator of LV 
hypertrophy.

NT-proBNP, a biomarker of pro-hypertrophic signaling, 
is an inactive, stable peptide synthesized primarily in the left 
ventricle in response to increased wall tension, and plasma 
levels of NT-proBNP have been positively correlated with 
cardiac filling pressure [30, 31]. Owing to the mechanism 
of action of mavacamten and based on the relationships 
described above, a reduction in hypercontractility follow-
ing treatment with mavacamten, as measured by change in 
LVEF, would be expected to lead to a decrease both in pro-
hypertrophic signaling and in LV hypertrophy, as measured 
by plasma levels of NT-proBNP and maximal LV wall thick-
ness, respectively.

Mavacamten treatment significantly reduced plasma NT-
proBNP levels from baseline to end of treatment in both the 
oHCM and the nHCM studies, including PIONEER-HCM, 
PIONEER-OLE, MAVERICK-HCM, EXPLORER-HCM, 
and MAVA-LTE (Fig. 2B; Electronic Supplementary Mate-
rial, Supplementary Table S2), and reductions in the cardiac 
gene expression of natriuretic peptide precursors following 
mavacamten treatment were observed in a mouse HCM 
model [19].

In the EXPLORER-HCM CMR sub-study, mavacamten 
was associated with a greater reduction in maximal LV wall 
thickness measured by CMR than placebo (Fig. 2C; Supple-
mentary Table S2), although the LV wall thickness remained 
in the hypertrophic range [24, 32]. It should be noted that 
only a small number of patients were enrolled in the CMR 
sub-study, and that although the change in LV wall thickness 
associated with mavacamten was statistically significant, it 
was small and should therefore be interpreted with caution. 
However, a reduction in LV wall thickness with mavacamten 
treatment was also observed in a model of HCM in heterozy-
gous mice harboring a human mutation in the myosin heavy 
chain [19].

3.3  LV Hypertrophy and Relaxation

LV diastolic dysfunction is another hallmark of HCM that 
can be characterized by impaired relaxation [33–35]. LV 
hypertrophy has been shown to be a major contributing fac-
tor to impaired relaxation (Fig. 3A) [36–39]. Avegliano et al. 
reported an association between LV hypertrophy and the 
degree of diastolic dysfunction using tissue Doppler echo-
cardiography methods [40]. Moreover, Wigle et al. showed 
a direct correlation between LV end-diastolic pressure and 
the extent of LV hypertrophy, and Chacko et al. reported a 
correlation between maximum LV wall thickness and dias-
tolic function using CMR [41, 42]. Finally, Finocchiaro et al. 
also demonstrated a positive correlation between diastolic 
dysfunction and the degree of hypertrophy [43]. In addi-
tion, there is evidence that LV hypertrophy is associated 
with diastolic dysfunction and impaired relaxation (Fig. 3A) 
[44, 45]. However, it should be noted that other factors such 
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as abnormal calcium handling, structural remodeling, fibro-
sis, and/or inflammation can alter ventricular relaxation and 
filling.

Reduced and delayed e’ velocity is associated with 
impaired myocardial relaxation, while the E/e´ ratio meas-
ured by echocardiography is a commonly used surrogate 
of LV filling pressure, and both are central to the evalu-
ation of diastolic function [46–48]. As such, an elevated 
E/e´  ratio is a good indicator of impaired relaxation of the 
heart, with healthy individuals presenting a ratio of less than 
8, and a ratio over 14 suggesting elevated filling pressure 
and hindered relaxation [49]. Interestingly, Badran et al. 
demonstrated that the E/e´  ratio was a powerful independ-
ent predictor of cardiac events in patients with HCM [50]. 
Overall, the ability of mavacamten to increase e´  (Fig. 3B) 
and to reduce the E/e´  ratio provides further evidence to 
support the interrelationship between LV hypertrophy on 
one hand and impaired relaxation of the heart on the other 
(see the Electronic Supplementary Material, Supplementary 
Table S2) [21, 22].

3.4  Impaired Relaxation, Increased Preload 
and LA Volume, and Risk of Atrial Fibrillation 
and Elevated Pulmonary Pressure

Impaired relaxation increases ventricular filling pressure, as 
seen by the elevated measures of E/e´  described above and, 
therefore, diastolic stresses. Moreover, Appleton et al. have 
reported an association between increased LV filling pres-
sure and LA enlargement in patients with cardiac disease 
[51]. It is well established that increased LAVI is associated 
with an increased risk of atrial fibrillation (AF) in patients 
with HCM (Fig. 4A) [52, 53]. Indeed, Tani et al. reported 
that LA volume was the most sensitive predictor for the 
occurrence of paroxysmal AF in patients with HCM [54]. 
In a retrospective longitudinal analysis, Debonnaire et al. 
showed that LA diameter and volume were positively cor-
related with new onset of AF in patients with HCM [55]. 
Interestingly, Costabel et al. demonstrated that the E/e´  ratio 
as well as LA enlargement were strong, independent predic-
tors of AF [56]. Both elevated E/e´  and LA enlargement 

were observed at baseline in the patients with HCM enrolled 
in mavacamten clinical studies.

Consequently, mavacamten would be expected to 
decrease LA volume through its capacity to promote 
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relaxation, among other potential mechanisms. Indeed, 
results from PIONEER-OLE, EXPLORER-HCM, and the 
EXPLORER-HCM CMR sub-study showed reductions in 
LAVI in patients with oHCM (Fig. 4B; Electronic Supple-
mentary Material, Supplementary Table S2) [24, 28]. The 
effect on LAVI was not observed during the 16-week MAV-
ERICK-HCM study in nHCM, possibly owing to the short 
duration of the study, but reductions have been observed 
in the MAVA-LTE MAVERICK cohort over longer peri-
ods of treatment (Supplementary Table S2) [21, 57]. In 
EXPLORER-HCM, the rates of AF were similar between 
the mavacamten and placebo groups [22]. The impact of 
mavacamten on the occurrence of AF is being investigated 
through ongoing observation of AF events in the MAVA-
LTE study.

Furthermore, increased LV filling pressure in HCM could 
lead to elevated pulmonary pressures, which can manifest by 

an abnormal ventilatory response to exercise. The VE/VCO2 
slope is a measure of ventilatory efficiency and can be used 
to identify an abnormal ventilatory response [58]. The reduc-
tion in VE/VCO2 slope observed in patients with sympto-
matic oHCM who were enrolled in the PIONEER-HCM and 
EXPLORER-HCM studies [20, 22] and who were treated 
with mavacamten may be indicative of reduced pulmonary 
congestion. However, VE/VCO2 slope is a complex biologi-
cal parameter comprising several determinants which might 
also have influenced the improvements in ventilatory effi-
ciency observed. Furthermore, improvements in the HCM 
Symptom Questionnaire (HCMSQ)-Shortness-of-Breath 
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sub-score and in the numerical rating scale (NRS) dyspnea 
score have been reported in the EXPLORER-HCM and PIO-
NEER studies, respectively, reinforcing the potential for a 
mechanistic correlation [20, 22].

3.5  Hypertrophy, Myocardial Ischemia/injury, 
and Fibrosis

The hypertrophied ventricular myocardium has an increased 
myocardial oxygen demand leading to abnormal myocardial 
blood flow, which can be regarded as a surrogate for myocar-
dial ischemia in patients with HCM [59]. Because increases 
in troponin levels show high specificity for myocyte cell 
death, cTnI and cardiac troponin T (cTnT) are strong and 
specific indicators of myocardial injury, and are well-estab-
lished biomarkers of ischemia and cardiac injury [60, 61]. 
Additionally, altered energetics observed in HCM are char-
acterized by an increase in glucose uptake, which reflects an 
impaired metabolism and has been linked to troponin release 
in HCM [62]. In patients with HCM, altered energetics have 
also been proposed as a potential mechanism driving fibrosis 
[63], which is a histopathological hallmark of HCM and is 
regarded as a consequence of ischemic and hemodynamic 
stressors [64]. The non-invasive assessment of myocardial 
extracellular volume (ECV) fraction by CMR is an estab-
lished measure of interstitial fibrosis [65, 66].

Although the exact cause of troponin release in HCM is 
still unresolved, owing to its beneficial effect on hypertro-
phy and in accordance with the aforementioned relationships 
(Fig. 5A), mavacamten would be expected to reduce the 
level of myocardial ischemia/injury and fibrosis, and there-
fore the levels of injury biomarkers (such as cTnI and cTnT) 
and ECV observed in patients with HCM. Indeed, reductions 
in cTnI level have been reported in the MAVERICK-HCM 
and EXPLORER-HCM studies (Fig. 5B; Electronic Sup-
plementary Material, Supplementary Table S2).

3.6  Proposed Integrated Model of HCM Clinical 
Pathophysiology

Because HCM has an impact on multiple pathophysiologi-
cal pathways, we aimed to organize the learnings from the 
mavacamten studies into an integrated model (Fig. 6).

The proposed model places sarcomeric hyperactivity 
and hypercontractility at the center of the anatomical and 
pathophysiological pathways of HCM (Fig. 6A). By design, 
mavacamten is able to normalize the sarcomeric hyperactiv-
ity observed in HCM, and provides a mechanistically tar-
geted therapeutic approach with downstream improvement 
in several of the various pathophysiological manifestations 
of HCM that extend well beyond LVOT obstruction reprieve 
and negative inotropy. The proposed pathophysiological 
model of HCM suggests a unifying mechanism for structural 

changes associated with HCM and other diseases of patho-
genic hypertrophy such as heart failure with preserved ejec-
tion fraction (Fig. 6B) [67–69]. Figure 7 shows the various 
biomarkers used to assess the clinical course of the disease, 
and the effect of mavacamten on those biomarkers.

4  Discussion

The pathophysiology of HCM is complex, multifacto-
rial, and not fully understood. Here, we propose an inte-
grated model of HCM clinical pathophysiology based on 
established pathways of the disease and on the effect of 
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mavacamten, the first-in-class, selective inhibitor of cardiac 
myosin. The pathway model highlights the proposed positive 
feedback loop in oHCM, placing sarcomeric overactivity as 
its main effector, and emphasizing the connection of this 
loop to the broader pathways impacted in HCM. It is not 
anticipated that all pathways are equal nor that the path-
ways are similarly induced in all patients with HCM at all 
times. Indeed, it is well established that the presentations of 
HCM are diverse with temporal variability. The results with 
mavacamten serve as a means to better understand HCM 
pathophysiology, the relationship between HCM’s impacts 
on systolic and diastolic function, and improvements that 

could address the underlying biology of HCM. The lack of 
effect in patients with nHCM on exercise performance, NT-
proBNP levels, diastolic function or quality of life observed 
with ranolazine, a late sodium inhibitor, illustrates the spe-
cific action of mavacamten and strengthen the model hypoth-
esized here [70].

Owing to its mechanism of action, mavacamten reduces 
hypercontractility by returning more myosin heads to the ‘off 
state.’ Multiple ex vivo and in vivo studies support the clini-
cal observations summarized in this article. For instance, 
in vivo, mavacamten has been shown to blunt cardiac hyper-
contractility, alleviating LVOT obstruction and improving 
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systemic hemodynamic. In cats with naturally occurring 
HCM [71] and in mice harboring HCM pathogenic muta-
tion in myosin, mavacamten has been shown to not only 
prevent hypertrophy (i.e., reduce hypertrophic wall thick-
ness), but also to prevent the activation of pro-inflammatory, 
pro-fibrotic, and pro-hypertrophic pathways, including the 
normalization of natriuretic peptide gene expressions [19]. 
Results from the studies of mavacamten enabled the devel-
opment of the proposed model of HCM pathophysiology 
that is generalizable to both oHCM and nHCM, and illustrate 

the impact of normalizing the ratio of ‘on’ and ‘off’ myosin 
heads on the HCM heart. The model allows the integration 
of the diverse results of mavacamten treatment in oHCM and 
nHCM studies to illustrate the potential relationship between 
obstruction, LV hypertrophy, myocardial ischemia/injury 
and LA volume, and diastolic filling. This integrated model 
links the ability of mavacamten to reverse the pathophysiol-
ogy of HCM to resolve clinical presentations and suggests 
possible extensions to other diseases caused by a similar 
underlying pathophysiology.
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It should be noted that, although based on pre-clinical 
and clinical evidence, our model remains hypothetical and 
has the potential to serve as a blueprint for future studies. 
This model will most certainly require refinement as more 
evidence emerges from other studies. For instance, pre-clin-
ical and clinical evidence from other cardiac myosin inhibi-
tors such as aficamten, which has been reported to reduce 
LVOT gradients in a phase 2 trial, would help in refining and 
strengthening our model [72]. Additionally, it would be of 
great interest to assess the effect of cardiac myosin inhibitors 
in patients with heart failure with preserved ejection frac-
tion. Another area of potential future research is the investi-
gation of the pathophysiology of HCM and of the effects of 
cardiac myosin inhibitors in a pediatric patient population.

5  Conclusions

Building from well-known pathophysiological pathways of 
HCM and previously published data on the effects of mava-
camten on accepted HCM biomarkers, we constructed an 
integrated model of HCM clinical pathophysiology that 
identifies sarcomeric hyperactivity as a key driver of disease.
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