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Abstract: Transdermal therapeutic systems (TTSs) enable convenient dosing in drug therapy. Modi-
fied silicone-polymer-based patches are well-controlled and cost-effective matrix diffusion systems.
In the present study, we investigated the substance release properties, skin penetration, and analgesic
effect of this type of TTS loaded with low-dose capsaicin. Release properties were measured in
Franz diffusion cell and continuous flow-through cell approaches. Capsaicin was detected with
HPLC-UV and UV spectrophotometry. Raman spectroscopy was conducted on human skin samples
exposed to the TTS. A surgical incision or carrageenan injection was performed on one hind paw of
male Wistar rats. TTSs were applied to the epilated dorsal skin. Patches were kept on the animals
for 6 h. The thermal hyperalgesia and mechanical pain threshold of the hind paws were detected.
Patches exhibited controlled, zero-order kinetic capsaicin release. According to the Raman mapping,
capsaicin penetrated into the epidermis and dermis of human skin, where the target receptors are
expressed. The thermal pain threshold drop of the operated rat paws was reversed by capsaicin
treatment compared to that of animals treated with control patches. It was concluded that our
modified silicone-polymer-based capsaicin-containing TTS is suitable for the relief of traumatic and
inflammatory pain.

Keywords: transdermal therapeutic system; capsaicin; silicone; addition polymer

1. Introduction

Transdermal therapeutic systems (TTSs) provide an excellent mode for convenient,
accurate, safe, and painless dosing of drugs [1,2]. Transdermal absorption systems can be
categorized according to either their structure or their chemical composition. Regarding
structure, they can be adhesive-polymer-dispersion-based, membrane-controlled, polymer-
matrix-controlled diffusion-type, and “micro-reservoir”-type systems. Based on their
compositions, there are hydrophilic organic copolymers (e.g., polyols, polyethers, etc.) and
silicone-based systems (hydrophobic or modified amphiphilic).

The drug release of membrane-controlled systems possesses the most favorable char-
acteristics. Their disadvantage is that the drug is in a liquid phase under the control
membrane. The TTS cannot be cut, and the dose rate cannot be changed. Adhesive polymer
dispersion systems can be sliced without damaging the TTS, but they exhibit suboptimal re-
lease kinetics. “Micro-reservoir”-type systems bear both advantageous characteristics, but
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their production is expensive. This type of TTS is thicker than the others, and the release is
controlled by diffusion through the polymer matrix [3]. Construction of the polymer matrix
from organic polymers is complicated due to solubility and other chemical issues. Modi-
fied silicone-polymer-based techniques provide well-controlled and cost-effective matrix
diffusion systems. In the present study, we develop and investigate capsaicin-containing
modified silicone-polymer-based transdermal patches (Figure 1).
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Figure 1. Modified silicone-polymer-based matrix-controlled diffusion TTS.

Such a TTS consists of several layers [4]. The drug is embedded in a polymer layer
covered by a regulator layer with special diffusion properties. A controlled drug release
profile can be achieved by precisely adjusting the concentration gradient based on different
diffusion constants in the two layers (Figure 1).

The basis of silicone polymers is dimethylpolysiloxane (PDMS), a linear organosilicon
polymer crosslinked to form elastic silicone rubber. PDMS can be used as a support
matrix. There are two main conventional methods to crosslink PDMS: condensation and
addition. In polymers produced through condensation, Si-O-Si bonds are the crosslinkers
(Figure 2). In addition polymers, Si-C-C-Si bonds provide the crosslinks between PDMS
chains (Figure 3). It is difficult to purify condensation polymers to medical grade. Another
problem is that polycondensation requires a tin (Sn) catalyst that is not biocompatible.
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Figure 3. Scheme of silicone polymerization by addition. The “+” sign indicates addition of the two
ethenyl groups in the top and bottom left of the figure to respective silicon atoms of the polysiloxane
to the right of the “+” sign. The product of the reaction is shown in the right.

The crosslinked structure of addition polymers is more suitable for medical use
(Figure 3). It is possible to transform the final matrix structure with additives. This can
improve the admixing of the active ingredient to the matrix. Addition silicone polymers can
be prepared from two main components: linear PDMS with vinyl groups and a crosslinker
containing a hydro-silane compound and a platinum. These substances are biocompatible.
The active ingredient and adjuvants are incorporated into the polymer [5]. The viscous mix-
ture cures in 30–60 min at 70× depending on the composition. A carrier layer is required
due to poor mechanical properties of the silicone polymer. Usually, a metal or polymer
film is utilized (Figure 1). The polymer mixture can be applied to the carrier layer using a
single-layer spreading method (Figure 4).
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Capsaicin-containing transdermal patches are commercially available. Topical capsai-
cinoid therapy effectively alleviates pain in several diseases, including rheumatoid arthritis,
osteoarthritis, low back pain, and neuropathic pain [6–10]. It also increases blood flow
in soft tissues before sports activity to achieve a warming effect. Capsaicin-containing
creams and ointments have the disadvantages of contaminating hands and potentially irri-
tating mucous membranes and eyes. This is especially problematic in individuals wearing
contact lenses.

Topical non-steroidal anti-inflammatory drugs (NSAIDs) are most commonly applied
to relieve osteoarthritis-related pain [11]. The topical use of low-dose capsaicin combined
with NSAIDs is a widely accepted therapy in osteoarthritic pain, but the exact mechanism
is still under investigation [12]. Ercan et al. presented evidence for the potentiating
effect of capsaicin with diclofenac. In a carrageenan-induced inflammation model, topical
application of a capsaicinoid-containing patch enhanced the anti-inflammatory effect of
diclofenac in rats [13].

The beneficial effect of capsaicin relies on the activation of transient receptor poten-
tial vanilloid 1 (TRPV1) ion channels on peptidergic nociceptor nerve endings and the
subsequent release of neuropeptides. The antinociceptive effect of TRPV1 activation is
transmitted by somatostatin release from the nerve endings [14,15]. Our previous study es-
tablished that topical capsaicinoid (nonivamide) therapy diminished chronic low back pain
in patients. Nonivamide proved to be efficient in functional tests, such as the ODI (effect of
pain on everyday life) and VAS (visual analog scale of pain sensation) [16]. Nonivamide
treatment induced a three-fold increase in the plasma somatostatin level of the patients.

In the present work, we measure the in vitro release and transdermal penetration of
capsaicin using a Franz diffusion cell and Raman microscopy. The antinociceptive effect of
the TTS was also tested with the help of in vivo animal studies. Thermal hyperalgesia was
measured in response to surgical incision of the hind paw in rats. Carrageenan-induced
mechanical allodynia was detected with dynamic plantar esthesiometry in rats.

2. Results
2.1. In Vitro Experiments
2.1.1. Drug Release and Permeation Investigated with Franz Diffusion Cell

Dermal patches with two different capsaicin contents (1 and 2.3 mg/g) were studied
through IVRT (in vitro release test; Figure 5) and IVPT (in vitro penetration test; Figure 6).

In the IVRT measurement, a substantially larger amount of capsaicin was released from
the 2.3 mg/g patches within 24 h compared to the 1 mg/g ones. In the IVPT measurement,
significantly less of the drug was delivered to the receptor chamber compared to IVRT.
This mainly was due to the barrier function of the stratum corneum layer of the skin. The
difference between the formulations with two distinct capsaicin contents was similar to that
seen in IVRT experiments. Patches with a higher capsaicin concentration yielded higher
permeability values. The extent of release (IVRT) itself did not provide relevant information
on permeation. It was important to examine the permeation through the skin (IVPT) to
reveal the interactions of the drug and the drug delivery system with the skin.

The release and permeation profiles were characterized by flux values (Table 1). Flux
values showed the rates of release and permeation of capsaicin from different patches.

We compared the in vitro release kinetics of our modified silicone-polymer patch to
a commercially available reference patch (Figure 5). The commercial patch was of the
adhesive polymer dispersion type. Even the smaller dose of our TTS (1 mg/g) exhibited
a larger capsaicin release than the reference patch. The release kinetics of the modified
silicone-polymer patch were closer to zero-order than those of the commercial one. This was
suggested by the R-squared values of linear curve fit (Figure 5; 0.8785 for the commercial
reference patch, 0.9879 for the 1 mg/g patch, and 0.9986 for the 2.3 mg/g modified silicone-
polymer patch).
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2.1.2. Results of Drug Release with Flow-Through Cell

Dermal patches with two different capsaicin contents (1 and 2.3 mg/g) were studied by
modified IVRT. A substantially larger amount of capsaicin was released from the 2.3 mg/g
patches within 6 h compared to the 1 mg/g ones. The regulation of drug release of the
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patches was monitored in a flow-through cell. The patch containing more capsaicin had
better-regulated drug release over time (Figure 7).
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2.1.3. Results of Raman Spectroscopy

During the Raman experiments, the differences in the localization in the skin regions
of capsaicin were determined.

The Raman correlation map showed the presence of the penetrated drug in the differ-
ent layers of the human skin, from the skin surface to the dermis, after the treatment with
patches. Spectral maps were constructed in order to detect the presence of capsaicin in the
different regions of the human skin. The fingerprint area of the capsaicin spectrum was
compared with the spectra of patch-treated and untreated human skin.

The Raman correlation maps of the patches are shown in Figure 8. The Raman
correlation maps demonstrated the presence of capsaicin in different regions of human
skin. In correlation with the IVRT and IVPT results, more effective penetration was seen
with the 2.3 mg/g patch than with the 1 mg/g one. Capsaicin was detected in the dermis
and epidermis.

2.2. Results of In Vivo Experiments
2.2.1. The Capsaicin-Containing Dermal Patch Alleviates Heat Hyperalgesia

In experiments with patch application immediately after the incision of hind paws,
surgical intervention decreased the thermal pain threshold in animals treated with control
patches compared to the baseline value, as well as to the contralateral intact paw. The
thermal pain threshold of the operated paws in capsaicin-treated rats was still lower than
the respective baseline value, but it was significantly larger than the threshold of the
operated legs of bandage-treated control animals. The thermal sensitivity of the intact
paws of capsaicin-treated rats did not differ from the baseline value taken before surgery.
Adhesive bandages had no effect on the thermal pain threshold of hind paws (Figure 9).

In experiments with delayed patch application, the surgical incision of paws sig-
nificantly reduced the pain threshold compared to contralateral intact paws and respec-
tive baseline values. Control patches without capsaicin failed to improve this condition.
Capsaicin-releasing patches elevated the thermal pain threshold compared to the control
patch. The mitigated threshold was still lower than the baseline of the paw. Neither control
nor capsaicin-containing patches changed the hyperalgesia of intact paws (Figure 10).
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Figure 9. Capsaicin-releasing dermal patch applied right after surgical incision of the hind paw
relieved thermal hyperalgesia of the paw. Thermal hyperalgesia is indicated by the painful heat
threshold and is shown in degrees of Celsius. * is p < 0.05; ** is p < 0.01; *** is p < 0.001; **** is
p < 0.0001. n = 9–10.



Pharmaceuticals 2022, 15, 1279 8 of 17

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 9. Capsaicin-releasing dermal patch applied right after surgical incision of the hind paw 
relieved thermal hyperalgesia of the paw. Thermal hyperalgesia is indicated by the painful heat 
threshold and is shown in degrees of Celsius. * is p < 0.05; ** is p < 0.01; *** is p < 0.001; **** is p < 
0.0001. n = 9–10. 

 
Figure 10. Capsaicin-releasing dermal patch applied 18 h after surgical incision of the hind paw 
relieved thermal hyperalgesia of the paw. Thermal hyperalgesia is indicated by the painful heat 
threshold and is shown in degrees of Celsius. * is p < 0.05; *** is p < 0.001; **** is p < 0.0001. n = 9. 

2.2.2. The Capsaicin-Containing Dermal Patch Mitigates Carrageenan-Evoked 
Mechanical Hyperalgesia 

Carrageenan reduced the mechanical pain threshold detected 18 h after challenge in 
rats treated with both adhesive tape and capsaicin-containing patches compared to the 
contralateral paw. The mechanical thresholds of carrageenan-treated paws were still 
reduced compared to contralateral paws after 6 h of treatment with capsaicin patches or 
the control. The threshold of carrageenan-injected paws was significantly elevated by 

30

35

40

45

50

Surgical incision
Immediate patch application

Th
er

m
on

oc
ic

ep
tiv

e 
Th

re
sh

ol
d 

(°
C)

Baseline
Incision + Patch

Intact IntactSurgery Surgery
Capsaicin patchControl patch

****
*** *

**

42

44

46

48

Surgical incision
Patch application after 18 h

Th
er

m
on

oc
ic

ep
tiv

e 
Th

re
sh

ol
d 

(°
C

)

Intact IntactSurgery Surgery
Capsaicin patchControl patch

Baseline
Incision + Patch

****
****

***

*

Figure 10. Capsaicin-releasing dermal patch applied 18 h after surgical incision of the hind paw
relieved thermal hyperalgesia of the paw. Thermal hyperalgesia is indicated by the painful heat
threshold and is shown in degrees of Celsius. * is p < 0.05; *** is p < 0.001; **** is p < 0.0001. n = 9.

2.2.2. The Capsaicin-Containing Dermal Patch Mitigates Carrageenan-Evoked
Mechanical Hyperalgesia

Carrageenan reduced the mechanical pain threshold detected 18 h after challenge
in rats treated with both adhesive tape and capsaicin-containing patches compared to
the contralateral paw. The mechanical thresholds of carrageenan-treated paws were still
reduced compared to contralateral paws after 6 h of treatment with capsaicin patches or the
control. The threshold of carrageenan-injected paws was significantly elevated by capsaicin
treatment compared to the value detected before patch application. Contralateral paws
injected with saline did not show any sensitization (Figure 11).
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3. Discussion

In this study, controlled-release capsaicin-containing patches were prepared and
tested. Our transdermal patch was a modified silicone-polymer-based diffusion-gradient-
controlled system, providing optimal drug release and cost-effective therapy. Patches were
produced with an addition-crosslinked silicon polymer method containing two different
capsaicin concentrations and tested under “in vitro” and “in vivo” conditions [17].

Addition-type silicone has very apolar properties. Since capsaicin shows a polar
character, polar environments had to be created in the apolar matrix to promote its delivery
in the right amount and to move properly inside the silicone matrix [18]. Capsaicin is very
soluble in alcohols, but shorter-chain monohydric alcohols are volatile compounds and
exert detrimental effects in human skin. The simplest trivalent alcohol, glycerol, was used
as a solvent. This skin-friendly compound dissolves capsaicin relatively well. However,
glycerol is insoluble with silicone oligomers; therefore, we used an emulsifier to achieve
even distribution in the matrix. Since glycerol saturated with capsaicin does not contain
enough capsaicin to adequately deliver the desired amount of the drug, solid capsaicin was
dispersed in the matrix. A small, required amount of highly potent solid capsaicin would
have made the homogeneous distribution uncertain. Capsaicin was subjected to powder
dilution (trituration) with calcium carbonate to ensure precise dosing and homogeneous
drug distribution. A drug-free control layer, which also contained glycerol, was applied to
the drug-containing layer so that capsaicin could diffuse through it unimpeded, but only in
the desired amount. One mg/g and 2.3 mg/g capsaicin-containing patches were prepared
and tested.

In the flow-through cell dissolution test, it was found that the drug was dissolved
from the patch with the higher drug content at a much higher rate, and the dissolution
rate returned to a uniform 2 mg/cm2 after 3 h. The initial high drug release was due
to the diffusion saturation of the regulatory layer with capsaicin from the underlying
drug-containing layer. In the first hour of the dissolution test, the drug dissolved from
this saturated layer. The rate of dissolution was high because of the short diffusion path
of the drug. The drug released from the control layer was replaced by the layer below,
but due to the increase in the diffusion distance, the drug release value reduced and
remained constant.

In the case of the patch with lower drug content, the control layer could not saturate
with capsaicin. Drug release started from a lower level, and this value decreased slightly
but continuously over time because of the increasing diffusion pathway.

In consequence, the phenomena observed in the dissolution test were due to the fact
that, in the case of the patch containing a larger drug concentration, the control layer was
almost saturated with the drug and continuously replenished the capsaicin flowing into
the liquid medium due to diffusion from the drug-containing layer. In the case of the patch
with a smaller drug content, this replacement did not occur, and the increasing diffusion
distance could not be compensated for by the diffusion rate. On the other hand, it can be
stated that the control layer fulfilled its expected function in both patches. Instead of an
exponential decrease in the matrix diffusion, only a slowly decreasing release curve could
be observed.

A similar trend was shown in the drug release studies (IVRT) in the Franz cell, with
significantly lower drug release from the lower-capsaicin patch. According to the human
dermal permeation study (IPVT), the permeation of the drug was more superficial from the
lower-drug patch, and the penetration of capsaicin also required longer time. In patches
with a higher ingredient content, the compound already passed through the skin in half
the time compared to the amount of the transferred active ingredient and was much larger
than proportionately expected.

The results showed that, in the case of the layer combination we used, the higher
the drug content, the better the desired zero-order drug release kinetics. Prolonged, con-
trolled release was also confirmed by Raman microscopic examinations. In the case of
the patch with a higher capsaicin content, the drug penetrated evenly and permanently
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into the skin tissue. The devices and methods used to make the patches modeled indus-
trial production. Therefore, the patches could be adapted for small-scale production with
minor modifications.

Dermal patches containing large concentrations (8%) of capsaicin are licensed for the
treatment of neuropathic pain, such as postherpetic neuralgia and diabetic neuropathy [19].

The mechanism of action of these patches involved a strong and sustained activation
of the transient receptor potential vanilloid 1 (TRPV1) ion channels of primary nociceptor
nerve endings. The opening of channels causing pathologically increased intracellular Ca2+

concentration of nerve endings leads to cytoskeletal and mitochondrial damage. Nociceptor
nerve endings are defunctionalized for 12–14 weeks, providing long-lasting analgesia.

Thus, the nociceptor function of the nerve fibers and substance P (SP) release—which
is thought to be important signal for pain neurotransmission—also becomes impaired for
extended period [20,21]. These processes have been considered as potential mechanisms
of the analgesic action of topical capsaicin treatment, but several clinical studies proved
that SP receptor antagonists failed to be analgesics [22]. Anand and Bley (2011) suggested
that capsaicin has limited potential for transdermal delivery across human skin and that it
causes defunctionalization only of the cutaneous nociceptors [23].

Data corroborate that transdermal systems containing much smaller than defunction-
alizing doses of capsaicin might also be effective against neuropathic pain. A dermal patch
containing only 0.04% capsaicin alleviated postherpetic neuropathic pain in 60.1% of the
patients, 28.2% of whom exhibited increasing analgesia throughout 12 weeks [24]. A mixed
patient group suffering from either postherpetic or diabetic neuropathic pain experienced
analgesic effects of a transdermal patch containing 0.625% capsaicin [25].

It might be puzzling how such a small capsaicin content might exert effective analgesia.
Antinociceptive effects developed in the deeper musculoskeletal and joint areas could not
be explained by the desensitization of the cutaneous afferents [23]. The activation of
TRPV1 ion channels and consequent elevation of intracellular Ca2+ concentration induces
neuropeptide release but does not damage the nerve endings. Many of these peptides
contribute to vasodilatation and plasma extravasation (e.g., substance P and calcitonin
gene-related peptide). Other peptides, such as somatostatin or endogenous opioids might
possess analgesic and anti-inflammatory actions [26]. The systemic antinociceptive effect
of somatostatin was proved in animal studies [14]. Human data also proposed that the
systemic analgesic effect of topical capsaicinoid treatment is related to the remarkable
increase in somatostatin concentration in the plasma [16].

In addition to the peripheral action, somatostatin exerts a central analgesic effect as
well [27]. Somatostatin immunoreactive structures were detected in lamina II of the lumbar
spinal cord of a rat and were proposed as the anatomical basis for somatostatin-induced
analgesia [28]. The expression of SSTR4 receptor mRNA was detected at various levels of
the murine and human neuronal pathways of pain sensation [29]. The analgesic effect of
somatostatin, including neuropathic pain, could be reproduced by selective sst4 receptor
agonists [29].

Figure 12 and Table 2 outline the benefits of the modified silicone-polymer TTS over
other types of transdermal systems. Membrane-controlled systems exhibit excellent drug
release kinetics, but they cannot be dosed by cutting the TTS (Figure 12A, Table 2). Drugs
in adhesive-type patches can be dosed by cutting and have simple structures, resulting
in cost-effective production. However, the drug release of this TTS type is unregulated
(Figure 12B, Table 2). Micro-reservoir systems possess better release kinetics and can be cut
to size. On the other hand, they are thicker than other TTS types. This results in inferior
flexibility and worse fit to the skin surface (Figure 12C, Table 2). Classical matrix diffusion
transdermal patches can be dosed by cutting, as well as display good flexibility and fit to the
skin. Nevertheless, their production might be complicated and expensive, and their drug
release kinetics fall short of those of membrane-controlled systems (Figure 12D, Table 2).
The modified silicone-polymer TTS described in our study combined the advantageous
flexibility and cuttable property of matrix diffusion systems with a simpler, less expensive
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production process and close to zero-order drug release kinetics rivaling those of membrane-
controlled patches (Figure 12E, Table 2). Altogether, the modified silicone-polymer TTS
had optimal characteristics for accurate and low-cost transdermal drug delivery.
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Table 2. Comparison of properties of the most frequent types of transdermal therapeutic systems.

Type of TTS Drug Release Kinetics Dosing by Cutting Flexibility

Membrane-controlled close to zero-order no good

Drug in adhesive unregulated yes good

Micro-reservoir regulated no poor

Classical matrix diffusion regulated yes good

Modified silicone-polymer close to zero-order yes good

In summary, the transdermal patch described in the present paper offered the op-
portunity of low-dose topical capsaicin treatment without contaminating the hands or
clothing and allowing for precise dosing by cutting the patches to size. Moreover, our
technology offered outstanding release kinetics that might be exploited with other phar-
macons. Our transdermal system was subjected to both routine—Franz cell and Raman
spectroscopy—and innovative—flow-through cell—in vitro testing. In our opinion, cir-
cumstances in the flow-through cell modeled those in the cutaneous tissues during the
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release of the active substance from the dermal patch more precisely. We chose well-
established animal models of nociception to investigate our transdermal system. The
increasing-temperature water bath is not a widely known method, despite being validated
in a surgical paw incision pain model with opioids and NSAIDs [30]. The exposition of the
whole paw surface to heat is a profound advantage in the surgical incision model because
different areas of the paw might exhibit different grades of hyperalgesia. This practically
makes mechanical testing at least challenging, if not impossible. To the contrary, classical
carrageenan-induced paw inflammation enables easy and effective testing of mechanical
hyperalgesia by dynamic plantar esthesiometry [31]. Animals undergoing carrageenan-
induced paw inflammation do not exhibit heat hyperalgesia. These methods might be
well-suited for the testing of other transdermal therapeutic systems.

4. Materials and Methods
4.1. Chemicals

RT-601 A™ addition-crosslinkable polydimethylsiloxane- (α,ω) -divinyl and RT-601
B™ crosslinker were from Wacker GmbH, Munich Germany. Glycerol was purchased from
Molar Chemicals Ltd., Halásztelek, Hungary. Polysorbate 20 was obtained from Molar
Chemicals Ltd., Halásztelek, Hungary. Capsaicin was purchased from Chillies Export
House Limited, Virudhunagar, Tamil Nadu, India.

4.2. Production of Capsaicin-Containing Transdermal Patches

TTS samples used in animal experiments were prepared on a paper substrate laminated
on aluminum foil of 0.4 mm thickness. Capsaicin was mixed into silicone matrix carriers.
Our raw material was RT-601 A™ addition-crosslinkable polydimethylsiloxane- (α, ω)–
divinyl. Capsaicin was dissolved in glycerol by heating and was added to the silicone stock.
Crystalline capsaicin was also added to our mixture. Capsaicin was diluted with calcium
carbonate. Calcium carbonate as an inert excipient was added to the samples only to ensure
accurate balancing. If needed, liquid glycerol and polysorbate 20 were added. RT-601 B
crosslinker was added to the mixture under stirring. After the components were weighed,
mixtures were homogenized and spread on a supporting film at a thickness of 0.4 mm.
The layer was crosslinked at 70 ◦C. The procedure was finished in 60 min. After that, we
spread a second regulator layer (Figure 1) that did not contain capsaicin, only glycerol and
polysorbate. The second layer was crosslinked at 70 ◦C for 60 min. Samples were rested for
48 h and examined afterwards. We made two compositions: a lower (1 mg/g capsaicin) and
a higher (2.3 mg /g capsaicin) capsaicin-containing sample. The compositions of samples
of 1 mg/g and 2.3 mg/g were as follows (Tables 3 and 4).

Table 3. Chemical composition of the low-dose capsaicin patch (1 mg/g).

Patch Layer Layer Thickness Component Content

Drug carrier layer 0.4 mm

Capsaicin (solid, triturated) 3.60%
Capsaicin (solution) 3.75%

Glycerol 13.16%
Polysorbate 20 3.95%

RT 601 A 69.32%
RT 601 B 7.83%

Regulator layer 0.1 mm

Glycerol 12.05%
Polysorbate 20 4.00%

RT 601 A 74.21%
RT 601 B 9.69%

Total capsaicin content 1 mg/g patch
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Table 4. High-dose capsaicin patch.

Patch Layer Layer Thickness Component Content

Drug carrier layer 0.4 mm

Capsaicin (solid, triturated) 8.36%
Capsaicin (solution) 5.58%

Glycerol 10.52%
Polysorbate 20 5.69%

RT 601 A 62.89%
RT 601 B 6.98%

Regulator layer 0.1 mm

Glycerol 11.88%
Polysorbate 20 3.43%

RT 601 A 76.21%
RT 601 B 8.46%

Total capsaicin content 2.3 mg/g patch

4.3. Measurement of the In Vitro Release of Capsaicin-Containing Transdermal Patches

In vitro testing was performed in two ways. First, we measured in a Franz cell [32],
which modeled the static and vertical subcutaneous drug dissolution. In the second method,
patches were examined in a flow-through cellular device that mimicked the dissolute drug
concentration in the blood (Figure 13).
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4.3.1. Investigation of Drug Release and Permeation with Franz Diffusion Cell

In vitro release tests (IVRTs) and in vitro permeation tests (IVPTs) were performed. A
vertical Franz-type diffusion cell (Hanson Microette TM Topical and Transdermal Diffusion
Cell System, Hanson Research Corporation, Los Angeles, CA, USA) was used to model
the capsaicin release from the patches in the case of the IVRT, as well as drug permeation
through human heat-separated epidermis (HSE) in the case of the IVPT. The preparation of
HSE was the following: excised human subcutaneous fat-free skin was placed in a water
bath (60 ± 0.5 ◦C), and the epidermis was separated from the dermis.

Around 250 mg of each patch (1.77 cm2) was used as the donor phase. The patches
were placed in the donor chamber directly in the case of the IVRT. In the case of the IVPT,
the donor and receptor phases were separated by HSE.

The receptor phase was thermostated phosphate buffer (PBS pH 7.4 ± 0.15) and 25%
w/w 96% ethanol at 32 ◦C ± 0.5 ◦C. The investigation lasted for 24 h. The stirring speed
was 450 rpm. The concentration of the drug was examined by high-performance liquid
chromatography (HPLC). HPLC analysis was carried out with a Shimadzu NEXERA X2
HPLC system (Shimadzu Corporation, Tokyo, Japan). A Kinetex C18 150 mm × 4.6 mm
packed with a 3 µm (Phenomenex Inc., Torrance, CA, USA) column was used. Acetonitrile
in a ratio of 30:70 with a flow rate of 1 mL/min was applied during isocratic elution with
HPLC-grade water. Prior to the elution, the eluent was degassed and filtered through a
0.45 µm pore size glass filter funnel. The run time was 4 min, and the retention time of
capsaicin was 2.3 min. Detection was performed via absorption at 280 ± 4 nm. A sample
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volume of 20 µL was injected, and the elution was carried out at a sample temperature of
25 ◦C and a column temperature of 45 ◦C.

4.3.2. Mathematical Evaluation

The data were the averages of the results of 6 experiments ± standard deviations.
Release and permeation profiles of the patches were obtained. The cumulative amounts
of capsaicin released and permeated per cm2 at 24 h were calculated. The flux (J) was the
slope of the cumulative amounts of released and permeated capsaicin (µg/cm2) versus
the square root of time (h1/2) in the case of the IVRT and versus time (h) in the case of the
IVPT [33].

4.3.3. Flow-Through Cell

Samples (12.56 cm2 each) of patches were tested for modified IVRT in a flow-through
cell (4 cm diameter and 5 cm3 sample volume) at 37 ◦C. The flow rate (PBS, 5% w/w glycerol)
was 25 mL/h, and the capsaicin content was determined hourly with a spectrophotometer
(Perkin-Elmer Lambda 25, PerkinElmer Inc., Waltham, MA, USA). Detection was performed
via absorption at 227 nm.

4.4. Investigation of Skin Permeation with Raman Microscopy

Excised human subcutaneous fat-free skin (epidermis and dermis) was obtained from
a Caucasian female patient who underwent abdominal plastic surgery. Samples of patches
(1.77 cm2) were placed on the skin surface for 3 h at 32 ◦C. The treated skin samples were
frozen and sectioned (10 µm thick cross-sections) with a Leica CM1950 cryostat (Leica
Biosystems GmbH, Wetzlar, Germany).

The microtomed skin samples were placed on an aluminum surface with the SC
towards the top of the plate.

Raman spectroscopic measurements were performed with a Thermo Fisher DXR Dis-
persive Raman Spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA) equipped
with a CCD camera and a diode laser.

A laser light source of 780 nm wavelength was used with a maximum power of 24 mW,
minimizing the effect of fluorescence. The microscopic lens used for the measurements had
50 × magnification, and the aperture of the pinhole was 25 µm. In the case of chemical
mapping, a 200 µm × 1800 µm area was investigated; the step size was 50 µm both
vertically and horizontally. Each spectrum was produced from 16 scans with an exposure
time of 2 s. Altogether, 205 spectra were registered. For analyzing the treated vs. untreated
skin samples, capsaicin was used as a reference. Data acquisition and analysis were
accomplished using OMNICTM8.2 Dispersive Raman software package (Thermo Fisher
Scientific Inc., Waltham, MA, USA).

4.5. In Vitro Measurement
4.5.1. Animals

Male Wistar rats of 125–150 g in weight were purchased from ToxiCoop Zrt., Budapest,
Hungary. The rats were kept at the Department of Pharmacology and Pharmacotherapy,
Medical School University of Pécs, under standard pathogen-free conditions with freely
available food pellets and water. Experiments conformed to the 40/2013., II. 14. Hungarian
Government regulation on the protection of animals used for scientific purposes, to the
European Communities Council Directive 2010/63/EU, and to the requirements of the
International Association for the Study of Pain (IASP). Experiments were approved by
the Ethics Committee on Animal Research of the University of Pécs and the National
Scientific Ethical Committee on Animal Experimentation of Hungary (license number
BA02/2000-8/2018, 28/02/2018). The dorsal skin of the animals was epilated with com-
mercial epilation cream from the nape to the hip under ketamine and xylazine anesthesia
(80 and 10 mg/kg i.p.) 2 days before the animals participated in experiments.
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4.5.2. Surgical Incision of the Hind Paw

Animals were anesthetized with sodium pentobarbital (50 mg/kg i.p.), and the plantar
surface of one hind paw was treated with povidone iodine. Sides subjected to surgery were
randomized. The paw was incised at a wound length of 10 mm with a scalpel. The depth
of the incision reached the muscle layer. The wound was closed with two 6.0 sutures and
treated with povidone iodine [26,30]. Capsaicin-releasing dermal patches were applied
according to 2 schedules. In one set of experiments, patches were attached to the dorsal
skin right after the paw incision when the pentobarbital anesthesia still lasted (immediate
application). In other experiments, patches were applied 18 h after the incision (delayed
application). The size of the patches was 3 cm × 6 cm. Patches were fixed to the animals
with commercial adhesive bandages. Adhesive bandages without dermal patches were
used as the control. Patches were kept on the animals for 6 h in both experimental designs.
After the six-hour interval, the thermal pain threshold of the hind paws was measured with
increasing-temperature water bath (Experimetria Kft., Budapest, Hungary). Both hind legs
of rats were submerged into water separately.

The water was heated from 30 ◦C to 51 ◦C with a velocity of 24 ◦C/min. The heating
was stopped by a foot switch when the animal removed the paw from the water, and water
temperature was recorded. The animals were habituated to handling by the experimenter
and the instrument 3 times, and baseline values were taken.

4.5.3. Carrageenan-Induced Paw Inflammation

Carrageenan was dissolved in physiological saline under gentle heating (3% m/v).
Carrageenan was injected intraplantarly into one hind paw of rats. The contralateral paw
was injected with saline [31]. Capsaicin-loaded dermal patches were applied to the backs
of animals 18 h after carrageenan injection. The size of the patches was 3 cm × 6 cm.
Patches were fixed to the animals with commercial adhesive tape. Bandages without
dermal patches were used as the control. Six hours later, the mechanical pain threshold
of the hind paws was detected by dynamic plantar esthesiometry (Ugo Basile, Gemonio,
Italy). Rats were placed into the compartments of the instrument 10 min before the test.
The force exerted by the stimulator reached 50 g in 5 s. The value inducing nocifensive
behavior was automatically displayed. Baseline measurements were performed 3 times
before the actual experiment. Lowered pain threshold was confirmed by the detection of
mechanical hyperalgesia before the application of transdermal patches.

4.5.4. Statistical Analysis

The results were evaluated and analyzed statistically with one-way (in vivo studies)
or two-way (in vitro experiments) analyses of variance, followed by Bonferroni’s multiple
comparisons test using Prism from Windows software (GraphPad Software Inc., La Jolla,
CA, USA, access date: 1st of January, 2022). The data were the means of the results of
6 experiments ± standard deviations (p < 0.05 was *, p < 0.01 was **, and p < 0.001 was ***
vs. control) [34,35].

5. Conclusions

Our silicone-based TTS displayed long-lasting, controlled, dose-dependent release
and permeation of capsaicin. The higher-dose (2.3 mg/g) capsaicin-containing TTS was
capable to deliver the active ingredient to the target receptors in the dermis and exerted
systemic antinociceptive action.

We presumed that activation of the TRPV1 ion channels on the sensory nerve endings
in the patch-treated dorsal skin exerted the release of inflammatory neuropeptides, such
as SP and CGRP, inducing local warmth and painful redness. In addition, antinociceptive
mediators, such as somatostatin and opioid peptides, were released from the central
peripheral endings of the primary afferents, regulating the pain pathway. The systemic
analgesic effect of the low-dose capsaicin patch could be explained by these sensocrine
regulatory mechanisms.
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Further experiments involving a TTS loaded with various detergents and other excipi-
ents possessing unexplored potentials may offer further optimization of substance release
and increased therapeutic value.
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