
Int J CARS (2017) 12:1171–1178
DOI 10.1007/s11548-017-1600-y

ORIGINAL ARTICLE

Temporal clustering of surgical activities in robot-assisted surgery

Aneeq Zia1 · Chi Zhang2 · Xiaobin Xiong3 · Anthony M. Jarc4

Received: 30 January 2017 / Accepted: 24 April 2017 / Published online: 5 May 2017
© The Author(s) 2017. This article is an open access publication

Abstract
Purpose Most evaluations of surgical workflow or surgeon
skill use simple, descriptive statistics (e.g., time) across
whole procedures, thereby deemphasizing critical steps and
potentially obscuring critical inefficiencies or skill deficien-
cies. In this work, we examine off-line, temporal clustering
methods that chunk training procedures into clinically rele-
vant surgical tasks or steps during robot-assisted surgery.
Methods We collected system kinematics and events data
from nine surgeons performing five different surgical tasks
on a porcine model using the da Vinci Si surgical system.
The five tasks were treated as one ‘pseudo-procedure.’ We
compared four different temporal clustering algorithms—
hierarchical aligned cluster analysis (HACA), aligned cluster
analysis (ACA), spectral clustering (SC), and Gaussian mix-
ture model (GMM)—using multiple feature sets.
Results HACA outperformed the other methods reaching
an average segmentation accuracy of 88.0% when using all
system kinematics and events data as features. SC and ACA
reached moderate performance with 84.1% and 82.9% aver-
age segmentation accuracy, respectively. GMM consistently
performed poorest across algorithms.
Conclusions Unsupervised temporal segmentation of sur-
gical procedures into clinically relevant steps achieves good
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accuracy using just system data. Such methods will enable
surgeons to receive directed feedback on individual surgi-
cal tasks rather than whole procedures in order to improve
workflow, assessment, and training.

Keywords Robot-assisted surgery · Segmentation ·
Clustering · Performance evaluation

Introduction

Over the course of entire procedures, surgeons perform cer-
tain tasks that are more critical than others. For example,
during a prostatectomy, surgeonsmust finely coordinate their
tools to carefully avoid damaging nerves during the dis-
section of the neurovascular bundles, whereas mobilizing
the colon and dropping the bladder do not involve simi-
lar risks. Despite these apparent differences across steps,
most evaluations of surgical workflow or surgeon skill at
population scales use simple, descriptive statistics (e.g.,
time) across whole procedures, thereby deemphasizing crit-
ical steps and potentially obscuring critical inefficiencies or
skill deficiencies. If we could develop tools and algorithms
to automatically recognize clinically relevant surgical tasks
within procedures, we might be able to improve surgical
workflow [1], skill assessment [2,3], surgeon training, and,
ultimately, patient safety by providing task-specific perfor-
mance measures.

Multiple approaches to recognize surgical tasks have
been proposed previously for laparoscopic [1,4–6], ENT [7],
cataract [8], and robot-assisted surgery (RAS) [9–14]. Some
of these methods focus on low-level trajectories to build a
surgical grammar that could be used to identify higher-level
tasks or to develop surgical automation routines. Although
extensive manual annotation of the datasets was required
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to train models to recognize the low-level features, several
groups have proposed unsupervised methods to identify sim-
ilar low-level trajectories with strong alignment to human
labels [13,14].

More recently, researchers have started to develop vision-
based methods to recognize higher-level tasks, such as
clinical steps of a procedure, from laparoscopic videos
[4,15,16]. In this way, video clips are the only input to these
algorithms. The majority of approaches borrow from recent
successes in deep learning using convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs). The
results have been impressive, resulting in greater than 80%
accuracy on certain datasets [4,16]. Furthermore, these mod-
els often have the added advantage of providing real-time
state estimation.

Despite the recent successes of video-based methods,
there remain compelling reasons why one would (a) want
to use smaller data streams than video and (b) utilize off-
linemethodswithout real-time capability. Small data streams
enable feasible storage of data across many procedures,
streaming of data over network connections without large
bandwidth or disruption, and smaller compute resources
for training the models. Using non-video data strongly
parallels research directions in activity recognition where
wearables with simple accelerometer signals might be used.
Additionally, off-line methods can utilize data from entire
procedures for phase recognition and remain useful for post-
operative feedback, review, and documentation by surgeons.
For these reasons, we believe system data from robotic sur-
gical systems offer a scalable, practical approach to surgical
segmentation and skill estimation.

Here, we examine temporal clusteringmethods to perform
off-line surgical task recognition using only non-video data
from RAS systems. In particular, we apply models devel-
oped for human activity recognition [17,18]. We explore our
models using data from clinically relevant tasks performed
on porcine models in a training environment. Furthermore,
novice RAS surgeons across multiple specialties performed
all tasks which increased the variability in system use and
strategy and, in turn, increases the generalizability of our
models.

In the end, the main contributions of our work are as
follows: (1) we propose a novel approach to use temporal
clustering algorithms to recognize high-level surgical phases

using the relatively lightweight data from RAS surgical plat-
forms, and (2) we develop our models on realistic porcine
tasks with a large amount of variability in task performance
by surgeons with varying backgrounds.

Methodology

In this section, we describe our proposed approach for unsu-
pervised segmentation of RAS procedures. Figure 1 shows
a flow diagram of our method. We collect kinematic and
events data from the da Vinci Si® surgical system (Intuitive
Surgical, Inc., Sunnyvale, CA), while surgeons of varying
expertise perform exercises on a porcine model (additional
details on dataset are given in Section “Experimental evalu-
ation”). The events data stream is used directly, whereas the
kinematic time series is preprocessed before implementing
different segmentation algorithms. In this paper, we propose
to use aligned cluster analysis (ACA) [17] and hierarchical
aligned cluster analysis (HACA) [18] for our surgical proce-
dure segmentation since both these algorithms have proven
to work well for human activity segmentation. For com-
parison, we also employ two additional temporal clustering
algorithms: Gaussian mixture models (GMM) and spectral
clustering (SC). Descriptions of the clustering algorithms are
given below.

Spectral clustering

Spectral clustering (SC) is a graph-based clustering algo-
rithm which has been widely used for image segmentation
in the computer vision community. It has also been used for
time series segmentation in various biomedical applications
[19]. For a given time series T ∈ �d×N , SC divides the tem-
poral data depending on a similarity measure si j between
pairs of data frames ti and t j . The data are represented as a
similarity graph G = (V, E), where V is the vertex set and
E is the edge set. Each vertex of the graph vi is represented
by a data frame ti , and any two vertices are connected via a

Gaussian similarity measure si j = exp(−||ti−t j ||2
2σ 2 ). Once the

graph G is constructed, the problem of clustering becomes
a graph partitioning task. Therefore, in order to cluster dif-
ferent surgical procedures in our dataset, we partition the
graph constructed so that the edges between different groups

Fig. 1 Flow diagram of the proposed model for unsupervised surgical phase segmentation
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have small weights and the edges within a group have large
weights.

Gaussian mixture models

Gaussianmixturemodel (GMM) is a popular clustering algo-
rithm and has been extensively used for various applications.
The use of GMM for time series segmentation was originally
proposed in [20]. We use a GMM to model our time series
T ∈ �d×N and segment the series whenever two consecu-
tive frames belong to different Gaussian distributions. This
is done since data frames from different surgical tasks, or
activities in general, would potentially form distinct clusters
which can be modeled using Gaussian distributions. We use
the Expectation Maximization (EM) algorithm to estimate
the parameters of each of the Gaussians in the GMM.

Aligned cluster analysis and hierarchical aligned cluster
analysis

Given a time series T ∈ �d×N , aligned cluster analysis
(ACA) and hierarchical aligned cluster analysis (HACA)
algorithms are formulated to decompose T into M differ-
ent segments with each segment corresponding to one of the
K clusters. Each segment Qm consists of frames of data from
position tm till tm+1 −1, where tm and tm+1 −1 represent the
first and the last index of themth segment. In order to control
the temporal regularity, the length of each segment Qm is
constrained to the range li ∈ [lmin, lmax]. A binary indicator
matrix G ∈ �K×M is generated where gk,m = 1 if the mth
segment belongs to the kth cluster, otherwise gk,m = 0. The
objective function for the segmentation problem is formu-
lated as an extension to previous work on kernel k-means
and is given by:

JACA(G, s) =
K∑

k=1

M∑

m=1

gk,mD
2
ψ(Qm, zk) (1)

where the distance function D2
ψ(Qm, zk) = ||ψ

(T[ti ,ti+1]) − zk ||2, Qm represents a segment, s is a vector
containing the start and end of each segment and zk is the
geometric centroid of the k-th class. Just like kernel k-means,
the distance between a segment and a class centroid is defined
using a nonlinear mapping ψ(.), given by

D2
ψ(Qm, zk) = τmm − 2

Mk

M∑

j=1

gkjτmj

+ 1

M2
k

M∑

j1, j2=1

gkj1gkj2τ j1 j2 (2)

where Mk denotes the number of segments belonging to
class k. The dynamic kernel function τ is defined as τi j =
ψ(Qi )

Tψ(Q j ). In matrix form, the objective function for
ACA can be written as

JACA(G, H) = tr((Im − GT (GGT )−1G)H(F ◦ W )HT )

(3)

where W is the normalized correspondence matrix, H is the
segment indicator matrix and F is the frame kernel matrix,
as defined in [18]. For our analysis, frame kernel matrix is of
particular interest since the preprocessing parameters depend
on it. Given a time series T ∈ �d×N , the frame kernel matrix
F ∈ �N×N is given by

F = φ(T )Tφ(T ) (4)

Each element of the matrix fi j represents the similarity
between the corresponding frames, ti and t j , using a kernel
function. We use a Gaussian kernel function for evaluat-
ing the frame kernel matrix giving fi j = exp(−||ti−t j ||2

2σ 2 ).
Once the energy function JACA is formulated, a dynamic
programming-based approach is used to solve for the opti-
mal G ∈ �K×M and s ∈ �M+1 [18].

For hierarchical aligned cluster analysis (HACA), the
same steps as described above for ACA are performed in a
hierarchy at different temporal scales reducing the computa-
tional complexity; HACAfirst searches in a smaller temporal
scale and propagates the result to larger temporal scales.
Temporal scales over here refers to the number of segments
the time series is randomly segmented into initially; a larger
scale would mean less number of segments. We use a two-
level HACA; the maximum segment length is restricted to
l(1)max and l

(2)
max for the first and second levels in the hierarchy,

respectively, where l(1)max < l(2)max. Please see [18] for a more
detailed description of ACA and HACA.

Experimental evaluation

Dataset

Data were collected from nine RAS surgeons operating the
da Vinci Si surgical system. Informed consent was obtained
from all individual surgeons included in the study (West-
ern IRB, Inc. Puyallup, WA). None of the surgeons had
performed previous RAS procedures, but they all had prior
laparoscopic and/or open experience. Five of the surgeons
specialized in general surgery, three specialized in urology,
and one specialized in gynecology. Each of the surgeons
performed multiple training tasks in a single sitting on a
porcine model that focused on the technical skills used dur-
ing dissection, retraction, and suturing. During each exercise,
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Table 1 Details of the five surgical tasks used in this study

Task Name Mean time (s) Standard deviation
time (s)

1 Two-handed
robotic suturing

1329.2 733.9

2 Uterine horn
dissection

2159.7 492.6

3 Suspensary
ligament
dissection

1999.3 1097.5

4 Running robotic
suturing

617.6 126.7

5 Rectal artery
skeletonization
and clipping

1474.7 276.3

instrument kinematics, system events, and endoscope video
were recorded and synchronized. System data were recorded
at 50 Hz, whereas endoscope video was recorded at 25 fps.

We selected five representative tasks for this study (see
Table 1). The five tasks were treated as one ‘pseudo-
procedure’ in our analysis as shown in Fig. 2. The video
data were used to generate ground truth segmentations and
was not added as a source of features in our models. All
tasks were performed in the pelvis of the porcine model, and
the setup joints (therefore, remote centers of motion) were
unchanged for all tasks. The five tasks were performed on
common anatomy within the pelvis thus ensuring that the
segmentation algorithms are not simply using positions in the
world reference frame to differentiate activities. Additional
details about the instrument kinematic and systemevents data
are given below.

Kinematic data

The kinematic data captured from the da Vinci Si surgical
system consisted of the endpoint pose and joint angles from

the hand controllers on the surgeon side console (SSC) and
the instruments and camera on the patient-side cart (SI).
The kinematic data stream from SSC consisted of a 56-
dimensional time series, whereas SI was a 156-dimensional
time series. We used individual data streams along with their
different combinations in order to find the data stream most
useful for segmenting different surgical tasks.

Events

A subset of the available system events were used in this
study.The events used included camera control,master clutch
for each hand controller, instrument following state for three
patient-side arms, energy activation, and surgeon head in/out
of the console. All events were represented as binary on/off
time series. In total, the events data was an eight-dimensional
time series.

Parameter estimation

The performance of each proposed clustering algorithm
depends on various parameters at each step of the pipeline.
We used a subset of five randomly selected ‘pseudo-
procedures’ to estimate the different parameters empirically.
The details are given below.

In the preprocessing step for kinematic data, we use k-
means clustering per trial to convert the high-dimensional
time series data into symbols. The number of symbols, Ns ,
used in this step is important for the clustering performance
since selecting too few symbols would fail in capturing
enough information to differentiate the surgical tasks. The
structure of the frame kernel matrix F , as described in Sec-
tion “Experimental evaluation,” highly depends on the value
of Ns . Ideally, in order to temporally segment different sur-
gical tasks, we would want F to have a block structure along
its diagonal. A block structure of K would mean a high vari-
ability in frames between different surgical tasks, and a low
variability within each task. In [18], the authors selected the

Fig. 2 ‘pseudo-procedure’ with sample frames for each of the five surgical tasks in the dataset
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Fig. 3 Sample frame kernel matrices for different number of symbols used in the preprocessing step. The left most image represents the frame
kernel matrix when the time series is not reduced using k-means

number of symbols (or clusters) based on characteristics of
the synthetic or real data andmade sure the chosen number of
symbolswas greater than the number of activities to be recog-
nized. Here, we performed a coarse parameter search for the
number symbols by running our clustering algorithms for a
range of Ns ∈ [10, 15, 20, 50, 100, 150, 200] and evaluated
the clustering accuracies (using Eq. 6) for the selected sub-
set of ‘pseudo-procedures.’ The value of Ns corresponding
to the highest average clustering accuracy (over the subset
of ‘pseudo-procedures’) was then selected. We found that
having a smaller value of Ns gave better performance, with
the highest average clustering accuracy being achieved with
Ns = 15. Figure 3 shows example frame kernel matrices for
the same time series data but with different value of Ns . One
can see that using fewer symbols results in a more block-like
structure in the frame kernel matrix. We used 15 symbols to
represent our multi-dimensional time series before employ-
ing the temporal clustering algorithms.

For the proposed clustering algorithms of ACA and
HACA, the main parameter to fine-tune is the maximum seg-
ment length lmax. ACA and HACA divide the time series into
many small segments which are then assigned to different
clusters. The lengths of these segments need to be selected
in away that maximizes segmentation performance. Keeping
lmax too big would result in misclassifications at the bound-
aries between different tasks, whereas a smaller lmax would
not allow for the algorithm to capture the temporal struc-
ture of the data required for segmentation. In [18], the length
constraints were again chosen based on characteristics of the
datasets, similar to the number of clusters, Ns , without formal
optimization. Therefore, we empirically selected the maxi-
mum segment lengths as lmax = 30 for ACA, and l1max = 20
and l2max = 30 for the two levels in HACA, respectively,
based on the length of our tasks (see Table 1 and recording
rate).

Evaluation metric

In order to evaluate the clustering accuracy for each algo-
rithm, we calculated the confusion matrix between the

ground truth (G true, Htrue) and the segmentation output from
the algorithm (Gout, Hout). The confusionmatrixC ∈ �K×K

is given by:

C = GoutHoutH
T
trueG

T
true (5)

where each element cci c j represents the number of frames that
are in cluster segment ci and are shared by cluster segment c j
in ground truth. Once the confusion matrix is calculated, we
use the Hungarian algorithm [21] to find the optimum cluster
correspondence giving the clustering accuracy as:

accuracy = max
tr(CP)

tr(C1K×K )
(6)

where P ∈ {0, 1}K×K is the permutation matrix and 1K×K

represents a matrix of all 1 entries.
We employed the temporal clustering algorithms on indi-

vidual data streamsaswell as their combinations.All possible
combinations from these three data streams were evaluated
to find the optimum features for our task. We computed the
precision and recall for the top performing set of features
based on the accuracy measures.

Results and discussion

We evaluated the performance of the different unsuper-
vised clustering algorithms described in Section “Method-
ology” on the surgical procedures. As described in Section
“Dataset,” the dataset consisted of kinematic (pose and joint
angles) and event data streams collected from the surgeon
side console and the patient-side cart. We implemented the
clustering algorithms on individual data streams and com-
binations of different data streams in order to compare how
various feature sets impacted algorithm performance. Since
the convergence of clustering algorithms depends on the
initialization, we ran the algorithms for five different initial-
izations and picked the solutionwithminimum energy (given
byEq. 3), whichwas the samemethodology as [18].Note that
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Table 2 Average performance
with standard deviations for
various feature types tested for
the different clustering
algorithms using the complete
dataset of nine surgeons

SC GMM ACA HACA

SSC 71.1 ± 16.4 50.6 ± 6.2 70.8 ± 17.1 79.0 ± 12.3

SI 80.6 ± 7.5 51.2 ± 7.0 82.7 ± 8.6 85.5 ± 8.3

SSC + SI 84.1 ± 13.9 54.9 ± 6.5 78.1 ± 15.8 82.3 ± 8.0

SSC + EVT 72.2 ± 14.9 53.6 ± 6.0 73.2 ± 13.9 73.9 ± 14.6

SI + EVT 81.9 ± 11.2 53.9 ± 6.2 82.9 ± 11.0 88.0 ± 7.1

SSC + SI + EVT 77.3 ± 17.6 52.3 ± 3.1 79.9 ± 14.0 84.1 ± 9.2

The highest performance achieved across different features for each algorithm is shown in bold

Table 3 Precision and recall
values for different algorithms
for each task using SI + EVT
features

Precision Recall

SC GMM ACA HACA SC GMM ACA HACA

Task1 52.4 48.8 73.2 89.2 63.1 49.3 68.3 87.4

Task2 85.0 52.7 69.3 80.3 74.6 59.5 85.7 81.5

Task3 76.6 47.5 86.4 73.7 80.3 59.7 99.7 99.7

Task4 42.1 37.8 73.0 59.7 36.0 19.6 43.3 37.3

Task5 77.9 57.4 94.8 90.0 81.2 53.6 85.8 81.1

Fig. 4 Segmentation results for four procedures. Each block contains five bars showing segmentation output using ground truth (GT), HACA,
ACA, GMM, and SC

the solution that minimized the objective function also gave
the highest clustering accuracy (evaluated using Eq. 6). Table
2 shows the mean accuracies achieved (over nine surgeons)
for different algorithms and data streams used. Additionally,
Table 3 shows the precision and recall values across tasks
for the top performing data stream (SI + EVT). Task4 con-
sistently underperforms compared to the other tasks across
algorithm types. Furthermore, the mean F1 score for each
algorithm was: SC (0.67), GMM (0.48), ACA (0.77), and
HACA (0.77). Based on these scores, ACA and HACA per-
form comparably but significantly outperformSCandGMM.

As a baseline comparison, we computed the segmentation
accuracy when we simply scaled the normalized task lengths
(relative to total procedure time) for each trial to estimate
the transitions between tasks. The resulting accuracy is 0.60
(±0.15) slightly better thanGMMbutworse than the remain-
ing algorithms (see Table 2). This ensures the algorithms are
not simply scaling tasks based on time. Although it serves a
useful comparison, one can see from the example procedure
bars (Fig. 4) that the duration of tasks differed for different
subjects.

From the results, we can see that SC, ACA and HACA
perform fairly well, while GMM performs poorly for all
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Table 4 Average performance
with standard deviations for
each of the five tasks (T1–T5).
The feature set was SSC + SI +
EVT

T1 T2 T3 T4 T5

ACA 66.4 ± 44.3 71.8 ± 33.9 84.8 ± 13.6 74.4 ± 45.9 94.6 ± 8.0

HACA 87.5 ± 35.4 81.2 ± 20.4 80.2 ± 20.4 61.7 ± 51.0 88.2 ± 26.4

the feature types. As a whole, HACA outperforms all other
methods for all but one feature type (SSC + SI). In general,
using SSC kinematic data seems to perform less well than
SI, which might be because SSC contains less information
than SI (i.e., hand movements versus three instrument and
camera movements). Adding EVT data to SSC and SI indi-
vidually improves the segmentation accuracy for most of the
algorithm types but deteriorates the performance when used
with the combined kinematic data (SSC + SI). The highest
accuracy achieved across all algorithms and features types
was 88.0% using HACA with SI + EVT data. Our results
are comparable to other surgical phase recognition methods
in the literature [4,14,16].

Figure 4 shows example segmentation bars for four sur-
geons using the four different algorithms. The color scheme
used for different surgical tasks in a procedure is the same as
in Fig. 2. For each surgeon, the five total rows corresponded
to segmentation using ground truth, HACA, ACA, GMM,
and SC, respectively. One can see HACA outperforms the
other methods, in general. Most misclassifications occur at
the boundaries of tasks.Unlike the othermethods,GMM(and
to some extent SC) made many misclassifications through-
out each task. In some cases, we can achieve very accurate
segmentation using HACA and ACA, as shown in the lowest
block in Fig. 4.

Finally, Table 4 shows the classification accuracy for each
of the five tasks using ACA and HACA with the SSC + SI
+ EVT feature set. For ACA, the first tasks achieved the
lowest accuracy, whereas the fifth task achieved the highest
accuracy. Conversely, for HACA the fourth task achieved the
lowest accuracy, whereas the fifth task achieved the high-
est accuracy. Across all tasks, HACA achieved a slightly
more consistent classification accuracy. A one-way ANOVA
showed that GMM, ACA, and HACA outperform SC across
all feature types (p < 0.01). No significant differences
existed betweenGMM,ACA, orHACA.A two-wayANOVA
for algorithm type and features showed that both the algo-
rithm and feature type affect accuracy (p < 0.05) but not
their interaction. Additionally, a Friedman’s test showed that
algorithm type affects accuracy (p < 0.001).

Depending on the requirements for a particular end
application, some misclassification error might be tolerable
around task boundaries, especially at the task-level since the
duration of tasks is on the order of minutes, whereas the
misclassification might be seconds. For example, compare
the task boundaries between ground truth and HACA in the
third surgeon in Fig. 4; the relative amount of misclassified

frames is much smaller than the total width of each colored
bar or task. In this way, the accuracies achieved by HACA
(or ACA) could be sufficient for certain advanced analyses.

There are several limitations that exist with our analy-
sis. Firstly, we used only five tasks to make up a procedure
when most clinical procedures have more clinically dis-
cernible steps. Secondly, more formal methods could be
used to optimize the parameters of the unsupervised cluster-
ing algorithms, such as a k-fold cross-validation. However,
unlike supervised machine learning algorithms, the cluster-
ing algorithms used here are designed to be unsupervised
and applied to situations where ground truth labels might
not be available. Another limitation is that features derived
from video data were not used to meet the requirement of a
lightweight dataset. However, video-based features could be
used to improve performance, especially when segmenting
a larger number of tasks. The recent success of video-
based segmentation methods also suggests it is a worthwhile
endeavor [4,14,22]. Finally, it would be worthwhile to repli-
cate this work on open source datasets (e.g., JIGSAWS [23])
to benchmark the performance of these algorithms against
others. However, datasets such as JIGSAWS are overly sim-
ple consisting of dry-lab exercises with major limitations to
system behavior (i.e., no camera movement), and therefore,
algorithms applied to them can be difficult to translate to
real-world environments, given the purpose of this work is
to identify clinically relevant steps of procedures as opposed
to low-level trajectories, such as surgemes.

Despite these limitations, our results show that RAS sys-
tem data can be used by temporal clustering algorithms to
accurately segment surgically realistic tasks without directly
modeling low-level subtasks. We confirm that aligned clus-
tering techniques (ACA and HACA) outperform conven-
tional approaches like SC and GMM. Furthermore, we show
that certain feature sets result in higher accuracies, and that
a subset of all available features or data might be sufficient
for certain applications.

Conclusions

In this work, we examined off-line temporal clustering meth-
ods to recognize individual steps during clinically relevant
training procedures in RAS. The long-term goal for this
research is to provide increasingly more targeted assessment
of surgical activities rather than whole procedure measures.
This will enable advanced metrics to be used to benchmark
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and assess surgical workflow and surgeon proficiency. Our
results suggest that off-line clusteringmethods can be used to
chunk whole surgical procedures into individual, clinically
relevant steps with competitive accuracies. Additionally, our
approach is complementary to vision-based methods in that
it uses system-based data streams present in RAS. In future
studies, we plan to evaluate similar surgical phase algorithms
on additional, larger datasets as well as to explore the clini-
cal value of the step-based performance metrics on surgeon
training.
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