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Abstract

Background: The class Myxosporea encompasses about 2,400 species, most of which are parasites of fish and cause serious
damage in aquaculture. Due to the concerns about food safety issues and limited knowledge of Myxozoa life cycle and fish
immune system, no chemicals, antibiotics or immune modulators are available to control myxozoa infection. Therefore, little
can be done once Myxozoa establishment has occurred.

Methodology/Principal Findings: In this paper we isolated Aeromonas veronii CD3 with significant myxospore shell valve-
degrading ability from pond sediment. A 3,057-bp full-length chitinase gene was consequently cloned, and the
corresponding mature, recombinant chitinase (ChiCD3) produced by Escherichia coli had substantial chitinase activity. The
deduced sequence of ChiCD3 contained one catalytic domain, two chitin-binding domains, and one putative signal peptide.
ChiCD3 had an optimal activity at 50uC and pH 6.0, and retained more than 50% of its optimal activity under warm water
aquaculture conditions (,30uC and pH ,7.0). After incubation with ChiCD3, 38.064.8% of the myxospores had damaged
shell valves, whereas myxospores incubated with commercially available chitinases remained intact.

Conclusion/Significance: This study reveals a new strategy to control myxozoan disease. ChiCD3 that has capacity to
damage the shell valve of myxospores can be supplemented into fish feed and used to control Myxozoa-induced diseases
specifically.
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Introduction

The phylum Myxozoa is an entirely endoparasitic group of

organisms, especially the fish, which produces complex multi-

cellular spores [1]. Myxozoa infection often occurs in fish at gill

tissues, fins, kidneys, stomach, swimbladders or serosa of the

internal organs and causes pathological changes by forming huge

plasmodia [2]. As Myxozoa is responsible for important economic

losses among fisheries and aquaculture industries, there are high

interests in studying the method to control them. However, the

complexity of Myxoan provides a major challenge for the research

and control. Class Myxozoa encompasses approximately 2,400

species, of which more than 2,180 species have been character-

ized, but only about 40 life cycles (less than 2%) are known [1].

Furthermore, little is known about the biology, physiology and

parasite-host interactions of most Myxozoa species.

To control myxozoan disease, there are numerous studies

focused on the route of immunization, such as selection of

myxozoan-resistant fish species and development of vaccines. Even

innate resistance of certain fish species against Myxozoan has been

reported, but the underlying mechanisms have not been elucidated

in most cases [3]. Furthermore, there are inter-specific and intra-

specific differences in susceptibility of certain fish species against

Myxosporea [3]. For instance, some salmonid species are resistant

to Ceratomyxa shasta [4] and rainbow trout strains vary in their

susceptibility to Myxobolus cerebralis [5]. Furthermore, as many

myxozoan species elicit little or no host immune responses, it is

difficult to characterize the fish immune system and its regulation

during infection which is crucial for the development of vaccines

[3]. And there is no substantial progress in the exploitation of

vaccines. Therefore, a new strategy to control myxozoa infection is

urgent.

Generally myxospores consist of 2 to 12 shell valves that

typically contain substantial amounts of chitin [6,7] and are

strongly resistant to chemical/antibiotic drugs. These drugs are

also limited in their applicability due to the concerns about food

safety issues [8]. Chitin is a polymer of N-acetyl-D-glucosamine

(GlcNAc) and is an important element of fungal cell walls.

Chitinases have been widely used to control fungal diseases [9–11].

Because chitin is the main component of myxospore shell valves,
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chitinase as the alternative biological agent to control myxozoan

disease would be of great interest. This study is to present a novel

chitinase with the ability to degrade the shell valves of myxospores.

Results

Myxozoa identification
The mature myxospores were separated from plasmodia in the

gut of a common carp (Cyprinus carpio). The spores were pyriform

with slight tapering anterior and round posterior ends and

measured 18.560.5 mm (n = 30) long and 8.960.6 mm (n = 30)

wide. A single flask-shaped polar capsule lied close to the apex of

the spores. Even the mean spore length and width of each species

was not identical between species, but the morphological and the

scanning light microscopy revealed a smooth spore surface of the

sample, which is consistent with that of Thelohanellus [12]. The 18S

rDNA gene fragment was amplified from the genomic DNA of

myxospores and it had 99% identity to that of Thelohanellus kitauei

(accession no. GQ396677) and 96% to T. hovorkai (accession no.

DQ231155). T. kitauei is a typical gut parasite of Thelohanellus. This

site-dependent character differs T. kitauei from other species

without morphological identification [13]. Thus the myxozoa was

identified to belong to T. kitauei, Myxobolidae, Myxosporea.

Isolation and identification of strains with shell valve-
degrading ability

By using chitinase-screening medium, four bacterial strains were

isolated from the sediment of a fish pond which had Myxozoa-

induced disease outbreak. Using shell valve of spores as carbon

source in culture medium, the reducing sugars (110 mg ml–1) were

detected in the culture supernatant of strain CD3. Comparison of

its 16S rDNA sequence with those in GenBank and a phylogenetic

analysis classified strain CD3 as Aeromonas veronii (99% identical to

A. veronii CYJ202, accession no. FJ940848). Then the strain CD3

was deposited into the China General Microbiological Culture

Collection Center under registration number CGMCC 3169.

Chitinase gene cloning and sequence analysis
The chitinase gene chiCD3 was isolated from strain CD3 using

the degenerate primers and the method of TAIL-PCR. Full-length

chiCD3 contained 3,057 bp and encoded a protein of 1,018 amino

acids, including a putative signal peptide of 33 residues, two

carbohydrate-binding modules (CBMs) (residues Tyr37–Ala88

and Tyr974–Ala1,016) and one catalytic domain (residues

Arg318–Asp768) of glycoside hydrolase family 18. The mature

protein had a theoretical molecular mass of 110 kDa. The

deduced amino acid sequence of ChiCD3 was 90% identical to

those of Aeromonas salmonicida subsp. salmonicida A449 and Aeromonas

hydrophila subsp. hydrophila ATCC 7966, 53% to the Vibrio mimicus

MB-451 chitodextrinase precursor and 52% to the Vibrio sp.

RC586 chitodextrinase precursor. Multiple sequence alignment

(Figure 1) indicated that ChiCD3 contained the consensus

sequence (DXXDXDXE) of family 18 chitinases [14]. Phyloge-

netic tree was built using the sequences of family 18 chitinases

from Aeromonas spp., GenBank and SWISSPROT databases and

those found in the literature indicates that ChiCD3 was most

closely related to the family 18 chitinases (Figure 2).

Expression, purification, and characterization of ChiCD3
The gene chiCD3 encoding the mature protein was expressed in

E. coli BL21 (DE3). After induction with 0.1 mM IPTG (final

concentration) at 15uC for 24 h, substantial chitinase activity

(2.56 U ml–1) was found in the cell lysate supernatant, and no

chitinase activity was detected in the lysate supernatant of an

uninduced culture or a culture that harbored an empty pET-

30a(+).

ChiCD3 was purified to electrophoretic homogeneity by Ni2+-

NTA metal-chelating affinity chromatography. The purified

protein migrated as a single band on SDS–PAGE (Figure 3).

The sequences of three internal peptides TLISVGGWADTR,

LFANYEVLMK, and EIGGGAVPMWHAK that were recov-

ered from the tryptic digest and identified by tandem mass

spectroscopy were also found in the deduced amino acid sequence,

which confirmed that the purified protein was indeed that

expressed in E. coli.

Enzymatic properties of ChiCD3
Using colloidal chitin as substrate, ChiCD3 showed the highest

activity at pH 6.0, 50uC and more than 80% of the maximum

activity was retained at pH 7.0 (Figure 4A). The enzyme retained

more than 60% of its maximum activity after 2-h incubation in

buffers with different pH values (pH 5.0 to 9.0) at 37uC
(Figure 4B). The optimal temperature for ChiCD3 was 50uC at

pH 6.0 (Figure 4C). ChiCD3 was stable at 20uC for at least 2 h,

whereas at 60uC its activity decreased rapidly (Figure 4D). Under

warm water aquaculture conditions (,30uC and pH,7.0), the

enzyme retained more than 50% of its optimal activity.

Substrate specificity and kinetic parameters
ChiCD3 had the greatest activity against colloidal chitin

(9.260.3 U mg–1) followed by barley b-glucan (5.360.8 U mg–1)

and carboxymethyl cellulose (4.661.2 U mg–1). It had no ability to

degrade birchwood xylan or locust bean gum. The kinetic

constants Km and Vmax for the hydrolysis of colloidal chitin were

7.12 mg ml–1 and 19.11 mmol min–1, respectively.

Figure 1. Amino acid sequence alignment of ChiCD3 with the chitinases by CLUSTAL. A0KNS8 from Aeromonas hydrophila subsp.
hydrophila ATCC 7966, A4BB99 from Reinekea sp. MED297, Q9ZIX4 from Pseudoalteromonas sp. S9, D0GR27 from Vibrio mimicus MB-451, D0IFY2 from
Vibrio sp. RC586 and A4SJD6 from Aeromona salmonicida subsp. salmonicida A449. The positions of the known catalytic residues in the chitinases are
indicated by asterisks. Identical residues are boxed in black and conserved residues are boxed in gray.
doi:10.1371/journal.pone.0029091.g001
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Degradation of shell valve with chitinases
The myxospores were treated with 19 U of chitinases from

Streptomyces griseus and Serratia marcescens and the ChiCD3,

respectively. Substantial amount of reducing sugar (2.6360.8 mg

l–1; Table 1) and damaged shell valves (38.0064.84% of the total;

Table 1, Figure 5) were only detected in the suspension treated

with ChiCD3. When treated the myxospores with different

concentrations of ChiCD3 (Table 1), obvious dose-response

relationship was observed (P,0.05).

Discussion

As the complexity of Myxozoa, it is difficult to control the

Myxozoan infection by current available methods. Thelohanellus

spp. are generally histozoic and highly host-specific parasites [15].

As a well-known disease in Southeast Asian countries [12] and less

well studied myxosporean group, the genus Thelohanellus should be

paid more attention to be studied. Of them, T. kitauei is the

causative agent of the intestinal giant cystic disease of carp, which

is a well-known disease in China [16]. Serious infection by T.

hovorkai causes destruction of capillaries in carp [17]. Because

mature Thelohanellus spores can remain viable in sediment for at

least 5 months [18], the economic damage caused by Thelohanellus

infection to the aquaculture industry is substantial and increasing.

However, the period in sediment also provides a chance to control

Thelohanellus by damaging the spores. Furthermore, this treatment

can be carried out either in aquaculture stage or in the interval

stage, and is easy for application by comparison with other

researches concerning the parasite life-cycle, parasite-host inter-

action and fish immune system.

In this study, we isolated an A. veronii strain, named as CD3,

with extracellular chitinase activity, from pond sediment. To

overcome the initial host defense barriers and provide nutrients for

cell proliferation, Aeromonas strains secrete varieties of proteolytic

enzymes [19]. These enzymes might be capable of disrupting

myxospores. By using a selective medium with myxospores as the

carbon source, A. veronii CD3 showed ability to utilize myxospores

and its chitinase ChiCD3 produced in E. coli also had the ability to

damage myxospores by degrading their shell valves.

Comparison of the ChiCD3 catalytic site with that of other

bacterial chitinases identified the conserved consensus sequence

F453DGVDIDYEY462, which is essential for chitinase activity [14]

and is considered to be the ‘‘Prosite signature’’ for the family 18

members [20] (Figure 1). Chitinases isolated from fungi, plants and

bacteria have potent antifungal activity against a wide variety of

pathogens [21]. Similar to the fungal cell wall which protects the

Figure 2. Phylogenetic analysis of ChiCD3 with known chitinases based on the amino acid sequences. The reference sequences were
retrieved from GenBank. Bootstrap values (n = 1,000 replicates) are reported as percentages. The scale bar gives the number of changes per amino
acid position. The position of ChiCD3 is highlighted in bold type. GenBank accession numbers are given for each species.
doi:10.1371/journal.pone.0029091.g002

Figure 3. SDS–PAGE gel of purified ChiCD3. Lanes: M, standard
protein size markers (kDa); 1, ChiCD3 after purification by Ni2+–NTA
chelating affinity chromatography. The gel was stained with Coomassie
blue.
doi:10.1371/journal.pone.0029091.g003
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organism against a hostile environment and relays signals for

invasion and infection [21], chitin has also been detected in a

variety of members of the phylum Myxozoa [6,7]. By cleaving the

chitin polymers in shell valves, the chitinase will weaken shell

valves and render spores osmotically sensitive. Therefore it can be

applied to control Myxozoa by degrading the shell valves of

Myxospores or to improve the efficacy of other remedies. And

integrated control is one of reasonable approach for the

complexity of Myxozoan.

In comparison with homologs that have been characterized,

ChiCD3 was more active at a less basic pH and at a lower

temperature, i.e., pH 8.0–9.0 and 50uC for the former [22] and

pH 7.0 and 30uC for ChiCD3. Because ChiCD3 had catalytic

activity at a pH and temperature similar to those commonly found

for aquaculture environments. In China, the Myxozoa-induced

diseases usually outbreak from May to September when the water

temperature is 25–38uC [23]. At this temperature range, ChiCD3

retained 30–80% of the maximal activity. Analysis of substrate

specificity indicated the enzyme also had activity towards cellulose

and b-glucan. There are many reports concerning glycans and

lectins (carbohydrate-binding molecules) on the spores surface

which form a mutual recognition system and enable parasitic

organisms to attach themselves to the host cells [24,25]. Even the

glycans and lectins are not the major components in the shell for

Myxospore protection, they are important for specific adhesion

and infection of parasites [26]. Therefore the activity towards

cellulose and glucan also helps to prevent Myxozoa infection by

damaging the interaction. Thus ChiCD3 might provide a

possibility for application in aquaculture as a deterrent against

Myxozoa infection.

The life cycle of Thelohanellus is unknown and it cannot be

cultured in vitro [3]. Without these experimental data, no

transmission model is available. Therefore an attack experiment

to assess myxospore vitality with ChiCD3 treatment is very

important. In further studies we will focus on the efficacy

assessment under application conditions by adding to rearing

water. In conclusion, this study provides a new strategy to control

myxozoan disease. And it can be easily applied to treat the spores

in sediment by comparison with other researches concerning the

parasite life-cycle, parasite-host interaction and fish immune

system. A novel chitinase ChiCD3 was isolated, which can be

used to control the myxozoan by rendering spores osmotically

sensitive, degrading the shell valves or preventing parasitic attach

to the host cells.

Materials and Methods

Ethics
The locations for sample collection are not privately-owned or

protected in any way and no specific permits are required for the

described field studies and sample collection. Also the field studies

does not involve endangered or protected species.

Myxozoa collection and identification
A Myxozoa-infected common carp that had plasmodia in its gut

was taken from an aquaculture pond in Wuqing, Tianjin, China in

July 2007. The pond was ,1.5 m deep, had a temperature of

30uC and a pH of 7.5–8.0 and their surface areas were ,100

Figure 4. Characterization of the environmental properties that affect the activity of ChiCD3. (A) Effect of pH on activity at 50uC. (B)
Effect of pH on the stability of ChiCD3. (C) Effect of temperature on activity at pH 6.0. (D) Effect of temperature on the stability of ChiCD3.
doi:10.1371/journal.pone.0029091.g004

Table 1. The effect of ChiCD3 on myxospores1.

Chitinase activity (U) 1.9 19 190

Reducing sugar (mg ml–1) 1.0660.12a 2.6360.80a 12.7661.70b

Percentage of damaged
myxospores (%)

21.6566.21a 38.0064.84ab 55.6963.80b

1Data (mean 6 SD) in the same row sharing a common superscript are not
significantly different (Duncan’s multiple-range test, P.0.05).

doi:10.1371/journal.pone.0029091.t001
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acres. Plasmodia that were filled with mature spores were

separated from the fish and ruptured with a needle. Myxospores

were washed with sterile 0.7% (w/v) NaCl(aq), collected by

centrifugation at 4uC, 500 6 g for 5 min, and stored in 1.5 ml

microfuge tubes at 4uC. Measurements of spore and capsule

dimensions were performed using a Leica DM2500 microscope

attached with a digital camera (Leica DFC 420, Leica Micro-

systems, Mannheim, Germany) and ImageProPlus v6 (Media

Cybernetics) image analysis system.

Genomic DNA was extracted and purified [27] with some

modifications. Briefly, spores were suspended in 1 ml of 500 mM

NaCl, 50 mM Tris-HCl (pH 8.0), 50 mM EDTA, 1% sodium

dodecyl sulfate (SDS) and 400 mg ml–1 proteinase K, and

homogenized at the maximum speed for 5 min on a mini

Beadbeater in the presence of 600 mg of sterile zirconia beads

(100 mg of 0.1 mm and 500 mg of 0.5 mm beads). After

incubation at 50uC for 30 min, the crude DNA was centrifuged

at 16,000 6 g, 4uC for 5 min and purified as in [27]. 18S rDNA

was PCR amplified using the primers myxoF and myxoR specific

for family Myxobolidae [28]. The PCR program was 94uC for

5 min; 35 cycles at 94uC for 30 s, 50u C for 30 s, and 72uC for

1 min; and a terminal extension at 72uC for 5 min. The PCR

product was agarose gel purified, ligated to a pGEM-T vector

(Promega, USA), transformed into E. coli DH5 (TaKaRa, Japan)

and sequenced by Sangon (China). The Myxozoa taxon was

identified by comparison of its 18S rDNA sequence with those in

GenBank.

Isolation of bacterial strains with shell valve-degrading
ability

The chitinase screening medium was prepared as previously

described [29] with some modifications. One gram of crab-shell

chitin (Sigma, USA) was dissolved in concentrated HCl (100 ml) at

4uC for 24 h. The mixture was filtered through glass wool into

ethanol (2 l) at 4uC with rapid stirring. The colloidal chitin pellets

were collected by centrifugation at 10,000 6 g for 20 min, washed

repeatedly with sterile H2O until a neutral pH was reached,

lyophilized and stored at –20uC. The screening medium contained

(per liter) 1 g colloidal chitin (the sole carbon source), 3 g

KH2PO4, 2 g K2HPO4, 1 g NH4Cl, 200 mg MgSO4?7H2O,

10 mg CaCl2?2H2O and 2% agar, pH 7.0.

Sediment sample was collected from an aquaculture pond in

Tianjin, China that had been the site of a Myxozoa-induced

Figure 5. Scanning electron microscope images of myxospores. (A, C) Spores without chitinase treatment. (B, D) Spores treated with
recombinant ChiCD3.
doi:10.1371/journal.pone.0029091.g005
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disease outbreak and suspended in sterile 0.7% (w/v) NaCl(aq).

The suspension was spread onto chitinase screening agar plates

and incubated at 25uC for 3 d. Colonies were streaked onto the

same medium to obtain purity.

The stock myxospores were suspended in 1 ml of 70% ethanol

and centrifuged at 1,000 6 g for 5 min. This step was repeated

twice. Then the spores were suspended in sterile 0.7% (w/v)

NaCl(aq) and supplemented into chitinase screening medium to

replace colloidal chitin as the inducer and the only carbon source

[30]. To screen bacterial strains with shell valve-degrading ability,

pure cultures were grown in the screening medium for 5 d.

Reducing sugars and chitinase activity in the culture supernatants

were assayed as described below. The strain, named CD3, having

the greatest chitinase activity was selected for further study.

Genomic DNA of strain CD3 was extracted using DNA

Isolation Kit (TIANGEN, China). For identification, 16S rRNA

gene fragment was PCR amplified using the primers 27F (59-

AGAGTTTGATCMTGGCTCAG-39) and 1492R (59-CGGY-

TACCTTGTTACGACTT-39) and sequenced by Sangon.

Chitinase gene cloning and sequence analysis
A primer set (CHI-F: 59-GGIGGITGGACIYTIWSICC-39 and

CHI-R: 59-ATGCAITAYGAYTTYCAYGG-39) was designed to

include the nucleotide sequences for the two conserved motifs

GGWTLSD and SVGAWAD of chitinases belonging to family 18

(http://www.cazy.org/GH18.html) and used to touchdown-PCR

amplify the chiCD3 core region. The touchdown-PCR program

was: 94uC for 5 min; 5 cycles at 94uC for 30 s, 55uC for 30 s that

was decreased by 1uC each cycle, and 72uC for 30 s; 30 cycles at

94uC for 30 s, 50uC for 30 s, and 72uC for 30 s; and a final

extension at 72uC for 8 min. The PCR product was purified and

ligated into a pGEM-T Easy vector for sequencing. To obtain the

full-length chitinase gene, the 59 and 39 flanking regions were

subjected to thermal asymmetrical interlaced (TAIL)-PCR [31]

using Genome Walking Kit (TaKaRa). The final PCR products

were agarose gel purified, ligated into a pGEM-T Easy vector and

sequenced by Sangon.

Sequence assembly was performed using Vector NTI 10.3

software (InforMax, USA). The signal peptide and functional

domains in the deduced amino acid sequence were predicted using

SignalP (http://www.cbs.dtu.dk/services/SignalP/) and SMART

(http://smart.embl-heidelberg.de/), respectively. DNA sequences

were translated to yield corresponding amino acid sequences with

ExPASy (http://au.expasy.org). DNA and protein sequence

alignments with known chitinase sequences were performed with

blastn and blastp (http://www.ncbi.nlm.nih.gov/BLAST/), re-

spectively. The key functional residues were predicted at http://

pfam.sanger.ac.uk/search. Multiple sequence alignments were

performed with Clustal X [32]. Phylogenetic tree for chitinases

was constructed using the neighbor-joining method of MEGA 4.0.

One thousand bootstrap repetitions were used to assess the

reliability of the tree.

Expression of ChiCD3 in E. coli
The gene fragment encoding ChiCD3 (which lacked the

putative signal peptide) was amplified using the genomic A. veronii

CD3 DNA, Pfu Turbo DNA polymerase (TaKaRa), and the

primers pET30a-HindIII (59-cccAAGCTTGCCAGGCCGCT-

TATCCCGCC-39) and pET30a-XhoI (59-ccgCTCGAGTAAA-

TAGCTACAGGCAGACTT-39) (HindIII and XhoI restriction

sites are underlined, respectively). The PCR product was purified

with TaKaRa Purification Kit, cloned into the HindIII and XhoI

sites of pET-30a(+) and then transformed into E. coli BL21(DE3)

competent cells. Positive transformants that contained the correct

insert were identified by isolating the insert through an agarose gel

and sequencing it. These cells were then cultured in 25-ml LB

medium containing 100 mM ampicillin at 37uC until the A600 of

the culture was 0.6–0.8. Protein expression was induced at 15uC
by addition of IPTG (final concentration, 1 mM) and the culture

was incubated for an additional 12 h.

Purification and identification of ChiCD3
Cells were centrifuged at 8,000 6 g for 5 min, washed with

sterile 0.7% (w/v) NaCl(aq), suspended in 20 mM Tris-HCl

(pH 8.0) and lysed with a microfluidizer (Microfluidics, USA).

Soluble and insoluble fractions were separated by centrifugation at

12,000 6 g for 15 min at 4uC. The (His)6-tagged proteins in the

supernatant were isolated by Ni2+-NTA metal-chelating affinity

chromatography using a His-SelectTM cartridge (Sigma) accord-

ing to the manufacturer’s instructions. SDS–polyacrylamide gel

electrophoresis (PAGE) used a 12% running gel [33]. The purified

enzyme was digested with trypsin and its tryptic peptides were

sequenced at the State Key Laboratory of Biology of Biomem-

brane and Membrane Technology (Institute of Zoology, Chinese

Academy of Science) using liquid chromatography-electrospray

ionization-tandem mass spectrometry. Protein concentration was

determined by the Bradford method [34] with bovine serum

albumin as the standard.

Chitinase activity assay
Chitinase activity was determined based on the amount of N-

acetylglucosamine (reducing sugar) liberated from colloidal chitin

[35]. Reactions containing 500 ml of an enzyme solution and

500 ml of 1% colloidal chitin in 20 mM Tris–HCl (pH 8.0) were

incubated at 37uC for 2 h, boiled for 5 min, and cooled to room

temperature. The mixtures were centrifuged at 10,000 6 g, and

the amounts of reducing sugars released into the supernatants

were determined by the DNS method [36] under standard

conditions (pH 6.0, 50uC, 2 h). One unit (U) of chitinase activity

was defined as the amount of enzyme required to produce 1 mg of

reducing sugar in 2 h.

Characterization of the physical properties that affect
ChiCD3 activity

The effect of pH on enzyme activity was determined at 50uC
between pH 3.0 and 10.0. The effect of pH on enzyme stability was

determined by measuring the chitinase activity under standard

conditions after incubation at 50uC in buffers with different pH

values for 2 h. The buffers were McIlvaine buffer (pH 3.0–8.0),

0.1 M Tris–HCl (pH 8.0–9.0), and 0.1 M glycine–NaOH (pH 9.0–

12.0). The temperature optimum of the enzyme activity was

determined at the optimal pH (pH 6.0) for the temperature range of

20 to 70uC. Thermal stability was determined by measuring the

residual activity after incubation at 20uC and 50uC, pH 6.0 for 2 h.

Substrate specificity and kinetic parameters
The substrate specificity of ChiCD3 was determined by

measuring the enzyme activity after incubation in 20 mM Tris–

HCl containing 0.5% of each substrate (colloidal chitin, barley b-

glucan, locust bean gum, carboxymethyl cellulose and birchwood

xylan) at pH 6.0 and 50uC for 2 h. The amount of reducing sugars

produced was estimated using DNS method as described above.

To determine the values of Km and Vmax for ChiCD3, the

enzyme was incubated with colloidal chitin (0.1% to 1.0%) (w/v)

and the amounts of reducing sugars were determined using the

DNS method. The values for Km and Vmax were determined from a

Lineweaver-Burk plot.
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Degradation of myxospore shell valves by ChiCD3
The shell valve-degrading activities of two commercial chit-

inases and ChiCD3 were characterized. S. griseus chitinase 1

(C6173, Sigma) had a specific activity of ,200 U g–1 against

colloidal chitin. S. marcescens chitinase 2 (C7809, Sigma) had an

activity of 400–1,200 U g–1 against colloidal chitin. Aliquots

(100 ml) of the myxospore suspension (,500 mg wet weight in

spores) were treated with 19 U of chitinase 1, chitinase 2, or

ChiCD3 in 20 mM Tris–HCl (pH 8.0) or with buffer only

(control). After incubation at 37uC for 2 h, each supernatant was

collected by centrifugation at 3,000 6 g, 4uC for 5 min and

subjected to the DNS assay. Each pellet was observed under the

scanning electron microscope. As the intact mature spores have

smooth shell and without projections, the spores with damaged

shell will be counted as the damaged myxospores after treatment

with the chitinase. The myxospores treated with 1.9, 19 or 190 U

of ChiCD3 were also examined by optical microscope.

Nucleotide sequence accession numbers
The nucleotide sequences for the Thelohanellus kitauei 18S rDNA

gene fragment and the chitinase gene chiCD3 were deposited in

GenBank under accession numbers GU350406 and FJ561294,

respectively.
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