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Abstract: Single-phase tungsten diboride (WB2) was synthesized at high pressure and high
temperature. The different grain sizes ranging from 300 nm to 3 µm were successfully obtained
in WB2 by controlling the experimental conditions. The effects of grain size on hardness and
resistivity properties were investigated. The Vickers hardness of WB2 was modulated with grain size.
The maximum asymptotic Vickers hardness is 25.5 GPa for WB2 with a grain size of 300 nm which is
a 10% increase compared to WB2 with a grain size of 3 µm. The optimal electrical resistivity of WB2

was 10−7 Ωm with the biggest grain size of 3 µm, which is ascribed to low grain boundary density.
The superior properties of hardness and electrical resistivity demonstrate that WB2 should be a new
functional hard material replacing WC which is widely used in industrial production.
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1. Introduction

Recently, transition metal borides (TMBs) have been attracting considerable attention for their
unique physicochemical properties, such as high melting point, hardness, electrical conductivity, wear
resistance, thermal conductivity and chemical inertness, etc. [1–4]. Due to their outstanding properties,
TMB ceramics have been widely used in particular environments, such as abrasive, corrosion-resistant,
conductive and electrode materials [5–8]. In TMBs, tungsten diboride (WB2) was predicted to have
a very high hardness ranging from 36 to 40 GPa and good conductive properties by first-principle
calculation [3,9]. However, there is a paucity of reports about the hardness and conductive property
of WB2. These reports about WB2 are ascribed to the fact that bulk WB2 is hard to synthesize at
ambient temperature by traditional methods, such as self-propagating combustion synthesis [10],
chemical vapor deposition (CVD) [11], and spark plasma sintering [7,12]. Solid state WB2 shows lower
self-diffusion coefficients and so it is difficult to facilitate its densification in the process of sintering
using powder as precursor. Even in high temperature sintering, WB2 will not exhibit any shrinkage [13].
So, high quality bulk WB2 samples cannot be synthesized by traditional methods so far. Therefore, an
exploration of the mechanical properties of WB2 has been hindered.

In this work, single-phase WB2 was prepared under high pressure and high temperature. We
measured its electrical resistivity and hardness. It is worth noting that we can modulate the hardness
and electrical resistivity of WB2 by controlling the experimental conditions. In addition, we also find
that WB2 shows excellent conductive properties. The high hardness and low electrical resistivity
demonstrate that WB2 can be used as conductor working under extreme conditions.

2. Materials and Methods

In this study, powdery tungsten (200 mesh, 99.95% in purity) and amorphous boron powder
(500 mesh, 99.99% in purity) were used as the starting materials. Powder mixtures which contained
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W:B atomic ratios of 1:2 and 1:2.2 were mixed in an agate mortar for 3.5 h. The mixed powders were
then cold-pressed into cylindrical samples of 4 mm in diameter and 3 mm in height. Finally, the
samples were prepared in a cubic anvil HPHT apparatus (SPD-6 × 600, Xianyang, China) at a target
temperature (in this study temperatures were 1600 ◦C, 1700 ◦C, 1800 ◦C and 1900 ◦C, respectively),
and a pressure of 5.2 GPa for a holding time of 15 min. The detailed process is as follows: firstly, the
samples were put into the HPHT apparatus and the pressure was then raised to 5.2 GPa; secondly,
the samples were heated to the target temperature in 15 seconds and the samples were kept at the
target pressure and target temperature for 15 min; finally, the samples were cooled naturally to room
temperature and removed from the apparatus. The phase analyses of the as-synthesized samples
were examined by an X-ray diffractometer (XRD) using Cu-Ka (l = 1.5404 Å) radiation in a Rigaku
D/max-2500 X-ray diffractometer (Japan). The morphological properties of the samples were analyzed
with a scanning electron microscope (JEOL JSM-6700F, Japan). The electrical resistivity of WB2 was
measured using a four-point probe system. The Vickers microhardness measurements were performed
by a Micro-Hardness Tester (HV-1000ZDT), and the applied load P and Vickers hardness (HV) were
determined using equation:

HV = 1854.4P/d2, (1)

Here, d is the mean of the two diagonals of the indent and the holding time under the peak load
was 15 s. The drainage method was used to measure density. The density ρ was determined using
equation:

ρ = m/v (2)

Here, m is the mass of the sample and V is the volume of boiling water discharged from the sample.

3. Results and Discussion

In order to synthesize the stoichiometric phase in pure WB2, powder mixtures that contained
W/B atomic ratios of 1/2 were used as a precursor. We found that single phase WB2 without impurity
is hard to synthesize. Figure 1a shows the XRD patterns of WB2 samples synthesized at 5.2 GPa
and temperatures of 1600 ◦C to 1900 ◦C for 15 min. We can detect that WB2 space group: P63/mmc;
ICSD Number: 023716 is the major phase and coexists with WB space group: I41/amd; ICSD Number:
024281). The phenomenon that stoichiometric phase pure WB2 cannot be synthesized by using a
stoichiometric W/B atomic ratios precursor, often appears in TMBs synthesis, and may be caused
by an inadequate proportion of B. In the process of mixing the precursor, boron powder was easily
absorbed by mortar and spread in the air. The loss of boron samples led to the precursor exhibiting a
nonstoichiometric ratio. In order to synthesize phase pure WB2, the proportion of B in the precursor
should be increased. When we changed the atomic ratios of W/B to 1/2.2, phase pure WB2 was
synthesized easily. Figure 1b shows the XRD patterns of WB2 samples synthesized using the mixed
precursor with W/B atomic ratios of 1/2.2 at 5.2 GPa and temperatures of 1600 ◦C to 1900 ◦C for 15 min.
All the materials were confirmed to be phase pure.
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Figure 1. XRD patterns of the samples fabricated (a) W/B atomic ratios of 1/2 at 5.2 GPa and different 

temperatures (1600–1900 °C) for 15 min, (b) W/B atomic ratios of 1/2.2 at 5.2 GPa and different 

temperatures (1600–1900 °C) for 15 min. Solid rhombus represents tungsten diboride (WB2). Hollow 

rhombus represents WB. 

The stoichiometry ratio of the compound was checked by EDS and the results are shown in 

Figure 2. The picture is one of the images we have taken. The atomic ratio of W/B shown in Figure 2 

is the average value of ten measurements. In measurement, we chose different parts to measure. The 

molar ratio of W and B for the compound was approximately confirmed to be 1:2.0. So, single phase 

WB2 without impurity cannot be synthesized with W/B atomic ratios of 1/2 because the proportion of 

B is inadequate. 

 

Figure 2. EDS images of as-synthesized compound fabricated at 5.2 GPa and different temperatures 

(1600–1900 °C) for 15 min using W powder and B powder (with W/B atomic ratios of 1/2.2) as 

precursor. 

Figure 1. XRD patterns of the samples fabricated (a) W/B atomic ratios of 1/2 at 5.2 GPa and different
temperatures (1600–1900 ◦C) for 15 min, (b) W/B atomic ratios of 1/2.2 at 5.2 GPa and different
temperatures (1600–1900 ◦C) for 15 min. Solid rhombus represents tungsten diboride (WB2). Hollow
rhombus represents WB.

The stoichiometry ratio of the compound was checked by EDS and the results are shown in
Figure 2. The picture is one of the images we have taken. The atomic ratio of W/B shown in Figure 2
is the average value of ten measurements. In measurement, we chose different parts to measure.
The molar ratio of W and B for the compound was approximately confirmed to be 1:2.0. So, single phase
WB2 without impurity cannot be synthesized with W/B atomic ratios of 1/2 because the proportion of B
is inadequate.
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The well-sintered bulk samples possessed high densification. We performed Vickers hardness
(Hv) measurement after polishing. The measurement details are described in the experiment section.
The obtained hardness results are shown in Figure 3. The hardness decreased as the loading pressure
increased. The load-dependent Vickers hardness data for WB2 are shown in Figure 3. A maximum
measured hardness of 43.875 GPa at 0.49 N was obtained and this value was higher than the threshold
value of superhard material [14]. It is reported that hardness in the asymptotic-hardness region may
occur because it is closer to the intrinsic hardness [15,16]. As shown in Figure 3, the asymptotic-hardness
of WB2 synthesized at temperatures of 1600 ◦C is about 25.5 GPa. This is higher than that of WC
(22.0 GPa) [17], which is most widely used as a hard material in industrial applications, under the
same applied load. The high hardness of WB2 suggests that WB2 is a promising candidate for use as a
hard material.
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pressure at 5.2 GPa for 15 min.

It is worth noting that the maximum asymptotic Vickers hardness of WB2 synthesized at 1600 ◦C
increased by 10% compared to WB2 synthesized at 1900 ◦C. It is known that increasing temperature
could improve the densification of a sample, and the densification could affect the hardness. So, the
hardness should increase with the synthesis temperature increasing at a certain pressure. However,
in our result, the hardness of WB2 synthesized at a low temperature was higher than that of WB2

synthesized at a high temperature. In order to find why our conclusion was contrary to other findings,
SEM tests were performed. SEM images of phase-pure WB2 synthesized at different temperatures are
shown in Figure 4. As is shown in the SEM images, WB2 has different grain sizes in the range of 200
nm−3 µm. As temperature accelerates grain growth, it was found that the grain size increased as the
temperature increased at a certain pressure. In the conventional synthesis method, temperature could
improve the densification of sample ceramics. The denseness of a sample has an obvious effect on
its hardness, and the hardness increases as the temperature increases. That is to say, the denseness
of sample is the main factor in affecting hardness. In the HPHT method, the denseness of sample
does not change obviously. So, the denseness of WB2 is not the main factor in affecting hardness. It is
reported that grain size can affect hardness. Smaller grains have more grain boundaries which can
impede the propagation of stress during the hardness test. This increase in hardness with a decrease in
crystal size is known as the Hall-Petch effect [18,19]. In our study, the largest grain size was more than
tenfold that of the smallest grain size. So, the grain size of WB2 has an obvious effect on hardness. This
requires more force to make the crystal slip, and so the smaller the grain size, the greater the yield limit
of the material. However, in this work, the grain size was not at the nanoscale. So, WB2 cannot have
a rapid increase in hardness. It can be concluded from the above that the grain size had an obvious
influence on the hardness of WB2 synthesized in our experiment.
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Figure 4. SEM results of as as-synthesized sample. (a), (b), (c) and (d) show the SEM results of
WB2 synthesized at 5.2 GPa for 15 min, with different temperatures of 1600 ◦C, 1700 ◦C, 1800 ◦C,
1900 ◦C, respectively.

In order to further confirm that the changes in the hardness of WB2 were caused by grain size but
not density, density measurements were performed on the as-synthesized samples. Density results are
shown in Figure 5. The density increased with the increase in the temperature in the entire temperature
range. Considering that materials with a high density always show high hardness, the high hardness
of WB2 synthesized at low temperatures could be caused by small grain size.
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The Electrical resistivity of WB2 synthesized at different temperatures was measured, and the
results are shown in Figure 6. As the synthesized temperature increased, the electrical resistivity
of WB2 decreased from 9.164 × 10−7 Ωm to 2.349 × 10−7 Ωm. According to the electron scattering
theory, the electrical conductivity is supposed to be approximately proportional to the grain size [20].
As the volume fraction of the interface in crystalline materials is roughly inversely proportional to the
grain size, the dependence of residual resistivity on grain size correlated with that of the interfacial
volume fraction. In Figure 4, we show that the grain size increases with the temperature in the
entire temperature range. This result can explain why the electrical resistivity decreased while the
temperature increased.
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4. Conclusions

In this work, different grain size samples of WB2 were synthesized through a high pressure and
high temperature reaction sintering method. Through an analysis of density, the use of a scanning
electron microscope and electrical resistivity measurements, we found that both density and grain size
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