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Observational studies suggested inconsistent associations between lipid-lowering drugs,

such as statins, and renal cell carcinoma (RCC) risk. In a two-sample Mendelian

randomization (MR) framework, we assessed the causal influence of lipid-lowering agents

and circulating lipid traits on overall and sex-specific RCC risk. Genetic variants of

six drug-target genes were selected to proxy the effects of low-density lipoprotein

cholesterol (LDL-C) lowering therapies. Instrumental variables for circulating lipid traits

were constructed from two large genome-wide association studies. We used endpoints

for RCC from summary statistics of two studies [International Agency for Research on

Cancer [IARC], N = 13,230; National Cancer Institute [NCI], N = 4,735]. The robustness

of results was assessed through conventional MR sensitivity analyses. Overall, there was

no significant association between genetically proxied HMG-CoA reductase (HMGCR)

inhibition and RCC risk [Odds ratio [OR] = 1.42, 95% CI, 0.29–6.99]. In the sex-stratified

analysis, we observed a positive association for genetically proxied drug targets with

RCC risk. Specifically, genetically proxied proprotein convertase subtilisin/kexin type 9

(PCSK9) inhibition was associated with a higher risk of RCC in men [OR = 2.20 [95% CI,

1.24–3.89]], and the difference by sex was moderate. This study suggested genetically

proxied inhibition of HMGCR was not associated with RCC risk, while genetically proxied

PCSK9 inhibition might be associated with a higher risk of RCC in male.

Keywords: lipid-lowering drug, renal cell carcinoma, mendelian randomization, sex-specific, lipoprotein

INTRODUCTION

According to the estimates of cancer incidence and mortality reported by the International
Agency for Research on Cancer (IARC), there were ∼430,000 new cases diagnosed with renal
cell carcinoma (RCC) and 180,000 deaths worldwide in 2020 (1). RCC patients are insensitive
to conventional cytotoxic chemotherapy, cytokine therapy, and radiotherapy, and the underlying
mechanisms are still unclear; moreover, currently, there is no efficient screening strategy for RCC
(2). Therefore, primary prevention of RCC is necessary for reducing the disease burden.

Clear cell RCC (ccRCC) is characterized by the accumulation of lipid droplets in the cytoplasm.
Both fatty acid synthesis and lipid storage could promote the growth of ccRCC (3). Observational
studies also suggested that dyslipidemia might be involved in the carcinogenesis of RCC (4).
However, a recent Mendelian randomization (MR) study that incorporated the largest published

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2021.755834
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2021.755834&domain=pdf&date_stamp=2021-10-12
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles
https://creativecommons.org/licenses/by/4.0/
mailto:chenkexin@tmu.edu.cn
https://doi.org/10.3389/fnut.2021.755834
https://www.frontiersin.org/articles/10.3389/fnut.2021.755834/full


Liu et al. Lipid-Lowering Drugs and RCC

circulating lipid traits genome wide association study (GWAS)
and RCC GWAS in European ancestry reported that there was
no causal association for the influence of low-density lipoprotein
cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-
C), total cholesterol (TC), and triglyceride (TG) on RCC risk (5).

Statins are the inhibitors of 3-hydroxy-3-methylglutaryl
coenzyme A (HMG-CoA) reductase and are the most commonly
prescribed lipid-lowering agents that are widely used in both
primary and secondary prevention of cardiovascular diseases
(CAD). Recent researches have reported its cancer preventive
effects, including promoting apoptosis, suppressing angiogenesis,
and inhibiting tumor growth and metastasis (6). However,
no increase of HMG-CoA reductase (HMGCR) activity was
observed in RCC, making the role of statins in the prevention of
RCC confused (7). In addition, growing epidemiological studies
have investigated the association between statin use and the
risk of RCC (8–11). However, the conclusions of these studies
are controversial. Several studies reported a risk reduction of
RCC in statin users (8, 9); while a nationwide case-control
study indicated no chemopreventive effect of long-term use of
statin on RCC (10), and another population-based study in
Korea reported that statin elevated the risk of kidney cancer
(11). Findings of traditional observational studies may be biased
due to confounding factors, reverse causal association, and
residual confounding, making the interpretation of these findings
challenging. Some clinical trials have also explored the effect of
lipid-modifying drugs on cancer risk; for example, a phase 3
clinical trial that was designed to assess the clinical efficacy and
safety of anacetrapib [cholesteryl ester transfer protein [CETP]
inhibitor] has reported a slightly increased but not significant risk
of genitourinary cancer [relative risk [RR]: 1.08, 95% CI: 0.93–
1.27] (12). However, due to limited follow-up periods and small
numbers of RCC cases in clinical trials, it is difficult to make
causal inferences for the relationship between lipid-lowering
therapies and RCC risk.

Mendelian randomization is a method designed for causal
inference using genetic variants to construct instrument
variables. Genetic variants are randomly allocated at conception,
and they are largely independent of potential confounders
and reverse causality, which is common in conventional
observational studies (13). Thus, MRmayminimize confounding
factors and provide more credible causal effect estimates
without any potentially harmful interventions. With the rapid
development of fundamental theory and growth of applications,
drug-target MR analysis gradually becomes an efficient tool that
can be applied to infer the influence of agents targeting protein-
encoding genes, antagonists, agonists, activators, or inhibitors on
disease risk (14). Compared to molecule-specific MR analysis,
drug-target MR analysis generated instruments using genetic
variants in DNA sequences located within or near genes, which
encode the drug target to predict the effect of the corresponding
drug. These variants may alter the expression or function of
target genes (15). Yamolinsky et al. employed this method and
identified a reverse relationship between genetically proxied
HMGCR inhibitor and ovarian cancer risk (16). Using a similar
study design, Luo et al. found a risk reduction effect of metformin
on cardiovascular and cancer risk (17).

In this study, we performed drug-target and molecule-specific
MR analyses to estimate the causal effects of circulating lipid
traits and variants in genes encoding lipid-modifying drug targets
on the risk of RCC under a two-sample MR framework. We
aimed to evaluate whether genetically proxied lipid-lowering
drugs and circulating lipid traits could influence the risk of RCC
in both men and women.

MATERIALS AND METHODS

Study Design
We designed the main analysis and secondary analysis in priori.
In the main analysis, we performed drug-target MR analysis
to investigate the association of genetically proxied HMGCR
(targets of statins), Niemann-Pick C1-Like 1 (NPC1L1, targets
of ezetimibe), proprotein convertase subtilisin/kexin type 9
(PCSK9, target of evolocumab and alirocumab), CETP (target
of anacetrapib), low density lipoprotein receptor (LDLR), and
APOB (target of mipomersen) inhibitors with overall and sex-
specific RCC risk. LDLR was not a specific drug target of
any lipid-modifying agent, however, it was involved in the
lipid metabolism, thus, we also assessed the role of the LDLR
pathway in relation to the risk of RCC in our analysis. In
the secondary analysis, we conducted a molecule-specific MR
analysis to explore the causal relationship of circulating lipid
traits, including LDL-C, HDL-C, TC, TG, ApoA, and ApoB, with
overall and sex-specific RCC risk. Details of the study design were
shown in Figure 1.

Data Source
Data used in our study were publicly available from large-
scale GWASs. All studies were approved by their respective
institutional review board and were in concordance with the
Declaration of Helsinki. Informed consent was also obtained
from each participant.

To generate instrument variables for lipid-lowering drug
targets, we obtained summary statistics from a GWAS of LDL-
C conducted by the Global Lipid Genetics Consortium (GLGC)
(18). Participants of European ancestry from 23 studies (N
= 94,595) were genotyped with customized GWAS chips and
individuals from 37 studies (N = 93,982) were genotyped using
Metabochip arrays. In both studies, standard quality control and
imputation to the 1,000 Genomes Project reference panel were
performed. Circulating lipid levels of individuals treated without
taking lipid-lowering drugs recently were measured after 8 h
fasting. The Association test of each SNP was performed using
linear regression with the inverse normal transformed trait values
as the dependent variable and the allele count for each individual
as the independent variable (18). To proxy drug-target effects,
we applied a linkage disequilibrium (LD) clumping method.
Specifically, we selected variants that were located within the
±100 kb range of each target gene and associated with LDL-C at
a genome-wide significant threshold (P < 5 × 10−8). We then
clumped these SNPs according to LD r2 ≤ 0.2 and a physical
distance of 250 kb. For instruments with <3 SNPs, we further
relaxed the LD r2 threshold to 0.40 to enlarge the variance
explained by the instruments. Finally, there were 5 SNPs for
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FIGURE 1 | Overview of the study design. To construct instruments for drug targets and circulating biomarkers, summary genetic association data with LDL-C,

HDL-C, TG, and TC were obtained from a European ancestry GWAS conducted by GLGC (N = 188,577). These SNPs were then matched with RCC outcome

datasets to obtain SNP-outcome associations. After matching SNPs across traits and aligning them into the same effect allele, Mendelian randomization analyses

were performed using the IVW method as the primary analyses, and various sensitivity analyses were applied to test Mendelian randomization assumptions

(exchangeability and exclusion restriction). HMGCR, 3-Hydroxy-3-Methyl-Glutaryl-Coenzyme A Reductase; NPC1L1, Niemann-Pick C1-Like 1; PCSK9, Proprotein

Convertase Subtilisin/Kexin type 9; LDLR, Low Density Lipoprotein Receptor; CETP, Cholesteryl Ester Transfer Protein; APOB, Apolipoprotein B; LDL-C, Low Density

Lipoprotein Cholesterol; HDL-C, High Density Lipoprotein Cholesterol; TG, Triglyceride; TC, Total Cholesterol; ApoA, Apolipoprotein A; ApoB, Apolipoprotein B; MR,

Mendelian Randomization; IARC, The International Agency for Research on Cancer; NCI, The National Cancer Institute.

proxy of HMGCR, 4 SNPs for NPC1L1, 11 SNPs for PCSK9,
12 SNPs for LDLR, 8 SNPs for CETP, and 15 SNPs for APOB
(Table 1).

To construct instruments for LDL-C, HDL-C, TG, and TC, we
extracted variants associated with each lipid trait at a genome-
wide significance (P < 5 × 10−8), LD r2 ≤ 0.001, and a physical
distance ≥10Mb from the GLGC GWAS summary data. There
were 81, 89, 55, and 88 SNPs selected for LDL-C, HDL-C,
TG, and TC instruments, respectively (Supplementary Table 2).
Moreover, we included another two lipid traits, Apolipoprotein A

(ApoA) and Apolipoprotein B (ApoB), from a recently published
large-scale GWAS study that used nuclear magnetic resonance
(NMR) metabolomics to quantify circulating metabolic traits
with up to 24,924 European individuals (19). We used the same
criteria and selected 11 and 15 SNPs for ApoA and ApoB,
respectively (Supplementary Table 2).

The endpoints for RCC were selected from two RCC GWAS
studies. All RCC cases were defined on the basis of the
International Classification of Disease for Oncology, Second
Edition (ICD-O-2) coded as C64 including all histological
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TABLE 1 | Characteristics of LDL Cholesterol-Lowering Genetic Variants

within/near HMGCR, NPC1L1, PCSK9, LDLR, CETP, and APOB gene.

SNP EA/NA EAF Effect (95% CI)† P-value

HMGCR

rs7711235 A/G 0.73 −0.038 (−0.050, −0.025) 5.00 × 10−10

rs3857388 T/C 0.87 −0.042 (−0.054, −0.031) 2.20 × 10−11

rs10515198 G/A 0.90 −0.060 (−0.072, −0.048) 5.99 × 10−22

rs12916 T/C 0.57 −0.073 (−0.081, −0.066) 7.79 × 10−78

rs12173076 T/G 0.88 −0.065 (−0.076, −0.054) 2.33 × 10−27

NPC1L1

rs217386 A/G 0.81 −0.049 (−0.058, −0.039) 1.92 × 10−21

rs2073547 A/G 0.41 −0.036 (−0.044, −0.029) 1.20 × 10−19

rs17655652 C/T 0.29 −0.028 (−0.037, −0.019) 2.18 × 10−10

rs7791240 T/C 0.91 −0.043 (−0.055, −0.030) 1.84 × 10−10

PCSK9

rs2479394 A/G 0.71 −0.039 (−0.047, −0.031) 1.58 × 10−19

rs11206510 C/T 0.15 −0.083 (−0.093, −0.073) 2.38 × 10−53

rs2479409 A/G 0.67 −0.064 (−0.072, −0.056) 2.52 × 10−50

rs11591147* T/G 0.02 −0.497 (−0.532, −0.462) 8.58 × 10−143

rs11206514 C/A 0.39 −0.051 (−0.059, −0.043) 9.95 × 10−33

rs572512 C/T 0.65 −0.048 (−0.057, −0.039) 5.31 × 10−26

rs585131 C/T 0.18 −0.064 (−0.074, −0.054) 2.70 × 10−35

rs12067569* G/A 0.97 −0.089 (−0.108, −0.069) 1.97 × 10−17

rs10493176 G/T 0.11 −0.078 (−0.098, −0.058) 2.54 × 10−14

rs11583974* G/A 0.97 −0.065 (−0.088, −0.042) 3.95 × 10−9

rs2495477 C/T NA −0.064 (−0.075, −0.053) 7.29 × 10−30

LDLR

rs12983316 A/G 0.83 −0.051 (−0.062, −0.041) 7.44 × 10−22

rs3786721 C/T 0.54 −0.047 (−0.054, −0.039) 2.89 × 10−31

rs12052058 T/G 0.25 −0.075 (−0.083, −0.067) 9.66 × 10−62

rs6511720 T/G 0.10 −0.221 (−0.233, −0.209) 1.00 × 10−200

rs73015030* A/G 0.03 −0.152 (−0.181, −0.123) 2.62 × 10−22

rs1799898 T/C 0.15 −0.033 (−0.044, −0.023) 1.96 × 10−9

rs688 C/T 0.55 −0.054 (−0.061, −0.047) 1.01 × 10−43

rs2738464 G/C 0.13 −0.042 (−0.054, −0.030) 2.73 × 10−10

rs5742911 G/A 0.27 −0.061 (−0.072, −0.049) 4.83 × 10−24

rs892114 G/A 0.77 −0.035 (−0.045, −0.026) 7.63 × 10−13

rs7251031 T/G 0.71 −0.046 (−0.055, −0.037) 6.24 × 10−23

rs379309 T/C 0.50 −0.031 (−0.039, −0.024) 1.39 × 10−13

CETP

rs12448528 G/A 0.77 −0.037 (−0.047, −0.027) 1.06 × 10−12

rs247616 T/C 0.29 −0.055 (−0.063, −0.047) 2.57 × 10−37

rs1864163 G/A 0.73 −0.044 (−0.053, −0.035) 7.97 × 10−21

rs9989419 G/A 0.59 −0.028 (−0.035, −0.020) 2.49 × 10−12

rs12920974 G/T 0.68 −0.032 (−0.043, −0.021) 2.96 × 10−8

rs9929488 G/C 0.70 −0.037 (−0.047, −0.028) 8.15 × 10−13

rs118146573 G/A 0.87 −0.053 (−0.069, −0.038) 1.02 × 10−10

rs289714 A/G 0.79 −0.036 (−0.046, −0.025) 2.85 × 10−10

APOB

rs4665788 C/T 0.77 −0.067 (−0.075, −0.058) 1.12 × 10−52

rs11685356* C/T 0.77 −0.052 (−0.060, −0.043) 1.21 × 10−31

rs6754295 G/T 0.26 −0.063 (−0.071, −0.055) 1.64 × 10−47

rs6725189 T/G 0.23 −0.060 (−0.069, −0.052) 5.63 × 10−40

(Continued)

TABLE 1 | Continued

SNP EA/NA EAF Effect (95% CI)† P-value

rs533617* C/T 0.05 −0.141 (−0.160, −0.121) 9.63 × 10−45

rs3791981 G/A 0.12 −0.094 (−0.107, −0.081) 2.03 × 10−41

rs12691202* T/C 0.05 −0.097 (−0.119, −0.074) 8.22 × 10−19

rs12720842* T/C 0.98 −0.099 (−0.122, −0.077) 1.88 × 10−15

rs12720796* A/C 0.98 −0.091 (−0.119, −0.063) 1.68 × 10−10

rs1367117 G/A 0.71 −0.119 (−0.126, −0.111) 9.48 × 10−183

rs17398765 A/G 0.93 −0.092 (−0.107, −0.077) 3.54 × 10−32

rs7567653* A/G 0.04 −0.115 (−0.136, −0.093) 3.37 × 10−26

rs515135 T/C 0.22 −0.139 (−0.149, −0.130) 1.09 × 10−178

rs6756743* C/T 0.96 −0.055 (−0.073, −0.037) 4.97 × 10−9

rs113588790* C/T 0.98 −0.090 (−0.118, −0.061) 3.94 × 10−9

*These SNPs were not available in the RCC GWAS datasets, including three SNPs in

PCSK9 (rs11591147, rs12067569, rs11583974), one SNP in LDLR (rs73015030), and

seven SNPs in APOB (rs11685356, rs1291202, rs12720842, rs12720796, rs7567653,

rs6756743, rs113588790).
†
Unit: 38.67mg/dL (1 SD).

EAf, Effect Allele Frequency; HMGCR, 3-Hydroxy-3-Methyl-Glutaryl-Coenzyme A

Reductase; NPC1L1, Niemann-Pick C1-Like 1; PCSK9, Proprotein Convertase

Subtilisin/Kexin type 9; LDLR, Low Density Lipoprotein Receptor; CETP, Cholesteryl Ester

Transfer Protein; APOB, Apolipoprotein B.

subtypes. And all controls were healthy participants recruited
from large cohort studies. First, for the overall analysis, we used
raw genotyping data obtained from dbGaP (phs000351.v1.p1),
which recruited 1,311 cases and 3,424 controls of European
ancestry conducted by the National Cancer Institute (NCI).
We performed quality control, imputation, and association test
as described in (20), and obtained association results of ∼6.5
million SNPs. The data process procedure was presented in
Supplementary Figure 1. In addition, we obtained summary
genetic association statistics from a recently published sex-
specific RCC GWAS (21). For sex-specific analysis, we obtained
summary statistics from a publicly available dataset consisting
of two IARC-Center National de Genotypage (CNG) scans with
5,219 RCC cases (1,992 women and 3,227 men) and 8,011
controls (3,095 women and 4,916 men) of European ancestry.
IARC-2 study, the mean (SD) age of the participants was
60.16 (11.19) years. Quality control, imputation, and sex-specific
association analyses protocols were described in a previous study
(21). Finally, ∼6.4 million SNPs were retained in the sex-specific
GWAS dataset.

Power Calculation and F-Statistic
Statistical power and F-statistics were calculated to ensure
sufficient statistical power and avoid weak instrument bias.
Power calculation was performed using online tools mRnd
(http://cnsgenomics.com/shiny/mRnd) (22, 23). The statistical
powers to capture an OR of 0.50 per one SD change in the
circulating LDL-C levels were shown in Supplementary Table 3.
The strength of each instrument was assessed by calculating F-
statistics; typically, F-statistic >10 was considered to be no weak

Frontiers in Nutrition | www.frontiersin.org 4 October 2021 | Volume 8 | Article 755834

http://cnsgenomics.com/shiny/mRnd
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Liu et al. Lipid-Lowering Drugs and RCC

instrument bias (24).

F =
N − k − 1

k
×

R2

1 − R2

N indicated the sample size of the exposure factor, k indicated
the number of SNPs in each instrument, and R2 represented
the variance explained by the instrument. R2 was calculated
according to the equation proposed by Shim et al. (25).

Statistical Analysis
Data for SNP associations with LDL-C and with risk of
RCC outcomes were harmonized to match coded effect alleles
consistently. If the variants were not available for the outcomes,
we searched for a proxy (r2 ≥ 0.8) for these SNPs. However, if
no proxies were founded, the SNPs were omitted. Ambiguous
SNPs with palindromic genotypes and minor allele frequencies
between 0.4 and 0.5 were excluded from the analysis.We used the
multiplicative random effect inverse-variance weighted (IVW)
method to generate the overall estimate of causal effect when
there are three or more variants in the instruments; while if
there are two or fewer variants in the instruments, Wald ratio
estimates were used. All the reported ORs of RCC risk were
corresponding to one SD of LDL-C levels. In addition, for drug-
target MR analysis, as there was weak LD (r2 ≤ 0.2) among the
instruments, we included the correlation matrix of variants that
were calculated based on the 1,000 Genomes Phase 3 reference
panel for correction. We totally performed 18 tests and applied
Benjamini-Hochberg false-discovery rate (FDR) procedure to
adjust the raw p-values for multiple testing. All statistical tests
were two-sided and a significant threshold was set to P < 0.05.
We calculated the p-values for the sex disparity in effect estimates
(based on log ORs and SEs for RCC). Specifically, we used a well-
established formula to calculate the z statistics and then obtained
the two-tailed p-values.

z =
(b1 − b2)

√

(SE2
b1

+ SE2
b2
)

where b1 and b2 are the MR effect estimates (log ORs and SEs
for RCC), and SEb1 and SEb2 are the standard error of b1 and
b2. Statistical analyses were conducted using the TwoSampleMR
(v. 0.5.5), MVMR (v. 0.2.0), MendelianRandomization (v. 0.5.0),
and MR-PRESSO (v. 1.0) packages in R (v. 3.5.3).

Test of Basic MR Assumptions
Our study was based on a two-sample MR framework,
which obtained SNP-exposure associations and SNP-outcome
associations from diverse populations and sources to estimate the
causal effects of exposure on the outcome (26). Therefore, three
assumptions should be satisfied: (1) a strong link between genetic
predictor and the exposure (“relevance”); (2) genetic predictor
of the exposure is independent of the confounders influencing
the relationship of exposure and outcome (“independence”); (3)
genetic predictor affects the outcome only through the exposure
of interest (“exclusion restriction”). We conducted three tests
to test each assumption mentioned above. First, we applied
adaption of I2-statistics (referred to as I2GX) to test whether

there was no measurement error (i.e., NOME assumption) in
the SNP-exposure association estimates. I2GX statistics provided
an estimation of the degree of expected relative bias (or dilution)
in the MR-Egger causal estimate due to uncertainty in the SNP-
exposure estimates (27). Simulation extrapolation (SIMEX) was
then used to counteract the MR-Egger estimate for this dilution
(28). Second, colocalization analysis was applied to test the
independence assumption. Colocalization analysis investigated
whether SNPs associated with both the exposures and outcomes
were shared casual variants. This analysis was carried out with
the eCAVIAR package and a threshold of colocalization posterior
probability (CLPP) <0.01 was set to indicate a significant
shared causal variant between drug-target instruments and RCC
outcome (29). Third, multivariable MR analysis was applied
to test the exclusion-restriction assumption. We included eight
established risk factors (e.g., smoking, alcohol consumption;
body mass index, BMI; waist-to-hip ratio; height; hypertension;
diabetes; and chronic kidney disease) in the univariable MR
model to assess the relationship between genetically proxied
inhibition of drug targets and these RCC risk factors. We used
multivariable MR analysis to adjust for statistically significant
risk factors associated with genetically proxied inhibition of
drug targets. Consistency of causal relationships between the
adjusted and unadjusted model indicated a robust association
that unlikely to be biased by other causal pathways (30).
Extended descriptions of multivariable MR analyses were shown
in Supplementary Methods.

Sensitivity Analysis
Sensitivity analyses were performed using MR-Egger (31),
weighted median (32), weighted mode, and MR-PRESSO (33)
methods. Specifically, as there was weak LD (r2 ≤ 0.2)
among instruments in the drug-target MR analysis, the residual
genetic correlation was accounted for when applying these
sensitivity analysis methods. MR-Egger intercept test was used
to assess heterogeneity between causal effects of individual
genetic variants. A pleiotropy test was applied to assess
horizontal pleiotropy (34). In addition, we performed leave-
one-out analyses to examine whether the removal of one SNP
from the instruments iteratively influenced the overall estimates
of a causal effect. To help validate the drug-target instrument
construction strategies, we also used the same set of SNPs to
assess the effect of LDL-C lowering on CAD. In this analysis (i.e.,
positive control analyses), we expected to see a significant causal
effect of LDL-C lowering on CAD risk. Summary GWAS data on
CAD risk were obtained from the CARDIoGRAM consortium
(N = 22,233 cases, 64,762 controls) (35). All participants were
European ancestry populations. Moreover, we also replicated the
analysis using instrument variables constructed in previous MR
studies (36–38). Information of SNPs to construct these genetic
scores were listed in Supplementary Tables 13–17.

RESULTS

MR Estimates
An overview of the study design was provided in Figure 1.
Information of genetic variants in HMGCR, NPC1L1, PCSK9,
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LDLR, CETP, and APOB used to proxy the effect of drug-target
genes were presented in Table 1 and Supplementary Table 1.
Information of single nucleotide polymorphisms (SNPs), which
used to generate instruments of LDL-C, HDL-C, TG, TC, ApoA,
and ApoB were listed in Supplementary Table 2. Across the six
drug-target instruments examined, F-statistics ranged from 64.2
to 369.6, indicating that weak instrument bias was unlikely to
contribute to the analyses. Variance explained by the instruments
ranged from 0.13 to 1.51%. For circulating lipid biomarkers
analyses, the F-statistics of the instruments ranged from 68.1
to 153.6, and the explained variance ranged from 4.81 to 7.52%
(Supplementary Table 3). The statistical power to capture an
OR of 0.50 per one SD change in the circulating LDL-C levels
in drug-target MR analyses was relatively low, ranging from
0.10 to 0.94.

Results for the genetically predicted lipid-lowering drug
targets on RCC and CAD risk adjusting for weak LD among
variants were shown in Figure 2 and Supplementary Table 4.
All these six drug targets were significantly associated with
CAD risk (P < 0.05), indicating that the instruments were

valid (Supplementary Table 4). We did not observe a significant
association between genetically proxied HMGCR inhibition,
which was equivalent to one SD reduction in LDL-C, and RCC
risk [Odds ratio [OR] = 1.42, 95% CI, 0.29–6.99, P = 0.668];
and this association remained non-significant when classified by
sex [men: OR = 1.25 [95% CI, 0.56–2.79], P = 0.583; women:
OR = 0.97 [95% CI: 0.36–2.66], P = 0.956]. Similar results were
observed in MR analyses for NPC1L1 (P = 0.245), LDLR (P =

0.832), and APOB (P = 0.140) inhibitors.
We found that genetically proxied CETP inhibition was

significantly associated with a higher risk of RCC [OR = 18.8
[95% CI, 2.45–143.9], P = 4.79 × 10−4, FDR-corrected P =

0.006]. Sex-specific analysis indicated that the association was
nominally significant in women [OR= 4.31 [95% CI, 1.19–15.6],
P = 0.026, FDR-corrected P = 0.112] rather than in men [OR =

2.16 [95% CI, 0.77–6.11], P = 0.145, FDR-corrected P = 0.305];
however, the difference by sex was not significant (Pdifference =
0.41). In addition, although genetically proxied PCSK9 inhibition
was not associated with RCC risk in the overall population [OR=

1.55 [95% CI, 0.54–4.48], P = 0.421, FDR-corrected P = 0.520],

FIGURE 2 | Association between genetically proxied inhibition of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase (HMGCR), Niemann-Pick C1-Like 1 (NPC1L1),

Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9), Cholesteryl Ester Transfer Protein (CETP), low-density lipoprotein receptor (LDLR), Apolipoprotein B (APOB)

with renal cell carcinoma risk in NCI-1, IARC men and IARC women, and cardiovascular disease (CAD) risk in CARDIoGRAM after adjusted for weakly linkage

disequilibrium (LD) among variants.
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it was significantly associated with a higher risk of RCC in men
[OR = 2.20 [95% CI, 1.24–3.89], P = 0.007, FDR-corrected P =

0.045] but not in women [OR = 0.96 [95% CI, 0.42–2.16], P =

0.914, FDR-corrected P = 0.701]; and the difference by sex was
moderate (Pdifference = 0.10).

Forest plots showed the casual effect estimates of each SNP in
PCSK9 and CETP inhibition instruments on RCC in both men
and women (Figure 3). Forest plots for other drug targets were
shown in Supplementary Figure 2. We found that all the effect
estimates of the SNPs in the PCSK9 inhibition instrument on
RCC risk in men were consistent except rs11206541. While all
effect estimates of the SNPs in the CETP inhibition instrument
on RCC risk in women were directionally consistent.

In the secondary analysis, we observed a nominally significant
association between circulating TC level and RCC risk in men
[OR = 1.20 [95% CI, 1.00–1.44], P = 0.044]. None of the other
circulating traits was significantly associated with overall and
sex-specific RCC risk (Supplementary Table 5).

Basic MR Assumption Test Results
We found that none of the drug-target and lipid trait
instruments was departed from the NOME assumption (all
I2GX >70%, Supplementary Table 6). We performed SIMEX-
extrapolation MR-Egger tests to counteract the dilution and

found consistent results with the standard MR-Egger method
(Supplementary Table 7).

We observed no evidence that there were shared causal
variants between LDL-C and RCC risk in men at PCSK9 locus
(rs11206510, CLPP = 0.004) and in women at CETP locus
(rs247616, CLPP = 0.004) for a-priori defined CLPP threshold
of 0.10. Detail results were shown in Supplementary Table 8.

Univariable MR analysis results of genetically proxied
inhibition of drug targets and RCC risk factors were shown
in Supplementary Table 9. We found that there was evidence
for causal associations between PCSK9 inhibitor instrument and
lifetime smoking index [β = 0.02 [95% CI, 0.00, 0.03]; P =

0.028]; waist-to-hip ratio (β = 0.05 [95% CI, 0.03, 0.07]; P =

7.26 × 10−6]; type 2 diabetes risk [OR = 1.28 [95% CI, 1.09–
1.51]; P = 0.002]. In addition, CETP inhibitor instrument was
significantly associated with BMI [β = −0.06 [95% CI, −0.11,
−0.01]; P = 0.017]; height [β = −0.06 [95% CI, −0.11, −0.01];
P = 0.025]; systolic pressure [β = −1.31 [95% CI, −2.19,
−0.42]; P = 0.004]; and diastolic pressure [β = −0.59 [95%
CI, −1.10, −0.074]; P = 0.025]. Results of multivariable MR
analysis adjusted for those significant risk factors were shown
in Supplementary Table 10. We found that casual associations
of genetically proxied PCSK9 inhibition with RCC risk in men
remained significant after adjusting for waist-to-hip ratio [OR

FIGURE 3 | Forest plots showed the casual effect estimates of each SNP in PCSK9 and CETP inhibition instruments on RCC in men and women, respectively.

(A) PCSK9 inhibitor and RCC risk in men; (B) CETP inhibitor and RCC risk in women.
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= 1.59 [95% CI, 1.02–2.49], P = 0.041], lifetime smoking index
[OR = 1.73 [95% CI, 1.02–2.93], P = 0.042], and type 2 diabetes
[OR= 2.07 [95% CI, 1.33–3.24], P = 0.001]. However, the causal
associations of genetically proxied CETP inhibition with RCC
risk in women attenuated substantially after adjusting for BMI (P
= 0.409), height (P = 0.647), systolic pressure (P = 0.985), and
diastolic pressure (P = 0.765).

Sensitivity Analysis
MR-Egger, weighted median, and weighted mode results were
presented in Supplementary Tables 4, 5. For sensitivity analysis
of drug-target MR, LD among SNPs was considered. We found
that the effect estimates were consistent across these pleiotropy-
robust methods.

Results of the leave-one-out analysis were shown in Figure 4

and Supplementary Figure 3. We found that causal effect
estimates of genetically proxied inhibition of PCSK9 with RCC
risk in men and CETP with RCC risk in women were stable
regardless of removal of any SNP in the instruments.

Heterogeneity and pleiotropy test results were presented in
Supplementary Tables 11, 12. We observed some evidence for
heterogeneity when assessing the causal effect of HDL-C and
RCC risk in men (IVW Q = 115.95, P = 0.01; MR-Egger Q =

115.52, P = 0.01). Thus, we applied the multiplicative random-
effect IVW meta-analysis method and found a consistent result
[IVW OR = 1.20 [95% CI, 0.97–1.50], P = 0.093]. Pleiotropy
tests showed no existence of significant horizontal pleiotropy (all
P > 0.05).

FIGURE 4 | Leave-one-out analysis of genetically proxied PCSK9 and CETP inhibition on RCC risk in men and women. (A) PCSK9 inhibitor and RCC risk in men; (B)

PCSK9 inhibitor and RCC risk in women; (C) CETP inhibitor and RCC risk in men; (D) CETP inhibitor and RCC risk in women.
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In comparison analysis using lipid-lowering drug instruments
previously reported, we also found that genetically proxied
PCSK9 inhibition was causally associated with RCC risk
in men [OR = 1.02 [95% CI, 1.00–1.04], P = 0.026]
(Supplementary Table 18).

DISCUSSIONS

In this two-sample MR analysis involving 6,530 RCC cases and
11,435 controls of European ancestry, we found that genetically
proxied long-term modulation of LDL-C levels by targeting
HMGCR genes was not causally associated with reduced risk
of RCC. However, genetically proxied PCSK9 inhibition was
causally associated with a higher risk of RCC in men, but the
difference by sex was not significant. In addition, very limited
evidence was shown for an influence of circulating lipid traits,
including LDL-C, HDL-C, TC, TG, ApoA, and ApoB, on the risk
of RCC, which was consistent with the previous MR study.

Association of HMGCR and RCC Risk
Weobserved no evidence of a protective effect of LDL-C lowering
and genetically proxied inhibition of HMGCR on RCC risk. This
result was directionally consistent with a recent MR study of
1,310 kidney cancer patients from UK Biobank, which found
that genetically proxied inhibition of HMGCRwas not associated
with RCC risk [OR = 1.35 [95% CI, 0.51–3.57], P = 0.554] (39).
Moreover, an umbrella review that reanalyzed the effect of statin
on the risk of kidney cancer based on 4,052,120 participants
from 11 studies has graded the evidence degree as non-significant
(40). In addition, Gebhard et al. have reported that there was
no increase in the HMGCR activity in RCC (7). However, it
was worth noting that our findings were limited to the influence
of LDL-C lowering effect of statins on RCC risk, and did not
consider other effects of statins that could also influence the
incidence of RCC. For example, it was reported that fluvastatin
could potentiate the anticancer activity of vorinostat in renal
cancer cells by activating the mechanistic target of rapamycin
(mTOR) inhibitor (AMP)-activated protein kinase adenosine
monophosphate (AMPK) (41). Therefore, further researches
should focus on the potential mechanisms of statins on RCC risk
beyond the LDL-C lowering effect.

Association Between PCSK9 and RCC Risk
It is established that PCSK9 modulates lipid metabolism through
degrading LDLR on the surface of hepatocytes (42). However,
we found that genetically proxied LDLR inhibition was not
causally associated with RCC risk. These results suggested that
the mechanisms of PCSK9 inhibitors on RCC risk might be
independent of LDL receptor degradation pathways. Previous
genetic studies of PCSK9 inhibition suggested that reduced LDL-
C levels by inhibiting PCSK9 activity were significantly associated
with a higher incidence of diabetes (43, 44). Hyperglycemia
may contribute to the carcinogenesis of kidney cancer by
dysregulation of the rennin-angiotensin system and AMP-
activated protein kinase pathways (45, 46). In addition, PCSK9 is
expressed in the kidney, and involved in nephrogenesis; however,
the function of PCSK9 in the kidney remains largely unknown

(47). In vivo study indicated that PCSK9 interacted with epithelial
sodium channel (ENaC) subunits and decreased their trafficking
to the human embryonic kidney (HEK) 237 cell surface (48).
Therefore, inhibiting PCSK9 might promote the trafficking
of ENaC, while ENaCs are critically engaged in cancer cell
biology, such as proliferation, migration, invasion, and apoptosis
(49). Unfortunately, due to the lower prevalence and distinct
pathological characteristics of RCC, and the shorter duration of
the PCSK9 inhibitor trials, there were few epidemiology studies
focused on the association of PCSK9 inhibitors and RCC risk.
Further pharmacological researches uncovering the influence of
PCSK9 inhibitors on the physiological function of renal cells are
warranted. More genetic and observational studies are needed to
elucidate the associations.

Interestingly, we found that genetically proxied PCSK9
inhibitor was only significantly associated with RCC risk in men
rather than women, and the difference by sex was moderate. Sex
disparity of PCSK9 levels has long been discussed. A clinical trial
(NCT00848276) explored the relationship among testosterone,
estradiol, and circulating PCSK9 levels and suggested that
circulating PCSK9 was not related to or affected by testosterone
in men, whereas inversely related to estradiol in women (50).
Schooling CM et al. have investigated whether statins and
PCSK9 inhibitors have pleiotropic effects on ischemic heart
disease (IHD) via testosterone in men and women. And they
demonstrated genetically proxied effects of statins other than
PCSK9 inhibitors in men affected testosterone, which partly
mediated effects of IHD (51). It is established that men are at
substantially higher lifelong risk of RCC than women (∼2-fold).
Therefore, it should be more cautious for men with a higher risk
of RCC when using PCSK9 inhibitor therapies.

Strength and Limitations
To our knowledge, our study was the largest drug-target MR
analysis so far to explore the causal effect of genetically proxied
lipid-modifying agents on overall and sex-specific RCC risk.
We comprehensively examined targets of commonly prescribed
lipid-lowering drugs, including statins, ezetimibe, evolocumab,
anacetrapib, and mipomersen, and a series of sensitivity
analyses were applied to test whether the results violated basic
assumptions or were biased by horizontal pleiotropy.

However, there were several limitations. The first limitation
was the relatively small sample size for RCC risk GWAS studies,
which resulted in low statistical power and a wide CI. However,
participants in these studies were European ancestry populations
recruited from European countries, Australia, and the USA, and
they were well-representatives. In the future, larger RCC GWASs
and more powerful instruments might enable us to estimate
the causal effects more precisely. Second, selection bias might
affect MR estimates when samples selected into the study are
strongly influenced by the risk factor. However, restricted to the
small sample size and insufficient information of the samples,
selection bias cannot be ruled out in our study. Future studies
with a larger sample size and novel statistical analysis methods
(such as inverse probability weighting method) might result in
more accurate effect estimates. Third, we could not use sex-
specific instrumental variables for circulating lipid traits due to
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limited robust associations between SNP and the traits. However,
a recently published sex-specific GWAS across 33 quantitative
biomarker traits in UK Biobank demonstrated that sex played
a limited role in the genetics of most traits (52). Thus, this
bias should have little consequence for the result interpretation.
The fourth limitation was that drug-target MR analysis was
designed to reflect the effect of life-long modulation of lipid-
lowering agents to modify LDL-C levels on the disease. It was
unable to indicate the effect of short-term administration of
lipid-modifying agents. Fifth, all GWAS samples were of mostly
European ancestry, making extrapolation of our conclusions to
other populations difficult. Sixth, given that the incidence rate of
RCC increases steadily with age, with a peak of incidence at ∼75
years, competing risk factors before recruitment might bias the
results, which was so-called “winner’s curse bias” (53). Seventh,
this analysis considered no interaction of the association between
genetic variants proxied to the drug targets and RCC risks,
such as gene-environment interaction and gene-gene interaction.
Eighth, our analysis only revealed the on-target effect of drug
use solely and ignored the off-target consequences of related
medication. Specifically, we only considered the causal influence
of LDL-C lowering effect of lipid-modifying agents on RCC
risk; however, the pharmacological mechanisms underlying each
medication are more complex. For example, statin use has been
reported to lead to extensive lipoprotein and fatty acid changes
beyond LDL-C (54). Ninth, some instrument variables were not
available in the RCC datasets, which might lead to the missing
of the causal effect estimates. However, as these SNPs were in
weak LD with each other and leave-one-out analyses were stable
regardless of removal of any SNP in the instrument, the missing
variants may not change the results substantially.

In conclusion, we found very limited evidence to support
the genetically proxied inhibition of HMGCR as a causal
protective factor for RCC. However, our results tentatively
suggested that genetically proxied inhibition of PCSK9 and
CETP were significantly associated with a higher risk of RCC
in a sex-specific manner. These findings provided insights into
the potential mechanisms of action of the novel lipid-lowering
therapies. However, as the pharmacological mechanisms of

these medications were complex, we could not conclude
that short-term administration of PCSK9 and CETP inhibitor
therapies would increase RCC risk.
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