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Abstract: Ischemic damage aggravation of femoral head collapse is a prominent pathologic feature
of osteonecrosis of the femoral head (ONFH). In this regard, S100 calcium binding protein A9
(S100A9) is known to deteriorate joint integrity, however, little is understood about which role
S100A9 may play in ONFH. In this study, a proteomics analysis has revealed a decrease in the serum
S100A9 level in patients with ONFH upon hyperbaric oxygen therapy. Serum S100A9 levels, along
with serum vascular endothelial growth factor (VEGF), soluble vascular cell adhesion molecule-1
(sVCAM-1), interleukin-6 (IL-6), and tartrate-resistant acid phosphatase 5b levels were increased
in patients with ONFH, whereas serum osteocalcin levels were decreased as compared to healthy
controls. Serum S100A9 levels were increased with the Ficat and Arlet stages of ONFH and correlated
with the patients with a history of being on glucocorticoid medication and alcohol consumption.
Osteonecrotic tissue showed hypovasculature histopathology together with weak immunostaining
for vessel marker CD31 and von Willrbrand factor (vWF) as compared to femoral head fracture
specimens. Thrombosed vessels, fibrotic tissue, osteocytes, and inflammatory cells displayed strong
S100A9 immunoreactivity in osteonecrotic lesion. In vitro, ONFH serum and S100A9 inhibited the
tube formation of vessel endothelial cells and vessel outgrowth of rat aortic rings, whereas the
antibody blockade of S100A9 improved angiogenic activities. Taken together, increased S100A9 levels
are relevant to the development of ONFH. S100A9 appears to provoke avascular damage, ultimately
accelerating femoral head deterioration through reducing angiogenesis. This study provides insight
into the molecular mechanism underlying the development of ONFH. Here, analysis also highlights
that serum S100A9 is a sensitive biochemical indicator of ONFH.

Keywords: osteonecrosis of the femoral head; S100 calcium binding protein A9; angiogenesis; vessel;
endothelial cells

1. Introduction

Osteonecrosis of the femoral head (ONFH) is a progressive damage of hip microarchitecture
together with catastrophic pain and lower limb disability [1], terribly devastating patients′ activity
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and even psychology [2], becoming a major cause of hip arthroplasty [3]. Ischemic damage, marrow
edema, bone cell death, and femoral head collapse are prominent histopathologic features of the hip
disorder. While the underlying cause of ONFH remains uncertain, glucocorticoid overmedication [4],
excessive alcohol consumption [5], trauma [6], and genetic variance [7] are known to put hips at risk of
the disease.

Decreased blood supply [8] and vascular occlusion [9] occur in the development of human
ONFH; however, molecular events underlying the pathological reaction are poorly characterized.
In experimental ONFH models, the dephosphorylation of elF2, an endoplasmic reticulum stress
regulator, increases angiogenic factor vascular endothelial growth factor (VEGF) production and
angiogenesis, slowing femoral head injury during the surgery-mediated ONFH [10]. Epigenetic
regulator microRNA-34a is important to inhibit glucocorticoid excess-induced endothelial cell
dysfunction and vessel loss in rats with femoral head osteonecrosis [11]. The decreased bone marrow
mesenchymal stem cell-derived microRNA-224-3p enhances angiogenic activity in cases of traumatic
ONFH [12]. Augmenting vessel remodeling by knee loading attenuates the ligamentum teres
transection/ligature around femoral head-induced osteonecrosis [13]. Overactivated toll-like receptor
4 (TLR4) and the nuclear factor-κB (NF-κB) signaling pathways suppress angiogenesis in rats with
methylprednisolone and endotoxin lipopolysaccharide-mediated avascular necrosis of the femoral
head [14].

The S100 family member S100 calcium binding protein A9 (S100A9) is a 13.2 kDa soluble molecule,
which is mostly produced by inflammatory cells and injured tissue in various pathological contexts [15].
TLR4 mediates the S100A9 aggravation of the inflammatory reaction and ischemia/reperfusion-mediated
cardiovascular damage [16,17]. The inhibition of TLR4 signaling in vessel endothelial cells attenuates
S100A9-induced angiogenesis loss [18] through NF-κB, the signal transducer and activator of
transcription 3 (STAT3), and mitogen-activated protein kinase (MAPK) pathways [19]. Increasing
evidence has revealed that S100A9 mediates the polarization of bone-marrow macrophages, decreasing
muscle vascular regeneration upon ischemic stress [20]. This molecule also modulates vascular
thrombosis [21,22] and glomerulonephritis dysregulation of vessel formation [23]. In addition,
accumulating evidence has revealed the relevance of S100A9 to arthritic diseases, like osteoarthritis,
rheumatoid arthritis, and psoriatic arthritis [24]. Mice deficient in S100A9 show mild osteoarthritis
syndrome upon destabilized medial meniscus-meniscus surgery as compared to wild-type mice [25].
The pharmacological inhibitor of S100A9, paquinimod, attenuates the collagenases-mediated synovitis,
cartilage loss, and osteophyte formation [26]. The contribution of S100A9 to the development of ONFH
remains elusive.

This study aims to investigate whether serum S100A9 is relevant to human ONFH and reveal that
role which S100A9 may play in vessel formation in femoral head osteonecrotic tissue.

2. Results

2.1. Decreased Serum S100A9 Levels in ONFH upon Hyperbaric Oxygen Therapy

First, we investigated the proteomics profiles (Figure 1A) of nucleated cells in peripheral blood in
5 patients with Ficat and Arlet stage II of ONFH before and after 2.5 ATA hyperbaric oxygen therapy
(HBO; 1 treatment/day) for 20 treatments [27,28]. Eight proteins homologues to filamin A (FLNA),
gelsolin isoform B, disulfide isomerase-associated 3 isoform 1, annexin III chain III, and capping
protein (actin filament) muscle Z-line-β were increased upon HBO therapy, whereas 3 proteins
homologues to actin beta (ACTB) protein and S100A9 were reduced (Figure 1B), as evident from the
tandem mass spectrometry (Figure 1C and Table 1). Of the proteins, S100A9, a 13.2 kDa and pI 5.71
molecule (Figure 1D), is known to regulate joint remodeling [23,24]. Consistent with the proteomics
analysis, serum S100A9 levels were significantly decreased upon HBO therapy, as evident from the
ELISA analysis.
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Figure 1. Analysis of S100 calcium binding protein A9 (S100A9) levels in peripheral blood cells and 

serum. Two-dimensional SDS-PAGE gel images of peripheral blood nucleated cells in patients with 

and without HBO therapy (A). Decreased S100A9 protein spots in the HBO group (B). Tandem mass 

spectrometrograms (C) and attributes (D) of S100A9. Decreased serum S100A9 levels in patients with 

osteonecrosis of the femoral head (ONFH) upon HBO therapy (E). Data are expressed as mean ± 

standard errors calculated from 5 patients. * p < 0.05. ONFH, osteonecrosis of the femoral head; HBO, 

hyperbaric oxygen. Red circles, patients with ONFH before HBO therapy; Blue squares, patients with 

ONFH upon HBO therapy. 

Table 1. Tandem mass spectrometric analysis of serum protein. 

Spot Protein Name Mw pI Accession 

1 Filamin A (FLNA protein) 88534 5.93 gi|15779184 

2 Filamin A (FLNA protein) 88534 5.93 gi|15779184 

3 Filamin A (FLNA protein) 88534 5.93 gi|15779184 

4 Gelsolin isoform B 80591 5.58 gi|38044288 

5 Filamin A (FLNA protein)  88534 5.93 gi|15779184 

6 Gelsolin isoform B 80591 5.58 gi|38044288 

7 Protein disulfide isomerase-associated 3 isoform 1 54929 6.42 gi|114656687 

8 Annexin III chain A 36309 5.63 gi|157830132 

9 Capping protein (actin filament) muscle Z-line 29277 6.45 gi|55665440 

10 Actin beta (ACTB protein) 40194 5.55 gi|15277503 

11 S100A9 13234 5.71 S10A9_HUMAN 

12 S100A9 13234 5.71 S10A9_HUMAN 

Figure 1. Analysis of S100 calcium binding protein A9 (S100A9) levels in peripheral blood cells and
serum. Two-dimensional SDS-PAGE gel images of peripheral blood nucleated cells in patients with
and without HBO therapy (A). Decreased S100A9 protein spots in the HBO group (B). Tandem mass
spectrometrograms (C) and attributes (D) of S100A9. Decreased serum S100A9 levels in patients with
osteonecrosis of the femoral head (ONFH) upon HBO therapy (E). Data are expressed as mean ±
standard errors calculated from 5 patients. * p < 0.05. ONFH, osteonecrosis of the femoral head; HBO,
hyperbaric oxygen. Red circles, patients with ONFH before HBO therapy; Blue squares, patients with
ONFH upon HBO therapy.

Table 1. Tandem mass spectrometric analysis of serum protein.

Spot Protein Name Mw pI Accession

1 Filamin A (FLNA protein) 88534 5.93 gi|15779184
2 Filamin A (FLNA protein) 88534 5.93 gi|15779184
3 Filamin A (FLNA protein) 88534 5.93 gi|15779184
4 Gelsolin isoform B 80591 5.58 gi|38044288
5 Filamin A (FLNA protein) 88534 5.93 gi|15779184
6 Gelsolin isoform B 80591 5.58 gi|38044288
7 Protein disulfide isomerase-associated 3 isoform 1 54929 6.42 gi|114656687
8 Annexin III chain A 36309 5.63 gi|157830132
9 Capping protein (actin filament) muscle Z-line 29277 6.45 gi|55665440
10 Actin beta (ACTB protein) 40194 5.55 gi|15277503
11 S100A9 13234 5.71 S10A9_HUMAN
12 S100A9 13234 5.71 S10A9_HUMAN
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2.2. Increased Serum S100A9 Level Was Associated with Inflammation, Vessel Injury and Bone Turnover

Vessel injury, bone damage, and excessive inflammation occur in the development of ONFH.
The analysis of serum S100A9 levels prompted us to examine whether the protein has anything to
do with the deleterious reactions. Thirty-eight patients with ONFH and 14 healthy controls were
enrolled (Table 2). Of the patients, 12, 5, 11, and 10 patients were diagnosed with stage I, II, III, and IV
ONFH, respectively, as radiographically diagnosed using the Ficat and Arlet system. Serum S100A9
levels (Figure 2A), along with angiogenic factor VEGF (Figure 2B), vessel injury marker vascular cell
adhesion molecule-1 (VCAM-1) (Figure 2C), inflammatory cytokine interleukin-6 (IL-6) (Figure 2D),
and bone resorption marker tartrate-resistant acid phosphatase 5b (TRAP5b) levels (Figure 2E) in sera
were significantly increased in the ONFH group, whereas serum bone formation marker osteocalcin
levels (Figure 2F) were significantly reduced in the ONFH group as compared to the healthy controls.

Table 2. Demography of healthy volunteers and patients with ONFH.

Healthy
Controls

ONFH

Total Stage I Stage II Stage III Stage IV

Patients 14 38 12 5 11 10
Age 34.5 ± 5 50.4 ± 17.8 40.9 ± 10.9 58.2 ± 10.4 47.8 ± 12.2 57.8 ± 15

(28–47) (25–78) (25–63) (40–70) (29–78) (37–76)
Gender
Males 7 18 2 3 7 6

Females 7 20 10 2 4 4
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Next, we broke down the analysis of serum S100A9 to understand how much this serum 

protein may circulate in patients with different stages of ONFH. Of interest, serum S100A9 levels 

were significantly increased with the Ficat and Arlet stages. Patients with stage III and IV ONFH had 

the greatest increase in S100A9 levels (Figure 3A). Serum S100A9 levels were also significantly 

increased in patients with history of glucocorticoid medication (n = 16) and alcohol consumption (n = 

13) (Figure 3B). Moreover, serum S100A9 was a powerful indicator for discriminating ONFH, as 

Figure 2. Serum protein levels in patients with ONFH and healthy controls. Significant increases in
S100A9 (A), VEGF (B), sVCAM-1 (C), IL-6 (D) and TRAP-5b (E) levels along with significant reductions
in serum osteocalcin levels (F) in the ONFH group. Data are expressed as mean ± standard errors.
* p < 0.05. Data are expressed as mean ± standard errors calculated from 38 patients with ONFH and
14 healthy controls. * p < 0.05.

2.3. Increased S100A9 Levels Were Correlated with the Severity of ONFH

Next, we broke down the analysis of serum S100A9 to understand how much this serum protein
may circulate in patients with different stages of ONFH. Of interest, serum S100A9 levels were
significantly increased with the Ficat and Arlet stages. Patients with stage III and IV ONFH had the
greatest increase in S100A9 levels (Figure 3A). Serum S100A9 levels were also significantly increased in
patients with history of glucocorticoid medication (n = 16) and alcohol consumption (n = 13) (Figure 3B).
Moreover, serum S100A9 was a powerful indicator for discriminating ONFH, as evident from the
receiver operative characteristic (ROC) curve analysis, where the area under curve (AUC) was 0.9258
(p < 0.001) (Figure 3C).
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Figure 3. Correlation of serum S100A9, Ficat stages and etiological causes of ONFH. Serum S100A9
levels were increased with Ficat and Artlet stages of ONFH (A). Significant increases in serum S100A9
in patients with history of being glucocorticoid medication and alcohol consumption (B). Receiver
operative characteristic (ROC) curve of serum S100A9 levels for discriminating ONFH (C). Data are
expressed as mean ± standard errors calculated from 12, 5, 11, and 10 patients diagnosed with stage I,
II, III, and IV ONFH and 14 healthy controls. * p < 0.05.

2.4. Strong S100A9 Immunostaining and Hypovasculature Histopathology in ONFH

We conducted immunohistochemical analysis to characterize which compartment of osteonecrotic
tissue S100A9 distributes. Femoral head specimens were harvested from patients with Ficat and Arlet
stage IV ONFH and patients with displaced femoral head fractures who required total hip arthroplasty.
Thrombosed vessels (Figure 4A), marrow adipose (Figure 4B), and fibrotic tissue (Figure 4C), along
with osteocytes in cortical bone and inflammatory cells, showed strong S100A9 immunostaining as
compared to the non-ONFH group (Figure 4D). Consistently, the number of S100A9-immunostained
injured vessels, fat cells, osteocytes, fibroblasts, and inflammatory cells were significantly upregulated
in the ONFH group (Figure 4E).
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Figure 4. Immunohistochemical analysis of S100A9 in femoral head tissue. Injured vessels (A), marrow
adipose (B), fibrotic tissue (C), and osteocytes in cortical bone and inflammatory cells (D), showed
strong S100A9 immunostaining, along with significant increases in S100A9-immunostained vessels,
fat cells, fibroblasts, osteocytes and inflammatory cells (E). Scale bares, 100 µm (panels 1 and 3) and 50
µm (panels 2 and 4). Data are expressed as mean ± standard errors calculated from 10 patients with
ONFH and 6 patients with a femoral neck fracture who required total hip arthroplasty. * p < 0.05.
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In addition, very few vessels developed in the ONFH group, as evident from the weak
immunoreactivity for endothelial cell marker CD31 (Figure 5A) and capillary vessel marker
vWF (Figure 5B), along with significant decreases in the CD31-immunostained (Figure 5C) and
vWF-immunostained vessels (Figure 5D), which is indicative that S100A9 may be deleterious to vessel
integrity in the development of ONFH.
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Figure 5. Immunohistochemical analysis of CD31 and vWF in femoral head. Weak CD31 (A)
and vWF (B) immunostaining along with significant decreases in CD31-immunostained (C) and
vWF-immunostained (D) vessels in the ONFH group. Scale bars, 100 µm (upper panels) and 50 µm
(lower panels). Data are expressed as mean ± standard errors calculated from 10 patients with ONFH
and 6 patients with displaced femoral neck fracture who required total hip arthroplasty. *, p < 0.05.

2.5. S100A9 Inhibits Angiogenesis of Vessel Endothelial Cells and Aortic Rings

Given that increased S100A9 levels were correlated with a decreased vessel formation
histopathology in ONFH, we wondered what role S100A9 may play in this event. To this end,
human vessel endothelial cells were incubated in ONFH serum with or without the S100A9 antibody.
For positive controls, cell cultures were incubated in a VEGF recombinant protein and showed intensive
tube morphology (Figure 6A), along with significant increases in tube formation (Figure 6B) as compared
to the vehicle group. The ONFH serum and S100A9 recombinant protein significantly reduced tube
formation, whereas adding S100A9 significantly downregulated the ONFH serum-mediated loss of
tube formation (Figure 6A,B). Likewise, VEGF-treated rat aortic rings displayed long and intensive
micro-vessel outgrowth morphology (Figure 6C) together with significant increases in micro-vessel
length (Figure 6D), whereas ONFH serum and S100A9 recombinant protein downregulated microvessel
formation. The S100A9 antibody significantly mitigated the ONFH serum inhibition of micro-vessel
outgrowth of aortic rings (Figure 6C,D).
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Figure 6. Analysis of tube formation of vessel endothelial cells and vessel outgrowth of aortic rings.
Tube-like morphology of human vessel endothelial cells incubated with or without ONFH serum,
S100A9 antibody and S100A9 (A). Scale bar, 50 µm. VEGF and antibody blockade of S100A9 attenuated
ONFH serum increased tube formation, whereas S100A9 repressed angiogenesis of vessel endothelial
cells (B). Vessel sprouting morphology of rat aortic rings (C). Scale bars, 25 µm. ONFH serum and
S100A9 decreased vessel formation, whereas S100A9 antibody blockage improved vessel spouting (D).
Data are expressed as mean ± standard errors calculated from 6 patients with ONFH.

3. Discussion

The severe destruction of femoral head microarchitecture, like subchondral bone breakdown,
trabecular bone lacunae loss and marrow adiposity, etc., is a notable feature of ONFH, ultimately
leading to the collapse of the femoral head [29,30]. The large number of bone cells in the lesion that
progress toward apoptosis also accelerate the development of hip disease [31]. While ischemic injury
is known to provoke ONFH, the molecular mechanistic underlying vessel integrity loss is poorly
characterized. Collective analysis of this study reveals the relevance of S100A9 to the development of
ONFH. S100A9 ramped up hypovasculature histopathology through repressing the angiogenesis of
vessel endothelial cells. To our best knowledge, the intriguing investigation of this study is the first
indication, shedding new light on the molecular pathologic events underlying ONFH. Robust evidence
also highlights an emerging biochemical indication of S100A9 discriminating ONFH.

Many serum proteins in the ONFH group, like inflammatory cytokine IL-6, osteoclast marker
TRAP5b, and osteoblast marker osteocalcin, were significantly higher than the healthy controls.
The analysis of this study was in agreement with other groups′ studies, showing that upregulated
IL-6 in serum [27], synovial fluid [32], and articular cartilage of osteonecrotic hip [33] and excessive
bone remodeling [34] take place during human ONFH. While avascular destruction is a hallmark of
ONFH, vessel remodeling in the hip disease remains uncertain. For example, angiogenic reactions,
together with osteogenesis-regulatory microRNA, are downregulated in ONFH [35]. Osteonecrotic
bone tissue shows impaired blood flow and vascular function [36]. On the contrary, articular cartilage
in human ONFH displays increased VEGF immunostaining [37]. VEGF mRNA expression and vessel
formation are augmented in experimental ONFH in swine [38,39]. Analysis in this study uncovered an
upregulated serum VEGF level, together with hypovascularization histopathology as evident from
weak CD31 and vWF immunostaining in ONFH. While the speculation is that angiogenic activity may
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depend on different compartments of osteonecortic lesions, an increase in the vessel injury marker
VCAM-1 level, as shown in this study, further underpins the histopathologic analysis of decreased
vessel formation. On the other hand, multiple biological reactions, like inflammation, vessel remodeling,
and bone turnover, etc., simultaneously dysregulated in the femoral head microenvironment also
explained the complex nature of ONFH. The investigations of vessel underdevelopment reasoned us
to elucidate which molecule may modulate this reaction.

Profound investigations unraveled a significant increase in serum S100A9 level, which was
correlated with the severity of ONFH. Of note, this serum protein appeared to be a sensitive indication
for discriminating ONFH. Increasing evidence has shown the S100A9 exacerbation of degenerative joint
diseases. Mice deficient in S100A9 show low mobilization of monocytes into synovium compartment
in knees with collagenase-induced osteoarthritis [40]. S100A9 increases inflammatory reaction and
cartilage breakdown in human knee joints [41]. This study showed immunohistochemical analysis that
fatty marrow, fibrotic tissue and inflammatory cells, etc. in osteonecrotic tissue elicited strong S100A9
immunoreaction, which was consistent with the analysis of serum S100A9 overproduction. Moreover,
S100A9 is known to escalate inflammatory cytokine IL-6 production in osteoarthritic joints [42] and
monocytic cells [43]. Robust evidence of increased serum S100A9 and IL-6 in ONFH offers a new
molecular insight into tissue deterioration occurring in ONFH. Given that S100A9 flared up deleterious
activities, a significant reduction in serum S100A9 level in ONFH upon HBO therapy may explain the
alleviating effect the therapy has elicited to this hip disorder.

Of interest, S100A9 is known to modulate the tube formation of the CD31+ and CD34+ endothelial
progenitor cells [44]. It also increases the permeability and apoptotic program of endothelial cells [18]
and artery dysfunction [45]. In vitro analysis has revealed the angiogenesis-inhibitory actions of
S100A9 in the ONFH microenvironment as an antibody blockade of S100A9, improving the ONFH
serum repression of tube formation of vessel endothelial cells and vessel outgrowth of aortic rings.
We do not rule out the possibility that S100A9 may affect osteoclastic differentiation [46], resulting
in a significant increase in the serum TRAP5b level in ONFH. The limitation of this study should be
acknowledged, and further investigations are warranted to understand how S100A9 is increased and
how the molecule deteriorates vessel integrity in the development of ONFH. This study conveys a new
mechanistic underlying vessel damage, which provokes avascular necrosis during ONFH.

Taken together, dazzling evidence sheds light on the clinical relevance of S100A9 to
the development of ONFH. S100A9 mediates hypovasculature in osteonecrotic tissue through
hindering vessel formation. This study also highlights serum S100A9 as a sensitive indication
discriminating ONFH.

4. Materials and Methods

4.1. Patients and Healthy Controls

All protocols for the harvest and detection of human specimen followed the ethical guidelines
and were approved by the Institutional Review Board of Chang Gung Memorial Hospital (IRB
#98-3926A3, 04 March 2010). Written informed consent was obtained from all patients and healthy
participants. The exclusion criteria were a history or diagnosis of Paget′s disease, renal osteodystrophy,
hyperparathyroidism, hypoparathyrodism, or bone metastasis. Thirty-eight patients with Ficat and
Arlet stage I, II, III and IV ONFH were enrolled in the ONFH group, and 14 healthy controls were
enrolled in the non-ONFH group (Table 2).

4.2. Two-Dimensional Gel Electrophoresis and Tandem Mass Spectrometry

The two-dimensional gel electrophoresis of cell lysates was performed to characterize protein
expression profiles, as previously described [47]. In brief, 10 mL of peripheral blood in patients
with Ficat and Arlet stage II ONFH, before and after HBO therapy, were harvested and processed to
isolate the nucleated cells. Cell lysates of 107 nucleated cells were extracted by mixing with 50 µL
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of PRO-PREP® buffer (iNtRON Biotechnology Co., Burlington, MA, USA), desalted using PlusOne
2-D Clean-Up kits (Amersham, Picataway, NJ, USA), and centrifuged to collect pellets. The pellets
were mixed with a rehydration buffer (2% CHAPS, 1% dithiothreitol, 0.5% IPG (pH 4–7), 8 M urea)
(Amersham, Picataway, NJ, USA). Then, 150 µg of cell lysates were pipetted onto immobiline™
strips (pH 4–7, 13 cm) and isoelectric focused using the Ettan™ IPGphor II/3 system (GE Healthcare
Bio-Sciences AB, Chicago, IL, USA) [44]. The isoelectric focused proteins in the strips were equilibrated
in a solution containing 50 mM Tris–HCl (pH 8.8), 30% glycerol, 2% SDS, 0.25% iodacetamide, and
8 M urea, and were followed by SDS-PAGE analysis. The two-dimensional gels were silver stained
(Amersham Pharmacia, Picataway, NJ, USA) according to the maker′s instructions. The silver-stained
gels were scanned using the Amersham ImageScanner (Amersham BioScience Inc., Picataway, NJ,
USA). The intensities of protein spots were compared using the Bio-Rad Proteoweaver 2-D Analysis
Software Version 4.0, according to the manufacturer′s instructions. Protein spots with a difference in
spot intensity greater than a 2-fold change were selected, as previously described [48].

4.3. Tandem Mass Spectrometry

The selected protein spots were excised, mixed with 20 ng/mL trypsin (Amersham, Picataway, NJ,
USA), incubated at 37 ◦C for 16 h, and extracted with 1% trifluoroacetate. The peptide footprint of the
extract was characterized using Ultraflex™matrix-assisted laser desorption ionization time-of-flight
tandem mass spectrometry (Bruker Daltonics, Hamburg, Germany). Match peptide mass were
performed using MASCO bioinformatics. The criteria of candidate protein were that the peptide mass
showed MASCOT score ≥ 65, along with a sequence coverage of ≥ 20% of the matched peptides of the
Swiss-Port database. The MOWSE score ≥ 39 of the match peptide was considered as homology of the
match protein [48].

4.4. ELISA Quantification of Serum Proteins

Serum S100A9 (CV, 7.2%; MyBiosources, San Diego, CA, USA), VEGF (CV, 5/2%; R&D Systems,
Minneapolis, MN), IL-6 (CV, 4.2%; R&D Systems, Minneapolis, MN, USA), VCAM-1 (CV, 3.7%; R&D
Systems, Minneapolis, MN, USA), osteocalcin (CV, 4.8%, novex®, Life Technologies, Carlsbad, CA,
USA), and tartrate-resistant acid phosphatase-5b (CV, 5.1%; MyBiosources, San Diego, CA, USA) levels
were measured using respective ELISA kits, according to the manufacturers’ manuals. The standard
curves of various concentrations of authentic recombinant proteins of interest vs. absorbance detected
by spectrophotometry were plotted.

4.5. Immunohistochemistry

Femoral heads from 10 patients with ONFH and 6 patients with displaced femoral neck fracture
who required total hip arthroplasty were collected upon osteotomy. Skeletal specimens (1.5 cm
× 1.5 cm × 1.5 cm) were dissected from the center of femoral head, as previously described [31].
The specimens were decalcified and embedded in paraffin for microdissection. S100A9, CD31, and
vWF immunoreaction in sections were probed using S100A9, CD31 and vWF antibodies (Abcam,
Cambridge, UK) and BioGenex immunohistochemistry detection kits (BioGenex, Fremont, CA, USA).
Sections probed with IgG were designated as negative controls. Osteonecrosis signs, like bone lacuna
loss, fatty marrow, fibrosis, thrombosis, and vessel injury, etc., were examined using a Zeiss microscope.
Histological images were captured using the Zeiss Image Analysis unit (Zeiss, Oberkochen, Germany).
Vessels, fibroblasts, fat cells, osteocytes and inflammatory cells showing S100A9 immunostaining, as
well as vessels displaying CD31 and vWF immunoreaction in each field were counted. In total, 3 fields
of each section and 2 sections of each specimen were randomly selected for histomorphometry.

4.6. Analysis of Angiogenesis of Human Vessel Endothelial Cells

The angiogenesis of human vessel endothelial cells incubated in ONFH serum was performed
using BD BioCoat™ angiogenesis kits (BD Biosciences, San Jose, CA, USA), as previously described [49].
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In brief, human umbilical vessel endothelial cells (5 × 104 cells/well, 48 well-plates; American Type
Culture Collection) were incubated in ONFH serum, with or without 1 µg/mL S100A9 antibody,
IgG (Abcam, Cambridge, UK), 250 ng/mL S100A9 (R&D Systems, Minneapolis, MN, USA) and
incubated in a humidified incubator at 37 ◦C for 6 h. In a subset of experiments, the cells were
incubated in 250 ng/mL VEGF as positive controls. Tube morphology was evaluated using an inverted
microscope (Zeiss, Oberkochen, Germany). The number of tubes in each field was counted. Six fields
in each well, 3 wells in each specimen and 4 specimens were randomly selected for quantification.

4.7. Analysis of Vessel Formation of Rat Aortic Rings

Experimental animal use was approved by IACUC of Kaohsiung Chang Gung Memorial Hospital
(Affidavit No. 2012122901). The protocols for vessel outgrowth of aortic rings were performed, as
previously described [49]. In brief, 6 male Sprague-Dawley rats (3 months old) were euthanatized.
The thoracic aortae were dissected and transversely cut into ring-like specimens under a surgery
microscope in an aseptic condition. Aortic rings were put onto culture wells containing a mixture
of 300 µL of Matrigel with 300 µL of MCDB131 medium (Life Technologies, Carlsbad, CA, USA)
with 300 µL ONFH serum, with or without 1 µg/mL S100A9 antibody, IgG, 250 ng/mL S100A9 or
250 ng/mL VEGF, and incubated at 37 ◦C for 1 week. The length of vessel outgrown from the aortic
rings was measured using a Zeiss microscope and the aforementioned Image Analysis System. In total,
9 fields in 3 aortic rings for each ONFH serum specimen and 6 ONFH serum specimens were selected
for measurement.

4.8. Statistical Analysis

Analysis was expressed as mean ± standard error. The difference between groups were analyzed
using an independent-sample t-test. Differences in gender were analyzed using a chi-square test. Data
adjustment of age and gender were performed using a logistic regression test. Differences among groups
were examined using an ANOVA test and followed by a Bonferroni post hoc test. The correlations
among the serum protein were analyzed using Spearman′s correlation test. ROC curves and AUC
values were calculated using SPSS software, according to the maker′s instruction. Analysis results
with a p-value < 0.05 were considered statistically different.
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