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Introduction: Lung cancer is the most common malignancy worldwide. Squamous cell
carcinoma (SQ) and adenocarcinoma (LUAD) are the two most frequent histological
subtypes. Small cell carcinoma (SCLC) subtype has the worst prognosis. Differential
diagnosis is essential for proper oncological treatment. Life science associated mid- and
near-infrared based microscopic techniques have been developed exponentially,
especially in the past decade. Vibrational spectroscopy is a potential non-destructive
approach to investigate malignancies.

Aims: Our goal was to differentiate lung cancer subtypes by their label-free mid-infrared
spectra using supervised multivariate analyses.

Material and Methods: Formalin-fixed paraffin-embedded (FFPE) samples were
selected from the archives. Three subtypes were selected for each group: 10-
10 cases SQ, LUAD and SCLC. 2 μm thick sections were cut and laid on aluminium
coated glass slides. Transflection optical setup was applied on Perkin-Elmer infrared
microscope. 250 × 600 μm areas were imaged and the so-called mid-infrared fingerprint
region (1800-648cm−1) was further analysed with linear discriminant analysis (LDA) and
support vector machine (SVM) methods.

Results: Both “patient-based” and “pixel-based” approaches were examined. Patient-
based analysis by using 3 LDAmodels and 2 SVMmodels resulted in different separations.
The higher the cut-off value the lower is the accuracy. The linear C-support vector
classification (C-SVC) SVM resulted in the best (100%) accuracy for the three subtypes
using a 50% cut-off value. The pixel-based analysis gave, similarly, the linear C-SVC SVM
model to be the most efficient in the statistical indicators (SQ sensitivity 81.65%, LUAD
sensitivity 82.89% and SCLC sensitivity 88.89%). The spectra cut-off, the kernel function
and the algorithm function influence the accuracy.

Conclusion: Mid-Infrared imaging could be used to differentiate FFPE lung cancer
subtypes. Supervised multivariate tools are promising to accurately separate lung tumor
subtypes. The long-term perspective is to develop a spectroscopy-based diagnostic tool,
revolutionizing medical differential diagnostics, especially cancer identification.
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INTRODUCTION

Lung Tumors
In 2018 lung cancer was the most commonly diagnosed tumor
and the leading cause of death in both sexes worldwide [1].
Preoperative biopsy materials have particular importance and the
volume of biopsy material is limited. The clinical sampling also
determines the feasible pathological methods. Brush cytology is
often performed, however, diagnostic methods on cells or cell
groups are more limited than histological analysis on FFPE
samples collected by bronchoscopic tissue sampling. There is a
need for ancillary diagnostics to determine histological subtypes
to save material for the upcoming molecular diagnostics. Infrared
spectroscopy might be one of these tools [2]. Optical fibre-based
techniques combined with bronchoscopes or transthoracic
needles may also disrupt and improve the current diagnostic
pathways [3].

For a long time, the differential diagnosis between small cell
versus non-small cell lung cancer was the most important
clinicopathological aspect. Squamous cell carcinoma (SQ) and
adenocarcinoma (LUAD) are the two most frequent histological
subtypes. Small cell carcinoma (SCLC) subtype has the worst
prognosis. There are rare tumor types or mixed entities such as
mesothelioma or adenosquamous carcinoma. The development
of targeted therapies and their spread in the routine oncological
treatment required subtype-specific differentiation and definition
of the tissue of origin even in dedifferentiated tumors and
cytological specimens. This can be achieved by
immunohistochemical typing [4, 5]. The most targeted
therapies are available for the adenocarcinoma subtype.

The routine histological subtypization is based on
Hematoxylin and Eosin (H&E) staining and five to six
immunohistochemical reactions. Despite the low number of
thin sections, the feasibility of high-quality nucleic acid
isolation is endangered due to the size and consistency of the
tissue core.

The above-mentioned aspect explains the need for new
methods that can determine the origin of a single cell or
group of cells without requiring immunohistochemical
reactions, therefore, leaving more material for DNA or RNA
isolation and consequent molecular pathological analysis.
Infrared spectroscopy could do this and we aimed to build up
classification models. We focused on the differential diagnostic
application of FT-IR in the most frequent tumor types [6]. There
are molecular, immunohistochemical markers to distinguish
histological subtypes [7], however, these altogether small
differences would not be detected by FT-IR since it is expected
to reveal rather a spectral fingerprint characteristic of subtypes
than a different quantitative compositional alteration on the level
of specific proteins (e.g., p63, TTF1).

Infrared Spectroscopy
The spectral range over 780 nm is called infrared, which is
conventionally divided into near-, mid- and far-infrared (NIR,
MIR, FIR, respectively). The wavelength range of NIR is defined
from 780 to 2500 nm (12,820-4000 cm−1—since due to the
dispersed Fourier-transform (FT) spectrophotometers the

wavenumber is typically measured in units of cm−1), the
wavelengths of MIR are between 2500 and 25,000 nm (4000-
400 cm−1) and the FIR range is between 25 and 1000 μm (400-
10 cm−1). The higher the wavenumber, the higher the energy of
the light. NIR and MIR photons elevate the chemical bonds to
higher energy levels, causing deformation motions (e.g., angular
changes). The FIR light has lower energy so it can excite the
rotation of the atoms in the bonds. The quick and non-destructive
NIR and MIR spectroscopy techniques are mostly used for
investigating biological systems, while FIR is less relevant from
this point of view and is not applied because of the shallow energy
level. The mid-infrared area includes the so-called fingerprint
region (1800-400 cm−1) where lipids, protein, amide I/II and
nucleic acid peaks are highly representative [8].

One of the earliest MIR spectroscopic applications was to
determine the cis/trans conformation of lipids [9]. MIR
techniques were developed to analyse ingredients in milk [10,
11] and wine [12, 13]. Both NIR and MIR techniques are
widespread in the field of biological matrix analysis. The
qualitative and quantitative application of NIR in the agro-
food sector began in the 1960s. Plants, animal products and
processed foods from these are samples of complex biological
origin, containing various contents of water, proteins, lipids and
carbohydrates. Infrared analytics of grains and cereal-based
products became a widespread technology, with the main
focus being on the changes in protein content [14] and quality
during ripening [15], and the monitoring of milling [16].
Additionally, in the field of pharmacology chemical structure
of drug compounds [17] and polymers such as hydrogels [18] are
proved by MIR spectroscopy as well.

MIR photons have less energy, therefore, the spatial
penetration is shorter whereas the signal-to-noise ratio of the
MIR spectra is about two orders of magnitude higher than in the
case of NIR. There are fewer medical applications of MIR
methods than that of NIR applications. MIR optical fibre,
however, have been commercially available since 2016,
whereas earlier only laboratory tools existed [19–22]. In a
study, the breast cancer imaging of 15 patients was carried out
using mid- and long-wave infrared cameras [23]. In another
study, urine samples from a small cohort of healthy women as
well as female patients with gynaecological malignancies were
investigated with MIR resulting in diagnoses with high accuracy
[24]. The basic tissue processing of pathological specimens and an
imaging protocol were created by Zahdi et al. [25]. A further
study has highlighted the pitfalls and best practices of tissue
preparation methods for FT-IR spectroscopic analysis [26]. The
most common method is to use fluorescent dyes, however, there
is also another approach which chooses marker-free FT-IR
imaging as a tool with promising results on lung tumour
subtyping [27]. Großerueschkamp et al. analysed fresh frozen
samples using random forest algorithms. They set up a 3-level
decision-making scheme and even at a more detailed level they
were able to successfully recognize adenocarcinoma subtypes as
well [27]. Gayoud et al. focused on squamous cell FFPE sample
preneoplastic and neoplastic separations on 34 samples with PCA
and PLS-DA tools [28]. Akalin et al. choose spectral pretreatment
as first step using Mie scattering and extended multiplicative

Pathology & Oncology Research August 2022 | Volume 28 | Article 16104392

Kontsek et al. Mid-Infrared Imaging of Lung Cancer



signal correction (EMSC) algorithms. They get rid of the low
signal quality spectra gained from tissue microarrays (TMA) and
then processed via hierarchic clustering and SVM [29]. Molecular
expression patterns resulting also from mutated genes and
proteins represent such a complexity that can not be expected
to be precisely reflected by MIR spectra. MIR rather detects a
fingerprint representative of the above-mentioned molecular
complexity of a tumor. Mass spectrometry might focus either
on specific molecular changes in the molecular composition or
similarly detect a complex pattern. Spectral bands that can be
assigned to chemical functions or to macromolcules are collected
in a table published by Le Naour et al. [30]. The purpose of the
present study was to differentiate lung tumor subtypes using
label-free mid-infrared imaging.

MATERIALS AND METHODS

Aluminium Coated Slides
Thin-film metal layers were deposited onto glass slides by
vacuum evaporation to gain mid-infrared capable reflective
surface. An electron-beam evaporation source was applied in a
high-vacuum chamber, in which the glass slides were fastened
onto the rotary sample holder. Aluminium was evaporated at
10−4 Pa for 20 min at an accelerating voltage of 7 kV and beam
current of 200 mA, resulting in a layer thickness of ca. 150 nm.

Lung Cancer Samples
A total of 30 FFPE lung cancer biopsies were selected from the
archive of 2nd Department of Pathology Semmelweis University
and Department of Pathology University of Pécs 10 for each
subtype. 2 μm slides were cut from paraffin-embedded blocks and

were deparaffinized two times 10 min xylene. The use of human
FFPE samples was approved by the Hungarian Medical Research
Council, Budapest, Hungary (no. 61303-2/2018/EKU). In the
routine workflow the sample preparation takes 1 day after
grossing.

Infrared Imaging
Fourier transform mid-infrared imaging was used for collecting
spectra with transflection optical setup. The feasibility of this
approach has been tested on the separation of ethanol fixed cell
lines, this has been reported previously [31]. Spotlight
400 microscope (Perkin Elmer Inc., Waltham, MA,
United States) was connected to Spectrum
400 spectrophotometer used for scanning images. The
Mercury Cadmium Tellurite (MCT) detector collected spectra
with 32 scans with a resolution of 16 cm−1 and data interval of
8 cm−1 were recorded for each spectrum in the mid-infrared
wavelength range between 4000 and 648 nm. The 250 μm ×
600 μm images were scanned (Figure 1) by pixel size
6.25 μm × 6.25 μm. A single image contained 40 × 96 pixels
and resulted in 3,840 spectra on a 0.15 mm2 area. The acquisition
time for each selected area was 46 min.

Data Processing
Atmospheric Correction and Noise Reduction
The acquired images were treated with two built-in algorithms of
the SpectrumIMAGE R1.6.5.0396 software (Perkin Elmer Inc.,
Waltham, Massachusetts, United States) for atmospheric
correction and noise reduction. The atmospheric CO2/H2O
suppression by the least square fitting of the algorithm
affected the atmospheric correction of the spectra. (Patent No.:
US 6,518,753 B1) The noise reduction was based on a 20-factor

FIGURE 1 | Representative H&E stained region of a LUAD and multicolor average absorbance infrared image overlayed over the identical area (on the left).
Representative spectrum (4000-650 cm−1) of LUAD of the location marked with a star (on the right).
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principal component analysis. Since the noise has lower weights,
the 20-factor-based reconstructed spectrum is noise reduced.
This method does not lead to the broadening of the spectrum
peaks, unlike smoothing.

From the whole spectrum the so-called fingerprint subregion
was analysed. In case of the fingerprint range of measured IR
spectra there are 145 wavenumbers (1800-648 cm−1 wavenumber
range) considered as variables. According to a large amount of
data, it is difficult to interpret the data cube, therefore some
information may partly stay hidden.

Support Vector Machine
Classification by SVM is a method based on statistical learning.
The essence of SVM is to determine the hyperplane with the
maximum margin for linearly separable data. The reason for the
maximummargin is that decision boundaries with a large margin
tend to have better generalization error than those with a small
margin. The method has a wide range of applications in statistical
analysis in almost all disciplines. The main advantage of the
method is that it can be extended to non-linear data sets using
kernel functions. In order to perform the analysis, the algorithm
must be trained on a part of the data set, which contains a
category variable, and then validated on the other part of the data.
Once these operations have been performed, the accuracy of the
method can be deduced from the results. Another advantage of
the support vector machine is that it has good generalisation
capabilities and can be easily applied to multidimensional data.

The confusion matrix summarizes the prediction results on the
classification problem. Unscrambler X 10.4 (CAMO Software AS,
Oslo, Norway) software was applied to perform the SVMs.

Linear Discriminant Analysis
LDA is a method for separating two or more classes by
considering several quantitative variables simultaneously. A
prerequisite for its application is that objects are already
divided into classes. We must, therefore, be familiar with the
classes that are identified by this classifying variable.

LDA is a classification method in which n-dimensional
patterns are transformed into an m-dimensional space (m <
n) by linear transformation. Consequently, samples from the
same class will be located close to each other, while samples from
different classes will be located far in space. The method is a
supervised classification method, unlike the unsupervised, e.g.,
Cluster and Principal component analyses. The purpose of LDA
is to determine the best fitting parameters for grouping the
samples in the constructed model. The already constructed
model can be used to project unknown samples. LDA is an
uncomplicated method to use and is approximated on Bayes’
formula [32]. The projected results can be also put in a confusion
matrix as described earlier.

Unscrambler X 10.4 (CAMO Software AS, Oslo, Norway)
software was applied to perform the classifications.

RESULTS

10-10 specimens were selected from each of the three histological
subtypes (Table 1). Cases 2 and 6 are resected tumours from the
same patient operated on two different locations at different
timepoints. After identifying the tumorous region on the H&E
slides, the consecutive slides’ parallel area was imaged on the
aluminium coated slides using the infrared microscope. The
scheme of technology is visualized by a graphical workflow
(Figure 2). The acquired spectra were collected and treated
with atmospheric correction and noise reduction.

The spectra of the acquired images were put into a table, from
which every second spectra were selected and used as a training
set. A total of 5 analyses were performed using three LDA (using
linear, quadratic and Mahalanobis distances) and two SVM
(linear nu-SVC SVM and linear C-SVC SVM settings) models.
We ran the other part of the datasets on these models and the
methods predicted the histological subtype.

Two approaches were used to examine the data. We examined
both “patient-based” and “pixel-based” analyses. The “patient-
based” classifications are shown first. This approach is based on
majority projection, therefore, the lowest recommended cut-off
value is 50%. Each spectrum was classified individually by the five
above-mentioned mathematical models. We have sorted the
results by sample into bias matrices. The proportion of
correctly classified spectra from each patient sample
(3,840 spectra per sample) was considered as the decisive
factor for the correct classification. The different cut-off values
were compared in order to rank the accuracy of the models
(Table 2).

TABLE 1 | Clinicopathological features of the patients.

Case Subtype Age Sex Specimen type Stage

1 SQ 54 Male Resection T2bNxMx
2 LUAD 48 Male Resection T2aNxMx
3 SQ 59 Male Biopsy Not applicable
4 SQ 67 Male Biopsy Not applicable
5 LUAD 57 Male Resection Not applicable
6 LUAD 48 Male Resection T3NxMx
7 SCLC 59 Male Biopsy T2N2M1
8 SQ 66 Female Biopsy T3N1M0
9 SCLC 51 Male Resection T2aN0Mx
10 SCLC 65 Male Biopsy T4N1M1
11 SQ 68 Male Resection T2aN0M0
12 SCLC 71 Male Biopsy T4N2M1
13 SQ 75 Male Resection T2bN0M0
14 SCLC 59 Female Biopsy T4N2M1b
15 LUAD 65 Female Biopsy T4N3Mx
16 SCLC 72 Female Biopsy T3N1Mx
17 LUAD 79 Female Resection T1aNxMx
18 SQ 65 Male Biopsy T3N0M0
19 SQ 60 Male Resection T1bNxMx
20 LUAD 78 Female Resection T2aNxMx
21 LUAD 63 Male Resection T1cN0Mx
22 LUAD 63 Female Resection T2aN2Mx
23 SCLC 57 Female Resection T2aN0Mx
24 LUAD 65 Female Biopsy TaN3M1c
25 SCLC 52 Male Biopsy T4N3M0
26 SCLC 64 Female Biopsy Not applicable
27 SCLC 69 Female Biopsy Not applicable
28 SQ 67 Male Resection T2bN0Mx
29 SQ 71 Male Resection T2aN0Mx
30 LUAD 58 Male Resection T2aNxMx
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Linear C-SVC SVM model with a 50% cut-off was the most
successful regarding the separation of the subtypes. For
interpretation of the table selecting e.g., 70% cut-off value and
linear C-SVC SVM one could see that the cut-off value was not
achieved in only 6 out of 30 cases: 2 samples in SQ, 1 SCLC and
3 samples in LUAD. However, these cases were also correctly
predicted if we classify the samples based on the 50% cut-off
value. Of course, the fine-tuning of the above-described method
could improve the other models as well. It might be worthy of
testing lower than 50% cut-off values, however, this approach would
certainly require bigger cohorts and further testing of mixed
differentiation such as adenosquamous carcinomas which feature
both adenocarcinoma and squamous cell carcinoma subtypes.

By examining these five models on a pixel basis, we can obtain
cumulative data for each subtype based on the prediction of each
spectrum. The performance of the five models can be compared
in terms of sensitivity, specificity, positive predictive value (ppv)
and negative predictive value (npv) characteristics. Overall,
consistent with the patient-based approach, the linear C-SVC
SVM model proved to be the best again with sensitivity ranging
from 81.645% to 88.885% and specificity from 90.484% to
94.784% regarding histological subtypes (Table 3). Quadratic
LDA model achieved higher sensitivity for determining SQ
predictions compared to linear C-SVC SVM but with lower
specificity. Similarly, for spectra of LUAD samples, quadratic
LDA gave 99% specificity but lagged behind SVM in sensitivity.

FIGURE 2 | The scheme of experimental setup.

TABLE 2 | Accuracy of the prediction models using different cut-off values.

Models cut-off Linear nu-SVC
SVM

Linear C-SVC SVM Linear LDA Quadratic LDA Mahalanobis LDA

50%
SQ 90% (9/10) 100% (10/10) 70% (7/10) 100% (10/10) 0% (0/10)
SCLC 90% (9/10) 100% (10/10) 50% (5/10) 80% (8/10) 0% (0/10)
LUAD 10% (1/10) 100% (10/10) 20% (2/10) 20% (2/10) 100% (10/10)

60%
SQ 80% (8/10) 80% (8/10) 60% (6/10) 100% (10/10) 0% (0/10)
SCLC 90% (9/10) 90% (9/10) 40% (4/10) 70% (7/10) 0% (0/10)
LUAD 0% (0/10) 80% (8/10) 20% (1/10) 20% (2/10) 100% (10/10)

70%
SQ 50% (5/10) 80% (8/10) 50% (5/10) 90% (9/10) 0% (0/10)
SCLC 90% (9/10) 90% (9/10) 40% (4/10) 60% (6/10) 0% (0/10)
LUAD 0% (0/10) 70% (7/10) 20% (2/10) 20% (2/10) 100% (10/10)

80%
SQ 20% (2/10) 70% (7/10) 50% (5/10) 90% (9/10) 0% (0/10)
SCLC 80% (8/10) 80% (8/10) 40% (4/10) 50% (5/10) 0% (0/10)
LUAD 0% (0/10) 60% (6/10) 20% (2/10) 20% (2/10) 100% (10/10)

90%
SQ 10% (1/10) 20% (2/10) 40% (4/10) 70% (7/10) 0% (0/10)
SCLC 40% (4/10) 70% (7/10) 40% (4/10) 30% (3/10) 0% (0/10)
LUAD 0% (0/10) 60% (6/10) 20% (2/10) 20% (2/10) 100% (10/10)

95%
SQ 0% (0/10) 20% (2/10) 40% (4/10) 30% (3/10) 0% (0/10)
SCLC 40% (4/10) 60% (6/10) 10% (1/10) 20% (2/10) 0% (0/10)
LUAD 0% (0/10) 40% (4/10) 20% (2/10) 20% (2/10) 100% (10/10)
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The quadratic LDA has a 95.107% ppv for LUAD which is better
than the 82.885% of the C-SVC SVM performance.

The classification by Mahalanobis LDA was completely
wrong. The model considered virtually all spectra as
adenocarcinomas. That is why a 100% sensitivity was obtained
for the spectra of the LUAD samples, but the specificity is 0.008%.
The SQ and SCLC specificities gave a vain value of 100% since the
sensitivity values are close to zero.

DISCUSSION

In this paper, we present a marker-free and automated diagnostic
FT-IR imaging-based tool for pathological decision support.
Classification of histologically significant lung tumor subtypes
was achieved. We also highlighted the differences between five
multivariate data analysis models.

The accuracy of these models was calculated using several cut-
off parameters. The higher the accuracy the lower the cut-off in
general. A strong bias was observed regarding the Mahalanobis
model because every sample was predicted into one class. The best
separation was reached by Linear C-SVC SVM model combined
with 50% cut-off value according to our findings. Further
optimization of the cut-off value would require a larger cohort.
The pixel-based predictions also proved to be successful. Overall
the C-SVC SVM performed better than the other 4 models.

The discriminative power of Linear C-SVC SVM method
outperformed the others, however, certain individual statistical
metrics of the other methods—such as sensitivity, specificity, ppv,
npv—were better regarding the histological subtypes.
Experienced pathologists in their routine activity combine the

advantages of several approaches, therefore, the above-mentioned
parameters are excellent [33]. The Linear C-SVC SVM sensitivity
and specificity values are in a comparable range with pathology-
associated image analysis tools such as the PAPNET for cervical
smear [34]. The infrared spectral analysis has a promising
perspective to develop this method to assist intraoperative
decision-making similar to mass spectrometry-assisted tools.
The correct tissue classification by mass spectrometry was
characterized by high accuracy with a sensitivity of 90.5% and
specificity of 89.7% which is comparable with our method [35].

These approaches promise reproducibility, objectivity, and
higher accuracy compared to current methodologies for lung
tumor diagnostics. There is a growing need for personalization in
medicine which requires a fast and accurate way of differential
diagnosis. The approach has yet to be validated on a larger scale.

Altogether, the overall training time using half of the spectra
for different models took between 2 and 12 h. However, the
prediction time using these models was tremendously shortened:
5–10 min. The major delay in the current routine workflow of
pathology is the sample preparation which needs 1 day after
grossing. Based on the H&E image the infrared acquisition
time of the selected area takes only 46 min. Analysis of native
surgical specimens would reduce diagnostic intervals and enable
on-site measurements. An intraoperative approach could also be
executed with different detection e.g., Raman spectroscopy works
better in an aqueous medium like unfixed, on-site specimens.

These in vitro approaches might serve as the basis to develop a
dye-free intraoperative technique to facilitate surgical decision-
making [27, 36]. Altogether, our in vitro results project the
feasibility of infrared imaging to identify different cancer
subtypes. Optional other ancillary methods would be the
detection of tumor type specific tumor-associated DNA,
however, there are no clinically reliable markers available so far.

The infrared technique would have an advantage as non-
destructive and even on-site. We developed our method on
histologically verified tissue sections. Long-standing problem is
the adequacy of the sampling for the diagnostic needs. The
oncoteam decision-making requires steadily increasing tissue-
related diagnostic information. Certain genetic data need next
generation sequencing, the other histological,
immunohistochemical or fluorescent in situ hybridization
information. Infrared spectroscopy might provide necessary data
from less or minimal amounts of tissue. That means that biopsy
material will be saved for other necessary methods, therefore, less
or minimal invasive sampling would be enough [37].

The selection of the proper cut-off value secures the specificity
of the analysis. Therefore, tumors featuring areas of different
histological subtypes such as adenosquamous carcinomas of the
lung could be used to test the feasibility of possibly lower cut-off
values of the methods. This could improve the power of
separation. Adenosquamous carcinomas are a rare mixed
differentiation subtype of non–small cell carcinoma of the
lung, constituting 0.4%–4% of cases. p63 IHC reaction is the
tool to identify the squamous component. The lowest cut-off
value could be determined on a large number of mixed entities.

Infrared imaging might be suitable to identify the lung cancer
subtypes, therefore, fewer slides would be necessary for IHC and

TABLE 3 | The performance of the five models.

SQ LUAD SCLC

Linear nu-SVC SVM
Sensitivity 71.290% 8.261% 84.192%
Specificity 51.706% 92.294% 87.872%
Ppv 42.465% 34.895% 77.633%
Npv 78.270% 66.800% 91.747%

Linear C-SVC SVM
Sensitivity 81.645% 82.890% 88.885%
Specificity 90.484% 91.442% 94.784%
Ppv 81.096% 82.885% 89.495%
Npv 90.791% 91.445% 94.461%

Linear LDA
Sensitivity 70.900% 20.001% 50.878%
Specificity 50.469% 100.000% 70.420%
Ppv 41.715% 100.000% 46.237%
Npv 77.622% 71.429% 74.141%

Quadratic LDA
Sensitivity 91.562% 23.387% 68.405%
Specificity 58.896% 99.398% 83.382%
Ppv 52.692% 95.107% 67.300%
Npv 93.315% 72.182% 84.072%

Mahalanobis LDA
Sensitivity 0.005% 100.000% 0.010%
Specificity 100.000% 0.008% 100.000%
Ppv 100.000% 33.335% 100.000%
Npv 66.668% 100.000% 66.669%
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more tissue would be preserved for molecular pathology to select
potential novel therapies. Larger datasets must be analyzed to
further support our results.

In our study, label-free mid-infrared imaging was used to
acquire spectra from three lung cancer subtypes. LDAs and SVMs
were performed on all the investigated subgroups in the
fingerprint mid-infrared region. Based on our results SVM
models performed better although spectral pretreatments
might further increase the accuracy, therefore, it could be an
additional option. We successfully demonstrated the feasibility of
our infrared method to separate cancer subtypes types by their
label-free mid-infrared spectra with highlighted range. In
conclusion, our data suggest the usage of transflective optical
set and 1800-648 cm−1 spectral range to gain spectra.
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