
Research Article
Research on Compression Sensing Positioning Algorithm of
Indoor Complex Environment Visible Light Indoor
Based on Hybrid APIT

Yi Li

School of Information Engineering, Xi’an University, Xi’an, Shaanxi, China

Correspondence should be addressed to Yi Li; yili@xawl.edu.cn

Received 25 January 2022; Accepted 20 March 2022; Published 21 April 2022

Academic Editor: Gopal Chaudhary

Copyright © 2022 Yi Li.'is is an open access article distributed under the Creative CommonsAttribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In today’s highly urbanized world, indoor space is becomingmore extensive andmore complex, and under the increasingly urgent
needs, indoor positioning has attracted people’s attention. With the rapid development of LED lighting technology, indoor
positioning technology based on visible light communication has many advantages over traditional indoor positioning tech-
nology. Aiming at the influence of environmental factors such as noise and reflected light on the positioning accuracy, the
compression perception theory is applied to the localization of visible light. 'e position of the receiving end in the positioning
space is defined as a sparse variable in the discrete space. 'e power measurement matrix is expressed as the product of the
observation matrix, and the sparse matrix and sparse vector in the compression perception theory are expressed. 'e traditional
APITalgorithm is easy to misjudge unknown nodes in the triangle, resulting in low positioning accuracy of the algorithm. In this
study, an indoor visible positioning algorithm based on hybrid APIT is proposed, which uses the area relationship of the triangle to
determine the initial position of the unknown node, and then uses the tangent circle to further narrow the area where the
unknown node may be located, and uses the hybrid centroid localization algorithm to obtain the estimated position of the
unknown node.

1. Introduction

1.1. Background and Significance. In recent years, with the
rapid development of the economy and modern science
and technology, service based on location information
has been widely used in people’s daily lives, and location
information has become an essential key basic infor-
mation in everyday life [1]. At present, the global posi-
tioning system (GPS) and other satellite positioning
systems that have been widely used in outdoor posi-
tioning can already achieve high positioning accuracy [2].
Although GPS can achieve high positioning accuracy
outdoors, in the indoor environment, which accounts for
80% of a human daily lifetime, due to the blocking of
satellite signals by buildings, the GPS positioning accu-
racy in indoor environments has dropped sharply, which

cannot meet people’s demand for indoor positioning
services. See Figure 1.

Indoor positioning technology plays an important role in
public safety, commercial activities, military fields and other
fields, in large shopping malls, users can quickly locate the
location of the target goods, according to the personal lo-
cation, and product information for route navigation [3]. In
the library, it can help readers quickly and effectively obtain
the required book resources, improve the efficiency of book
search and service quality. At the scene of a sudden disaster,
rescue workers can be helped to rescue trapped people
quickly. As a result, indoor positioning has gradually be-
come the focus of attention of researchers in various
countries [4].

'e shaded area of the tangent circle where the pro-
jection point M is located.
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Bluetooth positioning: Bluetooth technology is a short-
range, low-power wireless transmission technology that
measures signal strength for positioning. Bluetooth
location technology is easy to integrate into mobile
devices such as mobile phones and is ideal for com-
mercial promotion [5].'e disadvantage is that the cost
of the positioning system is relatively high, the stability
is poor, and the interference information in the indoor
environment is considerable [6].
Radio Frequency Identification (RFID): Determines the
use of radio frequency for contactless two-way com-
munication to exchange data bit. RFID propagation
distance is short, up to tens of meters. 'e advantage of
RFID technology is that the positioning accuracy is
high and the positioning cost is relatively low. 'e
disadvantage is that the positioning distance is rela-
tively short, and it is not easy to mix with other po-
sitioning systems [7].

'e projection point M is located outside the ABC
square Δ.

'e advantages and disadvantages of common indoor
positioning techniques are shown in Table 1.

1.2. Research Status of Indoor PositioningTechnologyBased on
Visible Light Communication. Visible light communication
(VLC), also known as nm wave communication, is a
communication technology that uses the visible light
spectrum of 380 to 740 nm as an information carrier. Be-
cause LEDs have high efficiency, long life, and fast response
characteristics, they are more suitable for wireless com-
munication than other visible light sources.

Compared with traditional radio frequency (RF) wireless
communication, VLC has the following advantages:

(i) VLC has an unlicensed bandwidth of about 400 THz
and rich spectrum resources.

(ii) VLC is easy to implement, just install a micro-
controller to build a network using existing LED
equipment.

(iii) VLC uses visible light as a carrier and will not cause
electromagnetic interference to other electronic
devices.

(iv) VLC link can easily set up high-speed communi-
cation links above 10Gb/s.

1.2.1. Research Status of Visible Light Communication
Technology. LED visible light source, with its ubiquitous,
green, and rich spectral resources, has aroused extensive
research interest in the field of indoor broadband com-
munication and intelligent lighting [1]]. Since 2000, Japa-
nese researchers have proposed IB communication systems
that use LEDs as communication base stations [8]. Later,
Japanese researchers found that visible light communication
(VLC) has good prospects for development, so they began to
invest a lot of human, material, and financial resources for
in-depth research. After a series of theoretical research and
practical work, researchers at Nakagawa Laboratory in Japan
proposed a VLC system based on carrier monitoring of
multiple access and conflict detection, which significantly
promoted the development of VLC technology [9].

1.2.2. Research Status of Indoor Visible Light
Positioning Technology

(1) Current Status of Foreign Research. From the current
development trend and market share, it is known that the
data wireless communication technology based on visible
light will have unlimited market prospects in the future.
Many scientific research institutes and enterprises in de-
veloped countries such as Japan, Europe, and the United
States have invested substantial financial, material, and
human resources in visible light communications to conduct
research in this field. In 2000, Nakagawa Laboratories in
Japan first conducted research on visible light communi-
cation technology. At the beginning of the research, the staff
of the laboratory spent most of their time on the research of
communication channel theory, mainly using mathematical
analysis and computer simulation methods to explore, and
clarified the possibility that white light-emitting diodes can
be used as a light source for the development of indoor
lighting and communication systems. After two years, the
staff of Nakagawa Laboratory achieved many results in the
research of channel models. 'e staff of Nakagawa Labo-
ratory focused on the specific functional part of the visible
light communication system. For the research of visible light
communication technology, a scientific research plan on
visible-light wireless communication technology has been
established in Europe and the United States, which is
composed of about 20 scientific research groups in Europe,
and has carried out a lot of in-depth research in the field of
visible light communication. It was founded at the beginning
to develop a new communication method that can provide
high-speed data transmission. After a long period of re-
search and research, it has achieved relatively fruitful re-
search and development results in this field. In 2009, the
famous Professor Brien of the University of Oxford and
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Figure 1: VLC indoor positioning model.
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others successfully developed and designed a large break-
through in data communication rate based on equalization
technology, at which time the communication rate can be
obtained by 100 Mbit/s. Good results have been obtained in
the study of visible light communication systems. A year
later, in 2010, Brien and others at the University of Oxford
innovatively proposed multiinput, multiple-output, and
quadrature frequency-division multiplexing techniques to
double the communication rate by 100megabits, resulting in
a transmission rate of 220Mbit/s. In addition to the
abovementioned foreign research team, UC-Light, which
relies on the University of California and the National
Laboratory of the United States, is also one of the essential
institutions for visible light communication research, and
researchers at the institution have successfully developed an
LED lighting system that can achieve high-speed commu-
nication and positioning.

(2) Current Status of Domestic Research. Compared with
foreign countries, domestic research on visible light com-
munication started late. 'ere are still many shortcomings
and deficiencies in technology, and there is no mature
finished product on the visible light communication system.
However, after years of exploration by experts in China, the
wireless data communication and positioning system based
on visible light has achieved good results in the software
method of realizing the principle and the research of the
basic physical model of the hardware.

(3) Overall Situation. With the advent of the mobile Internet
era, emerging technologies are gradually applied to daily life,
such as AutoNavi Map, Baidu Map, and other navigation
and positioning APPS, and gradually integrated into peo-
ple’s daily lives. GPS can only provide a good positioning
effect outdoors, but in complex indoor environments, GPS
positioning is more difficult to achieve indoors due to signal
attenuation. With this in mind, industry personnel have
carried out a lot of research work, and RFID technology,
ultrasonic technology, etc., have been applied to indoor
positioning systems. Among them, typical cases mainly
include RADAR indoor positioning system developed by
Microsoft [10].

1.2.3. Application Prospect of Indoor Visible Light Positioning
Technology. In today’s highly urbanized world, indoor space
is becoming more extensive and more complex, and under
the increasingly urgent needs, indoor positioning has
attracted people’s attention. In the past few years, indoor
positioning research has mainly stopped at Wi-Fi, RFID,
ZigBee, Bluetooth, and other technology fields. In recent
years, with the gradual promotion of LEDs in the field of
lighting, LEDs are known for their green environmental
protection [11].

LED-based visible light positioning technology as a
combination of lighting and optical communication, green
energy saving, can broaden the spectrum of new wireless
communication technology resources, compared with the
existing GPS, and radio wave-based positioning technology,

with many advantages without electromagnetic interference,
high positioning accuracy, especially suitable for a variety of
large shopping malls, museums, etc., underground parking,
and the large indoor environment with lots of room [12].

For example, at present, the AutoNavi platform is
committed to promoting online to offline applications,
which can display people, shops, and cars nearby. 'e
method is to achieve outdoor high-precision map posi-
tioning, but it cannot achieve high-precision indoor posi-
tioning, because according to the above content this can be
known only based on visible light wireless data communi-
cation indoor positioning technology which can theoreti-
cally and effectively achieve indoor accurate two-
dimensional and three-dimensional positioning. 'erefore,
visible light-based wireless data communication indoor
positioning technology has incomparable advantages in the
future, which can be combined with outdoor positioning
technology to achieve seamless positioning of the whole
region.

2. Visible Light Positioning System Analysis

2.1. Diode Basic Principles. A light-emitting diode is a
general-purpose lighting device, also known as an “LED,”
which is made from a variety of fusion compounds. When
the LIGHT-emitting diode is energized, the electrons and
holes in its core circuit output visible light through energy
radiation. Light-emitting diodes are generally used as in-
dicator lights in electronic devices and can complete digital
displays, text displays, or graphic displays. At present, there
are three main types of light-emitting diodes: red light, green
light, and yellow light. When the internal circuit of the
LIGHT-emitting diode has a current flowing through, the
“electrons” and “holes” present in it continue to flow
through the similar structural surface of the PN junction.
'is allows them to recombine to produce radiant light
spontaneously. Its basic principle is as follows: when the
current is directly poured into the light-emitting diode,
when the current meets the light-emitting conditions and
does not damage the equipment, the light-emitting diode
emits normal light, and the main reason is that the light-
emitting diode is a semiconductor, and its internal excited
electrons are restored from the high-energy level to the low-
energy level, and the result of the output are photons as
output. When a forward voltage is applied to the PN
junction of the LED, it is combined and emitted after the
simultaneous injection of a few carriers and most carriers.

2.2. Indoor Visible Light Positioning Principle. In the indoor
visible light positioning system, the LED lamp is fixed to the
ceiling as a signal transmitter to provide illumination during
data transmission, led lighting emits a light signal with
identification information (ID), the receiver recovers the
original signal after processing the collected signal, and then
uses the visible light positioning algorithm to calculate the
receiver’s [13] specific location.

'e light intensity distribution of LEDs follows a pattern
close to that of Lambert, and typically, we equate all LED
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illumination lamps with Lambert luminous mode [2®, asshown below:

Iφ �
m + 1
2π

(cosφ)
m

, (1)

where for the light source radiation pattern, its relationship
with the half-power angle emitted by the LED can be
expressed as m:

m � −
ln2

ln cosϕ12( 
. (2)

Modulation characteristics refer to the characteristics of
converting electrical signals into optical signals, mainly
including three aspects 0]. First, the volt-ampere charac-
teristics of LEDs are similar to those of ordinary diodes, as
shown in Figures 2 and 3. When the forward voltage is
greater than the on voltage U, then the voltage is propor-
tional to the current.

Define the modulation system of the LED as m:

m �
1
2
ΔI
I

. (3)

Among them, the peak-to-peak current is the AC signal.
'e larger the modulation system, the easier it is for the
receiver to detect the light signal emitted by the LED ΔI.

'e modulation bandwidth is primarily affected by the
device junction capacitance and the lifetime of a small
number of carriers in the semiconductor. 'e 3 dB band-
width of the LED can be expressed as fc:

fc �
3

2πτ
. (4)

2.3. Channel Characteristics of Visible Light Positioning
Systems. In indoor visible light positioning systems, LEDs
provide illumination when entering the hall for data
transmission. 'e link mode of its transmission channel can
be divided into two categories. 'e first type is that the
optical signal transmission process is not interfered with by
the line of sight chain: “'e second type is a non-line of sight
link that is interfered with during transmission, in which the
optical signal emitted by the LED transmitter reaches the
receiver after being reflected by obstacles such as ceilings and
walls” [14].

According to the Lambert radiation model, the channel
gain of the line-of-sight link [3] is

Hd �
(m + 1)AR

2πd
2 cosm

(θ)cos(ψ)Ts(ψ)g(ψ)rect
ψ

FOV
 .

(5)

In them, the Lambert radiation coefficient, receiving
area, field of view, radiation angle of light source, and re-
ceiving angle are the straight line distance between the light
source and the receiver, for the filter gain at the receiving
end, for the gain of the condenser lens at the receiving end,
and the rectangular function can be expressed as
mARFOVθψdTs(ψ)g(ψ)

rect(x) �
1, for |x|≤ 1,

0, for |x|> 1.
 (6)

In the model above, the received power at the receiving
end can be expressed as follows:

Pr � HdPt, (7)

where the average transmit power of the LED transmitter is
represented, and the receiving terminal power represents the
optical power received by the receiver. In the indoor visible
positioning system model, the conversion coefficient of the
photodetector is PtPrη, which can be expressed as the
conversion formula:

ic � ηPr. (8)

Similarly, the electrical signal power can be expressed as
follows:

Pe � i
2
eR. (9)

'e relevant positioning system parameters are shown in
Table 2.

2.4. Reflection Model. Apply the Phong reflection model in
the real drawing to indoor visible light positioning to obtain
a reflection model that is more in line with the actual po-
sitioning environment. Since the optical signal that reaches
the receiving end after multiple reflections is far less than the
case where direct radiation arrives after a single reflection
[1], the reflection model in this article ignores the optical

O1

O2

O1

Oo1 Oo2

Oo3

Figure 2: 'e shadow area of the triangle where the projection
point M is located.
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signal that arrives at the receiving end after two or more
reflections [15].

'e reflection model of the visible light positioning
system is shown in Figure 1 [1]. After the LED emits a light
signal, it reaches the wall, part of which is absorbed by the
reflective surface and the other part is emitted by the wall.
We divide the wall into several microreflective surfaces [16],
assuming that the micro reflector surface is a receiver with a
receiver area, and calculate its received power. 'en, each
microreflective surface on the wall is an ideal source of
Lambert radiation, and the radiation pattern has nothing to
do with the angle of incidence of light. In each micro-
reflection surface, the incident light is absorbed by the
microreflector surface with the probability of specular re-
flection, and diffuse reflection occurs with the probability of
reflection, and the spatial distribution of the reflected light
intensity is dA dA1 − ρρ · αρ · (1 − α):

Href �
ρ · (1 − α)

π
· cos θ2( 

+
ρ · α · (m + 1)

2π
· cosm θ2 − ψ1( ,

(10)

where the reflection coefficient is the mode parameter of the
directionality of the reflected light, and the ratio of specular
reflection to total reflection is ρmα.

'e signal strength received by the receiver after a single
reflection through the wall is

Precerved � Href · Psomrce, (11)

where the incident light power of the reflective surface
isPsomrce.

A1

lA1A2

lA2A3

lA1A3

lMA1

lMA3
lMA2

M

A2 A3

A1

M

lMA1

lMA3

lMA2

lA1A2

lA1A3

lA2A3

A2 A3

lA1A2 lA1A3

A2A3A2
A3

A1

O
M

Figure 3: Projection point M is located inside the A1A2A3 Δ.

Table 2: Positioning system parameters.

Parameter Numeric value

Indoor environment

Reflection coefficient of the wall/ceiling/floor 0.66/0.35/0.66
Room size 5.0m× 5.0m× 3.0m
Diffuse scale 0.7
Specular scale 0.3

Transmitter
Coefficient of refraction 1
LED transmit power 1W
Half-power angle 60°

Receiver side
Effective area 1 point× 1 point
Sensitivity 0.4 amps/watt

Receive the viewing angle 70°

6 Computational Intelligence and Neuroscience



2.5. Noise Model. In a visible light positioning system, the
noise component consists of a combination of shot noise and
thermal noise N:

N � σ2th + σ2shot. (12)

'e power of thermal noise can be expressed as follows:

σ2th �
8πkTc

G
ηARI2β

2
+
16π2kTeΓ

gm

η2A2
RI3β

3
. (13)

'e power of the shot noise can be expressed as follows:

σ2shot � 2qRPBSARλβ + 2qRPrβ + 2qIDCβ. (14)

2.6. Summary. 'is study introduces the basic working
principle of visible light positioning system analysis and the
characteristics of channels and conducts theoretical research
on light visible positioning system. It lays the groundwork
for the algorithm for indoor visible light positioning
methods and common positioning alogrithms.

3. Visible Light Positioning Methods and
Common Positioning Algorithms

3.1. Indoor Positioning Performance Indicators. Different
indoor application scenarios will put forward different
performance requirements for the system, so the designer
needs to design the positioning system according to the
actual needs. At present, the performance indicators of the
indoor positioning system of visible light communication
mainly include the following aspects: positioning accuracy,
complexity, system function robustness, functional ductility,
and cost [60]: (1) 'e accuracy of positioning is one of the
most important performance indicators based on the visible
light wireless data communication positioning technology
system, which is to use the average value of the positioning
error to estimate the accuracy, the smaller the value, the
higher the accuracy. (2) Complexity of hardware equipment
requirements and software complexity, which is the critical
factor in evaluating manufacturing costs, when the system is
complex and redundant, it will cost a lot of costs. (3) Ro-
bustness is a key factor in evaluating the performance of
indoor positioning systems, and a good system can cope with
most bad contingencies. (4) Extensibility is the guarantee of
the performance of the positioning system, which can be
extended from two-dimensional positioning to three-di-
mensional positioning, which is the focus of current research
in this field. (5) 'e cost is whether the ratio of the cost and
return of the positioning system to the research is reason-
able, and the cost of the positioning system is considered
from several aspects such as resources, space, time, and cost.

3.2. Visible Indoor PositioningMethods. At present, the most
widely used visible light indoor positioning methods mainly
include the following categories: geometric measurement
method, proximity perception method, scenario analysis
method, and image sensor imaging method [17].

3.2.1. Geometric Measurements

(1) RSS Positioning Algorithm. 'e RSS positioning algo-
rithm estimates the distance from the receiver to each LED
transmitter by measuring the received signal strength at the
receiving end, and finally, estimates the position of the
receiver by a trilateral measurement algorithm. In the visible
light indoor positioning system, each LED emitter emits a
light signal with identification information, the receiver
determines the source of the optical signal according to the
received ID identification information, and finally estimates
the distance between the LED transmitter and the receiver
according to the received signal strength [18].

A(x1, y1), and then find the position coordinates of the
receiver according to equation (15) and find the position
coordinates of the receiver:

B x2, y2( C x2, y2( (x, y, z)，

x − x1( 
2

+ y − y1( 
2

� d
2
1,

x − x2( 
2

+ y − y2( 
2

� d
2
2,

x − x3( 
2

+ y − y3( 
2

� d
2
3.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

(2) TOA Positioning Algorithm. A TOA positioning algo-
rithm is required to measure the time it takes for a signal to
reach the receiver from the LED transmitter. In a bit-to-
position system, when the position information of the three
LED transmitters is known, the time it takes for the light
signal to reach the receiver from the three LED transmitters
is measured separately, and the root (16) is saved, and the
time taken for the signal to reach the receiver can be cal-
culated. 'e distance between LED emitters, in equation
(16), is the speed of light. 'e position coordinates of the
receiver are then calculated according to equation (15).
ttt1, t2t3d1, d2, d3c:

d � c∗ t. (16)

'ere are two main problems with the TOA localization
method. First, all LED transmitters and receivers must use a
fully synchronized clock. Due to the very fast speed of light
propagation, if the clock synchronization cannot be guar-
anteed, the positioning error will be directly generated.
Second, the optical signal must contain a timestamp, which
reduces the data transfer rate [19].

By measuring the transmission time difference between
the signals of different LED transmitters to receivers, de-
termine the distance difference between different LED
transmitters and receivers based on the propagation speed of
the optical signal. 'e position coordinates of the receiver
are then obtained according to equation (16) tctc.

R12 � c t1 − tr(  − t2 − tr(   � c · t1 − t2( ,

R23 � c t2 − tr(  − t3 − tr(   � c · t2 − t3( ,

R13 � c t1 − tr(  − t3 − tr(   � c · t1 − t3( ,

⎧⎪⎪⎨

⎪⎪⎩
(17)

where, represents the time when the signal arrives at the
receiver from different LED transmitters, the transmission
time of the signal, the speed of light, and the LED
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t1, t2t3trcR12, R23R13, the distance difference between the
transmitter and the receiver. Assume that the position co-
ordinates of the three LED emitters are the sum of the
receivers (x1, y1), (x2, y2)(x3, y3).

If the position coordinates are (x, y), the coordinates of
the receiver can be obtained by equation (18):(x, y)

������������������

x − x1( 
2

+ y − y1( 
2



−

�����������������

x − x2( 
2

+ y − y2( 
2



� R12,
������������������

x − x2( 
2

+ y − y2( 
2



−

�����������������

x − x3( 
2

+ y − y3( 
2



� R23,
������������������

x − x1( 
2

+ y − y1( 
2



−

�����������������

x − x3( 
2

+ y − y3( 
2



� R13.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(18)

(3) A0A Positioning Algorithm.'e positioning system based
on the AOA positioning algorithm needs to measure the
arrival angle of the light signal relative to the LED emitter,
and then use the intersection of the direction lines to locate
the target. Positioning in 2D space requires two LED
emitters, and positioning in 3D space requires at least three
LED emitters [20].

In a two-dimensional space, based on the positioning
system, the two LED emitters with known position infor-
mation, now assume that the signal measured by the receiver
arrives at an angle of sum, and the coordinates of the receiver
are sum, then according to the position coordinates of the
LED emitters, A and B can be arranged with a set of
equations A(x1, y1)B(x2, y2)φ1φ2(x, y):

tan φ1(  �
y − y1

x − x1
,

tan φ2(  �
y − y2

x − x2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

In a two-dimensional space, the optical signal can be
processed by using formula (19) to obtain receiver coordi-
nates, owing to the existence of an elevation angle in the
actual positioning, resulting in a too large positioning error,
so in the actual positioning, the AOA positioning method is
rarely used alone, and is usually combined with other po-
sitioning algorithms for positioning.

'e approximate perception method has the advantages
of simplicity, wide coverage, and fast positioning speed. Still,
the positioning result of the method is relatively rough. It
can only be used as a simple estimation process before
positioning. It is necessary to install the LED emitters in
accordance with reasonable rules, and the positioning ac-
curacy is highly dependent on the number of LED emitters
(21).

3.2.2. Image Sensor Imaging Methods. In the visible light
positioning system, the image sensor imaging method is
used for positioning, and the lens is mainly placed vertically
on the connection line between the LED emitter and the
image sensor, so that the three are straight, and the three-
dimensional position coordinates of the image sensor are
obtained by using their geometric relationship (22).

Compared with the above algorithm, the image sensor
imaging method has a higher positioning accuracy, and the
higher the resolution of the image sensor, the better the
positioning effect. 'e disadvantage is that the positioning
complexity and the price are high.

A description of the two grids near the fence is shown in
Figure 4.

3.3. RSS-Based Multifaceted Measurement Positioning
Algorithm

3.3.1. Introduction to Positioning Algorithms. In an indoor
3D spatial positioning system, LED emitters can be mounted
on horizontal planes at different heights and require at least
four LED emitters. 'e receiver can distinguish between
light signals from different LED emitting sources by LED-ID
identification. 'e set sum is the position coordinates of the
four LED emitters, calculating the distance between each
transmitter reaching the receiver based on the received
signal strength measured by the receiver and then going
through equation (20), lists the systems of equations used to
calculate receiver position coordinates. T1(x1, y1), T2
(x2, y2), T3(x3, y3)T4(x4, y4)d1, d2, d3d4X � (x, y, z)

x − x1( 
2

+ y − y1( 
2

+ z − z1( 
2

� d
2
1,

x − x2( 
2

+ y − y2( 
2

+ z − z2( 
2

� d
2
2,

x − x3( 
2

+ y − y3( 
2

+ z − z3( 
2

� d
2
3,

x − x4( 
2

+ y − y4( 
2

+ z − z4( 
2

� d
2
4.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(20)

Conversion to matrix form can be expressed as

AX � B, (21)

where

A �

x1 − x2y1 − y2z1 − z2

x2 − x3y2 − y3z2 − z3

x3 − x4y3 − y4z3 − z4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

X �

x

y

z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B �
1
2

d
2
1 − d

2
2 − x

2
1 + x

2
2 − y

2
1 + y

2
2 − z

2
1 + z

2
2

d
2
2 − d

2
3 − x

2
2 + x

2
3 − y

2
2 + y

2
3 − z

2
2 + z

2
3

d
2
3 − d

2
4 − x

2
3 + x

2
4 − y

2
3 + y

2
4 − z

2
3 + z

2
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(22)

In indoor visible light positioning systems, the receiver
to be positioned is usually located on the ground, whereas
the LED emitters are all mounted on the ceiling, which is the
height of the four LED emitters. 'erefore, the third column
element of the matrix in formula (21) is 0, because the matrix
is an irreversible matrix and cannot be solved by directly
transmitting the coordinate position of the receiver, so the
coordinates of the receiver can be solved according to the
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generalized inverse concept of least multiplication. 'e
objective function can be represented as
z1 � z2 � z3 � z4AAX � A− 1BX:

X � argmin‖AX − B‖
2
2

� argmin(AX − B)
T
(AX − B).

(23)

For the convenience of representation, the squares of the
two norms in formula (23) will be expressed in terms of
representation, which can then be expressed as f(X):

f(X) � X
T
A

T
AX − X

T
A

T
B − B

T
AX + B

T
B. (24)

'e derivative is manufactured in equation (24) and
given as zero f(X):

df(X)

dX
� 2A

T
AX − 2A

T
B � 0. (25)

'en the solution X

X � A
T
A 

− 1
A

T
B. (26)

3.3.2. Performance Analysis of Positioning Algorithms.
Positioning accuracy refers to the deviation between the
estimated position of the measured target and the real
position and is the most important indicator to measure the
positioning performance. In positioning, the positioning
accuracy in this article can be expressed as the positioning
accuracy by selecting mean squared EiTor (MSE) or root
mean squared error (RMSE):

Error �

������������������������������

x1 − x0( 
2

+ y1 − y0( 
2

+ z1 − z0( 
2

 



, (27)

where for the actual position coordinates of the receiver, for
the estimated position coordinates (x0, y0, z0)(x1, y1, z1).

'e positioning principle of relevant AOA methods is
described in Figure 5.

Positioning errors caused by relevant noises are shown in
Figure 6

3.3.3. Positioning Principle of APIT Positioning Algorithm.
In the traditional APIT positioning algorithm, there are K
light sources for indoor visible light, namely S1, S2, S3, etc.,
SK, arbitrarily connecting three light sources S1, S2, S3,
constitutes ΔS1 S2 S3. Let the unknown node be S, and the
signal strength of S from the sources S1, S2, and S3 is RSS1,
ＲSS2, ＲSS3. Move the unknown node S to any location
near it, G1, and G1 to the source S1, S2, and S3. 'e signal
strengths are RG1S1, RG1S2, RG1S3. If RG1S1, RG1S2,
RG1S3 are greater than or less than RSS1, RSS2, and at the
same time RSS3 indicates that the unknown node S is located
outside of ΔS1 S2 S3, and the ΔS1 S2 S3 region is not selected
as the decision area. If one of the signal strengths RG1S1,
RG1S2, and RG1S3 is greater than the other two, it is smaller
than RSS1 and RSS2, RSS3, or one smaller than the other two
greater than RSS1, RSS2, and RSS3, indicating the unknown
node S. In the interior of ΔS1 S2 S3, select the ΔS1 S2 S3
region as the judgment area, and repeat the above step C3K
several times until all possible areas have been determined.
Finally, the coincident area of the triangle containing the S of

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

4.25

4.5

4.75

5

X (m)

Y 
(m

)

Figure 4: Close to the fence in two grids.
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the unknown node is obtained, and the centroid of the
polygon is found by using the centroid algorithm to find out
the final positioning result.

4. Indoor Visible Light Positioning Algorithm
Based on Compression Perception

4.1. Principles of Compression Perception. 'e theory of
compression perception states that the sparsity or com-
pressibility of a signal, as well as the selectivity of the
transformation base and observation matrix, are two basic
principles or important guarantees for recovering a signal
from a sampling point far below the requirements of
Nyquist’s sampling theorem (24).

Now assuming that it is a one-dimensional discrete
signal, and its table assumes that any signal in space can be
uniquely represented by a set of standard orthogonal rad-
icals, then the one-dimensional discrete signal can be rep-
resented by a linear group combination of these orthogonal
radicals xx ∈ RN×1RNψ � [φ1,φ2, . . . ,φN]x

x � 
x

i�1
φiαi � ψα. (28)

Its tables, projection coefficients, projected sparse vec-
tors, order orthogonal matrixes, and moments are all sparse
vectors: αi � x,φiα � ψTxψ � [φ1,φ2, . . . ,φN]NαxN × 1.

Equation (28) is a sparse representation of the signal, and
the equation table is the signal sparse cardinality. 'e
original signal is projected onto an uncorrelated observation
matrix of the shadow sparse matrix, resulting in observa-
tions. 'e process can be expressed as xψxxψΦy:

y � Φx. (29)

Its table, that is, the observation matrix, is the obser-
vation matrix, and the observation matrix obtained by
observation is the original signal, that is, the table projection
of the observation matrix on the original signal obtains a
new signal representation. By compressing the observation
matrix, the dimensionality of the new signal representation
is already much smaller than the dimensionality of the
original signal, and the amount of data obtained by Nyquist’s
sampling theorem is much smaller. It is obtained by
substituting formula (28) into equation (29). yΦM × N(M

<N)N × 1xM × 1xΦyyNxM

y � Φx

� Φψα

� Θα.

(30)

In its table, for the perceptual matrix, equation (30) can
be derived by solving a linear optimization problem to
obtain a sparse vector, and the solution process can be
expressed as Θ � Φψα:

min‖α‖0 s.ty � Θα. (31)

If the signal is sparse, and if the matrix satisfies the
constrained isometric properties (RIP) [50] inches, then the
sparse signal can be recovered by solving the minimum
norm problem by the observation matrix, which can be
expressed as xKΦyl0x:

x � argmin‖α‖0 s.t.Φx � y. (32)

Since equation (32) is the smallest solution, the norm is
essentially an NP-hard [51] problem, which is usually
converted to a problem where the norm is optimized as l0l1.

From the above description of the theory of compression
perception, it can be obtained that there are three main steps
of compression perception: (1) the sparse representation of
the signal: (2) determine the observation matrix; (3) re-
construct the signal. Φ.

4.1.1. Sparse Representation of the Signal. 'e Nyquist
sampling theorem shows that sampling at a sampling rate twice
the signal bandwidth accurately restores the original signal.
However, when processing wideband signals in practice, it is
often difficult to achieve due to the huge amount of compu-
tation. 'e theory of contraction sense shows that if a signal is
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sparse in a given transformation domain, it can be sampled at a
rate much lower than the Nyquist sampling rate and the
original signal can be accurately recovered.

'e sparseness or compressibility of the signal is an
important prerequisite of the theory of compression per-
ception, fixed to a discrete-time signal of lengthN. 'e time-
domain representation of discrete-time signal x is
xxxnn � 1, 2, · · ·，N. Fixed to a set of canonical orthogonal
bases set to the domain, as shown in equation (33), a dis-
crete-time signal can be linearly represented by this set of
canonical orthogonal roots [φ1,φ2, . . . ,φN]Ψx.

x � Ψs, (33)

where the matrix Ψ isN × N and s and x are both column
N × 1 vectors. If x can be linearly represented by a
K(K≪N) basis vector, then the signal x is K sparse.
ΨN × NxsN × 1xK(K≪N)xK

After a linear observation of the original dimensional
signal, a dimension column vector consisting of a measured
value can be obtained. 'e entire linear observation process
is shown below M × NΦNxMyj, j � 1, 2, . . . , MM:

y � Φx. (34)

Substitute formula (33) into equation (34) to get it
y � Φx

� ΦΨs

� Θs,

(35)

where Θ � ΦΨM × N is the perception matrix.
Θ � ΦΨM × N

4.1.2. Observation Matrix. In positioning based on com-
pression perception, a common approach is to select a sparse
randommatrix as the measurement matrix, which is established
by each row that has only one nonzero element 1, and its column
number is randomly selected from 1 toN. 'is design approach
is equivalent to deploying sensor nodes completely randomly in
the positioning area.'is is a simple and straightforward process
that can be expressed by the power measurement matrix as the
product of the observation matrix, the sparse matrix, and the
sparse vector in the theory of compression perception.

After sampling, compression, and encoding, the di-
mension of the original signal is compressed into a di-
mensional observation vector, that is, the dimension of the
original signal is compressed as NM(M≪N)N − M.

When the observation matrix satisfies the constrained
isometric condition (RIP), a definite solution exists for a
system of uncertain equations. 'e RIP criterion is defined
as follows: assume that the length of the signal is
xNK，ε> 0，Θ, and that sparsity is always present in order
to satisfy the perceptual matrix: xNK，ε> 0，Θ

1 − ε≤
‖Θα‖2

‖α‖2
≤ 1 + ε. (36)

'erefore, the key to the problem is how to determine
whether the random projection matrix satisfies the RIP
criterion. In order to reduce the complexity of this problem,

the concept of correlation [even] is proposed to replace it,
and the definition of relevance is as follows:

μ(Φ,ψ) �
�
n

√
· max

k≥1,j≤n
φk,ϕj



, (37)

where the value range μ is satisfied: μ

μ(Φ,ψ) ∈ L1,
�
n

√
. (38)

If there are correlated elements between the two ma-
trices, the two matrices have a greater correlation; otherwise,
they are considered less correlated.

Figure 7 shows the correlation between SIG noise ratio
and LED emission power under Gaussian noise shadow.

4.1.3. Signal Reconstruction Algorithms. Signal reconstruc-
tion is a very important part of compression perception
theory, and without a superior reconstruction algorithm to
recover the original signal, then compression perception
theory has no practical effect. Signal reconstruction is the
process of reconstructing the original signal from a di-
mensional observation vector obtained from compression,
where MyNxM are a few common compression-aware
refactoring algorithms MyNxM[25]:

(1) Minimal Standard Model. l0 From a mathematical point
of view, the problem of signal reconstruction in the theory of
compression perception is the problem of solving a system of
uncertain equations. It can be solved by norm, as shown in
equation (39) l0.

min ‖x‖0 s.t. y � Φx, (39)

Due to the noise present in the actual measurement,
equation (40) can be converted to

min ‖x‖0 s.t. −Φ‖x‖2 ≤ ε. (40)

Among them, is a very small constant. Usually, the
calculation of the algorithm is very unstable, and it is difficult
to reconstruct the signal directly ε.

(2) Minimal Standard Model. l1 When the observation
matrix [1] satisfies the RIP criterion, the norm and the norm
optimization solution problem produce the same solution,
so the norm solving problem can be converted to l0l1l0:

min ‖x‖1 s.t. y � Φx. (41)

Replace equation (41) with equation (4) [2], which is
base distance tracking (BP)�Equation (41) is converted to

min ‖x‖1 s.t. y � Φ‖x‖2 ≤ δ. (42)

In practice, the BP algorithm runs for a relatively long time.

4.2. Indoor Visible Light Compression Sensing Positioning.
'e main process of the compression perception algorithm
can be described as known observationmatrix and unknown
signal and measurement matrix obtained through obser-
vation matrix observation, and linear observation process
can be eexpressed as Φ ∈ RM×N(M≪N)x ∈ RN，Y ∈ RM
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y � Φx. (43)

If the signal is sparse and the measurement matrix and
the observation matrix meet certain conditions, the mea-
surementmatrix can be solved by a reconstruction algorithm
xKyΦyx.

Below we construct the indoor visible light positioning
implementation problem as a compression perception
sparse signal reconstruction problem, and the receiver is
located in the positioning room, the positioning space is
divided into grids, and the receiver obtains RSS measure-
ments from the LEDs on the ceiling NM(M≪N).
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Defines the receiver position information vector, as
shown in equation (44). When the receiver is inside the first
mesh, otherwise. Since indoor visible light positioning is
only for a single target, the sparseness of the position in-
formation vector is 1. sksk � 1sk � 0s:

s � sk, k � 1, 2, . . . , N 
T
. (44)

Defines a sparse matrix, as shown in equation (45),
where the receiver representing the bit meter grid receives
the signal power of the bitmeter grid, which is located di-
rectly above the LED emitter Ψψijj(1≤ j≤N)i(1≤ i≤N).

Ψ �

ψ11 ψ12 · · · ψ1N

ψ21 ψ22 · · · ψ2N

⋮ ⋮ · · · ⋮

ψN1 ψN2 · · · ψNN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N×N

. (45)

Define the observation matrix, as shown in equation
(46), where the first LED emitter is mounted on the ceiling
above the grid, when the first LED emitter is located in the
upper straight of the first grid, otherwise set. By definition,
the meta-meters of a matrix of only one observation per row
are set to 1, and the rest of the elements are set to 0
ΦMNijΦij � 1Φij � 0Φ.

Φ �

0 · · · 1 0 · · · .

0 · · · 0 1 0 · · ·

⋮ . ⋮ ⋮ . ⋮

0 · · · · · · 0 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M×N

. (46)

'ematrix of measured values is shown in equation (47),
where the receiver receives the optical signal emitted by the
first LED and converts the optical signal into an electrical
signal, which rotates from the strength of the first signal
received by the LED transmitter
yM(M≪N)ynn(1≤ n≤M).

y � y1, y2, . . . , y1N 
T
. (47)

According to the theory of compression perception, a
matrix of measurable values is satisfied by y

y � Φx

� ΦΨs

� Θs.

(48)

It is transformed into a perceptual matrix Θ.
Considering the presence of measurement noise,

equation (48) can be converted to

y � ΦΨs + ε

� Θs + ε.
(49)

'e RIP criterion is a sufficient nonessential condition
for the signal to be accurately reconstructed, with a sparse
position information vector of 1 degree and a quadratic
measurement of that degree, which proves that when

equation (50) condition is satisfied, the initial signal can be
reconstructed by equation (49) with a high probability of
precision ssMMs.

M≥C × K × log
N

K
 , (50)

where is a small constant C.
Because the sparse matrix is related to the spatial domain

of the observation matrix, the RIP criterion is not satisfied.
In order to achieve the same effect as the RIP criterion, the
selective measurement matrix is orthogonally treated
ΨΦΘ � ΦΨΘ � ΦΨy.

Y � AΘy

� AΘΘs

� As,

(51)

where A is the orthogonal basis of the matrixΘ, that is, the
generalized inverse of the matrix.In the case of existing
noise, equation (51) can be converted to
AΘA � orth(ΘT)T, Θ+Θ.

Y � AΘ+
y

� AΘ−Θs + AΘ− ε

� As + ε,

(52)

where A is the orthogonal matrixA.
'is article uses the following sparse signal recon-

struction algorithm to reconstruct sparse signals.

(1) 'e orthogonal match tracking algorithm
For the reconstruction of sparse signals, the steps of
the Quadrature Match Tracking Algorithm (OMP)
can be described as Ks

Input variables: order matrix, measured value ma-
trix, sparseness M × NAYK

Output variable: An estimate of the sparse signal ss

Initialization operation: 'e order matrix is repre-
sented as vector groups, support sets, and number of
iterations M × NA(a1, a2, . . . , aN)r0 � YΛ0 � ∅k

� 1A0 �.

Step 1: First, take the column vectors and residuals
in the matrix as an inner product operation to find
the column vector corresponding to the maximum
absolute value of the inner product and its index
value: Aajrk−1λk � argmaxi�1,2,···N|rT

k−1αj|

Step 2: Update Operation: 'is is a collection of all
the index values obtained after many iterations,
which means that the sequential matrix composed
of the corresponding column vectors is selected
from thematrix according to the set of index values.

Λk � Λk−1⋃ λk ,

Ak � Ak−1, A :, λk(  , ΛkkAkΛkAM × k.
(53)

Step 3: Solve the least squares solution:
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Y � AkSksk

� argminY − Aksk

� A
T
k Ak 

− 1
A

T
k Y.

(54)

Step 4: Update the residuals, which represent the
rk � Y − Akskrk residuals k obtained after iteration.
Step 5: 'at is, the k � k + 1 number of iterations
plus 1, if yes k≤K, go back to step 1 to continue the
iterative process, if yes k>K, stop the iteration
process and perform step 6.
Step 6: Finally, according to the correspondence
with the sparse vector, an estimated recovery vector
is obtained as skΛkss.

(2) 'e greedy match tracking algorithm
'e Greedy Match Tracking Algorithm (GMP) step
can be described as follows:
Input variables: order matrix, measurement matrix.
M × NAY

Output variable: an estimate of the sparse signal. ss

Initialization operation: index value collection
Λ � 1, 2, . . . , N{ }, Y′ � Y.

Step 1: Find satisfaction (4.26) and isi

argmin
i∈Λ,si∈ 0,1{ }

‖ Y′ − A 0, . . . , 0, si, 0, . . . 0 
T
2 . (55)

Step 2: 'at is, removed from the index value
collection: Λ � Λ/ i{ }i

Step 3: Update Residual Value: that is, the next
search is done using residuals: Y′ � Y′ − A[0, . . . ,

si, 0, . . . 0]T

Step 4: Update the vector: s: si � si

Step 5: Determine if the search termination con-
dition has been reached, that is, the search is ter-
minated, otherwise, return to step 1 to continue the
search process: si � 0
Step 6: Finally return the estimate of the sparse
vector ss array

y � y1, y2, . . . , yM 
T
. (56)

Set a reasonable threshold for the receiver’s received
signal strength when the direct signal of the first LED
transmitter is blocked. Since the first LED emitter is located
on the ceiling, directly above the first grid, set the obser-
vation matrix at this time, and set the settings
asλ, λyi < λiijΦΦij � 0yi � 0.

4.3. Positioning Model. In a wireless sensor network,
consider the positioning problem: k positions. Unknown
targets are randomly distributed within a particular area;
the positioning area is divided into N grids and assumes

that the target can only be located in the center of the grid.
Grid coordinates are known, so that positioning can be
achieved by determining which grid the target is located
in. An N-dimensional sparse vector θ represents the target
location information, which contains only k (k Much less
than N) nonzero elements, each of which corresponds to a
target node, and whose corresponding ordinal number
represents the grid number in which it is located. To
determine the location of the target, deploy M sensor
nodes with known locations to measure the received
signal strength. Traditional positioning methods require
the deployment of a sensor per mesh, which will require
the deployment of a large number of sensor nodes and
generate a considerable amount of work, and thus difficult
to achieve. By introducing the theory of compression
perception, the position vector θ can be accurately re-
covered by deploying only a small number of sensor
nodes.

4.4. Compression Panther—Depreciation Phase. 'e rough
positioning phase uses the compression-aware positioning
algorithm proposed in section 4. 'e receiver is located in
the positioning space, dividing the room into a discrete grid,
and the receiver obtains the RSS value from the LED emitter
on the ceiling. In this article, the indoor visible light posi-
tioning model has the number of meshes, the number of
LED emitters, the number of meshes is 400, and the
sparseness is 1, and the sample is compressed by equation
(NM(M≪N)NMNK (57)).

y1

y2

⋮

yM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

P1,1 P1,2 . . . P1,N

P2,1 P2,2 . . . P2,N

⋮ ⋮ . ⋮

PM,1 PM,2 . . . PM,N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1

x2

⋮

xN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (57)

'e xn � 1 indicate that the target is within the grid.
Determines whether the target is within the recovery range
of the fence grid, and when the target is in the grid close to
the fence, the positioning result is directly output. Other-
wise, further fine positioning is carried out to improve the
positioning accuracy, as shown in Figure 8.

Further fine localization is carried out when it is de-
termined that the target is not within the recovery range of
the grid near the perimeter wall. 'e precision positioning
stage optimizes the multilateral measurement algorithm
through the base station (LED transmitter) selection strat-
egy, which reduces the disadvantages of the distance between
the receiver and the LED transmitter, and the positioning
accuracy is greatly affected by the indoor environment.
During the fine positioning phase, select the nearest LED
emitter of the target as the reference point for the polygon
measurement.

'e four LEDs are LED1, LED2, LED3, and
LED4—unknown.
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'e distance from the target (receiver) to the LED
transmitter can be calculated by the received signal strength.
'e calculation method of the multifaceted measurement
algorithm can be expressed as follows:

x − x1( 
2

+ y − y1( 
2

+ z − z1( 
2

� d
2
1,

x − x2( 
2

+ y − y2( 
2

+ z − z2( 
2

� d
2
2,

x − x3( 
2

+ y − y3( 
2

+ z − z3( 
2

� d
2
3,

x − x4( 
2

+ y − y4( 
2

+ z − z4( 
2

� d
2
4.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(58)

Its position represents the coordinates of the receiver
position to be estimated, indicates the position of the first
LED emitter, and indicates the distance from the receiver to
the first LED emitter. (x, y)(xi, yi)idti.

Equation (58) is a system of nonlinear equations that can
be linearly converted to

AX � B, (59)

thereinto

A �

x1 − x2 y1 − y2 z1 − z2

x2 − x3 y2 − y3 z2 − z3

x3 − x4 y3 − y4 z3 − z4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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.

(60)

Since the LED emitter is considered to be on the same
level as the ceiling in the actual fixed position, the third

column of the matrix is usually 0. Since the matrix is ir-
reversible, it is not possible to find the target position directly
according to the least squares method, and the objective
function that uses the concept of generalized inverse to solve
it can be expressed as z1 � z2 � z3AAX � A− 1B.

X � argmin‖AX − B‖
2
2. (61)

'e square expansion of the two norms in equation (61)
obtains it:

X � argmin‖AX − B‖
2
2 � argmin(AX − B)

T
(AX − B).

(62)

If the squares of two norms in equation (62) are
expressed as f(X), then

f(X) � X
T
A

T
AX − X

T
A

T
B − B

T
AX + B

T
B. (63)

Derivation (63) is obtained by deriving and assigning it
zero f(X), then

f(X)

zX
� 2A

T
AX − 2A

T
B � 0. (64)

It can be obtained by formula (64).

A
T
AX � A

T
B. (65)

'en the solution Xis

X � A
T
A 

− 1
A

T
B. (66)

Figure 9 shows the correlation between SIG noise ratio
and LED emission power under Gaussian noise shadow.

4.5.Advantages of theAlgorithm. In this article, a multitarget
positioning method based on compression perception in
wireless sensor networks is studied. By constructing a matrix
using the received signal strength values, the position in-
formation of the signal can be represented as a sparse vector
with a linear–constraint relationship with the sensor mea-
surements. 'e compression sensing positioning algorithm

5 m

5 m

3 m

Figure 8: Positioning the system model.
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Figure 9: Correlation between SIG noise ratio and LED emission power under Gaussian noise shadow.
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of the visible light chamber of the mixed APIT has dra-
matically improved the positioning accuracy and stability.

5. Conclusion

Light-emitting diodes (LEDs) are one of the most promising
new sources of green lighting in the twenty-first century.
LED lamps and lanterns due to high efficiency, energy-
saving, low price, long life, green environmental protection,
pollution-free, and other advantages are widely used in
lighting, display, and other fields, and LED can be used for
lighting and communication characteristics, making VLC
technology to become a research hotspot in recent years. In
addition, with the continuous development of society,
people’s demand for indoor positioning services is also
increasing. VLC-based indoor positioning technology has
many advantages over traditional indoor positioning tech-
nology, so it has gradually become a hot topic of research.

Finally, a fusion positioning algorithm based on com-
pression perception and multilateral measurement is pro-
posed, which first targets the nonvisual distance of the
optical signal obscured by opaque objects in the actual
positioning, and the positioning error is very large, through
the positioning before positioning. 'e preprocessor is used
to reduce the impact of occlusion on the positioning. 'en,
in the rough positioning phase, a compression-aware po-
sitioning algorithm is used to determine the location of the
mesh where the receiver is located. When the recovery
position is close to the recovery range of the surrounding
wall grid, there is no need for fine positioning, the posi-
tioning result is directly output, and when the receiver is not
within the recovery range of the surrounding wall grid, the
receiver position is accurately estimated by fine positioning.
Fine positioning can reduce the impact of reconstruction
errors on positioning accuracy and reduce positioning errors
when the target is located near the grid boundary. 'e
multifaceted measurement algorithm is optimized by the
LED selection strategy, which can effectively reduce the
positioning error of the target near the center of the room,
and overcome the limitation that the positioning effect of the
compression sensing positioning algorithm is not ideal when
the number of LEDs is small.
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