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Abstract. The aim of the current study was to develop a 
predictor classifier for response to fluorouracil‑based chemo-
therapy in patients with advanced colorectal cancer (CRC) 
using microarray gene expression profiles of primary CRC 
tissues. Using two expression profiles downloaded from the 
Gene Expression Omnibus database, differentially expressed 
genes  (DEGs) between responders and non‑responders to 
fluorouracil‑based chemotherapy were identified. A total of 
791 DEGs, including 303 that were upregulated and 488 that 
were downregulated in responders, were identified. Functional 
enrichment analysis revealed that the DEGs were primarily 
involved in ‘cell mitosis’, ‘DNA replication’ and ‘cell cycle’ 
signaling pathways. Following feature selection using two 
methods, a random forest classifier for response to fluoro-
uracil‑based chemotherapy with 13 DEGs was constructed. 
The accuracy of the 13‑gene classifier was 0.930 in the training 
set and 0.810 in the validation set. The receiver operating 
characteristic curve analysis revealed that the area under the 
curve was 1.000 in the training set and 0.873 in the validation 
set (P=0.227). The 13‑gene‑based classifier described in the 
current study may be used as a potential biomarker to predict 
the effects of fluorouracil‑based chemotherapy in patients with 
CRC.

Introduction

Colorectal cancer (CRC) is the third most commonly diag-
nosed cancer in males and the second in females, and it is 
one of the most common causes of cancer mortality  (1). 
Localized CRCs are amenable to curative surgical resec-
tion, however, ~25% of patients present with metastatic 
disease and ~50% of patients will develop metastases (2). 
Fluorouracil‑based chemotherapy remains the primary treat-
ment for metastatic CRC (3). 5‑fluorouracil (5‑FU) alone has 
an objective response rate of ~20% (4). The addition of irino-
tecan or oxaliplatin to 5‑FU increases the objective response 
rate to ~50% (5). The effects of 5‑FU/leucovorin combined 
with irinotecan (FOLFIRI) or oxaliplatin (FOLFOX) in the 
first‑line treatment of metastatic CRC are comparable (6). 
In the last decade, the addition of targeted therapies based 
on these chemotherapy regimens has improved the thera-
peutic approach and significantly increased progression‑free 
survival and overall survival times (7‑9). Fluorouracil‑based 
chemotherapy remains the primary treatment for meta-
static CRC. However, ~50%  of patients are resistant to 
f luorouracil‑based chemotherapy. In addition, the side 
effects of systemic chemotherapy, including neurotoxicity, 
myelotoxicity and gastrointestinal toxicity, may have a major 
impact on the quality of life of the patients and may lead 
to life‑threatening complications (3). Therefore, identifying 
effective strategies that predict response to chemotherapy are 
required. Using these strategies, patients that are predicted to 
not respond to chemotherapy may receive other potentially 
effective treatments as early as possible and avoid unneces-
sary side effects. Gene expression profiling is used to predict 
the clinical outcome of patients with CRC (10‑12). Previous 
studies have revealed that gene expression profiling may be 
used to predict cancer response to chemotherapy, including 
breast cancer and CRC (13‑15).

The aim of the present study was to develop a predictor 
classifier for response to fluorouracil‑based chemotherapy in 
patients with advanced CRC using microarray gene expression 
profiles of primary CRC tissues.
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Materials and methods

Data processing. The raw microarray data (CEL files) of three 
datasets [GSE52735 (16), GSE62080 (15) and GSE69657 (17)] 
and corresponding clinical data were downloaded from the 
Gene Expression Omnibus database (www.ncbi.nlm.nih.
gov/geo). The microarray data of the 3 datasets were based on 
the GPL570 Affymetrix Human Genome U133 Plus 2.0 Array 
platform (Affymetrix; Thermo Fisher Scientific Inc., Waltham, 
MA, USA). The GSE52735 set contained 37 advanced CRC 
samples treated with a fluoropyrimidine‑based chemotherapy 
regimen (specific chemotherapy regimens were not available). 
A total of 23 of the samples were classified as responders and 
14 samples were classified as non‑responders to the chemo-
therapy regimen according to Response Evaluation Criteria 
in Solid  Tumors (RECIST)  (18). The GSE62080 dataset 
contained 21 advanced CRC samples treated with the FOLFIRI 
regimen. A total of 9 samples were classified as responders 
and 12 samples were classified as non‑responders according 
to the World Health Organization (WHO) criteria (19). The 
GSE69657 dataset contained 30  advanced CRC samples 
treated with the FOLFOX4 regimen. However, the raw micro-
array data was available for only 16 samples. A total of 7 of 
these samples were classified as responders and 9 samples 
were classified as non‑responders according to RECIST. Two 
different evaluation criteria used in these three studies due 
to long time intervals between the studies, Previous studies 
have revealed that the RECIST criteria are comparable 
with the WHO criteria in evaluating the response of solid 
tumors (20‑23). Preprocessing and normalization of the raw 
data were analyzed using the ‘affy’ (version 3.8) package (24) 
in R (www.r‑project.org; version 3.5), using robust multi‑array 
average for background correction and quantiles for normal-
ization. Kernel and nearest neighbor averaging methods were 
used to impute the missing values using the ‘impute’ package 
(bioconductor.org/packages/impute; version 3.8) in R. The 
ComBat function in the ‘sva’ (version 3.8) package (25) was 
applied to remove batch effects. If one gene matched multiple 
probes, the average value of the probes was calculated as the 
expression of the corresponding gene. To build a robust predic-
tive classifier, the GSE52735 and GSE62080 datasets were 
used as the training set (n=58), while the GSE69657 dataset 
was used as the validation set (n=16).

Screening of differentially expressed genes (DEGs) and 
enrichment analysis. Following preprocessing of the 
raw expression data, the DEGs between responders and 
non‑responders in the training set were screened using the 
unpaired t‑test in the ‘limma’ (version 3.8) package (26) in R. A 
DEG was defined as |log2 fold change (FC)|≥0.263 and P<0.05. 
The Gene Ontology (GO; http://geneontology.org/) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG; https://www.
genome.jp/kegg/) pathway enrichment analyses of DEGs were 
performed using the ‘clusterProfiler’ (version 3.8) package (27) 
in R with a cut‑off of q<0.01.

Principal component analysis (PCA) prior to and following 
feature selection using the least absolute shrinkage and 
selection operator (LASSO) method. The expression values 
of DEGs in each sample were extracted. The LASSO 

logistic regression model analysis was performed using the 
‘glmnet’ package (CRAN.R‑project.org/package=glmnet; 
version 2.0‑16) in R. The LASSO method is used to select 
optimal features in high‑dimensional microarray data with 
a powerful predictive value and a low correlation between 
each other to prevent over‑fitting  (28). In the training set, 
the LASSO logistic regression model was used to select 
the optimal predictive markers. PCA using the expression 
profiles of the DEGs was performed prior to feature selection 
using the LASSO method. PCA was subsequently performed 
using the expression profiles of the optimal DEGs identi-
fied using by the LASSO method. Samples were plotted in 
two‑dimensional plots across the first two principal compo-
nents.

Feature selection using Boruta and random forest classifier 
construction. A lower‑dimensional model may reduce costs 
and is more likely to be used by clinicians (29). Following 
DEGs selection by the LASSO method, a feature selec-
tion was performed using the ‘Boruta’ package (www.
jstatsoft.org/article/view/v036i11; version 6.0.0) in R. Boruta 
is a random forest‑based feature selection method, which 
provides an unbiased and stable selection of important and 
non‑important attributes from an information system. A 
variable importance  (VIMP) measure may be calculated 
and visualized based on Boruta. In the current study, DEGs 
selected by Boruta were used to develop a gene‑based clas-
sifier for response to fluorouracil‑based chemotherapy in 
advanced CRCs. The random forest classifier was devel-
oped using the ‘randomForest’ package (CRAN.R‑project.
org/package=randomForest; version 4.6‑14) in R. The vali-
dation set (GSE69657) was used to confirm the robustness 
and transferability of the classifier. The performance of the 
classifier was assessed by accuracy, sensitivity (Se), speci-
ficity (Sp), positive predictive value (PPV), negative predictive 
value  (NPV) and receiver operating characteristic  (ROC) 
curves in the training and validation sets. The ROC curves 
were drawn and compared using the ‘pROC’ (version 1.13.0) 
package (30) in R.

Results

DEGs in responders and non‑responders and enrich‑
ment analysis. The training set included 32  responders 
and 26  non‑responders. According to the cut‑off criteria 
(|log2FC|≥0.263 and P<0.05), 791 genes were identified as differ-
entially expressed between responders and non‑responders. 
A total of 303 genes were upregulated and 488 genes were 
downregulated in responders. Functional enrichment analysis 
revealed that the biological process of DEGs were primarily 
involved in ‘cell mitosis’, ‘DNA replication’ and ‘cell cycle’ 
signaling pathways. The results of enrichment analysis are 
presented in Fig. 1.

PCA and feature selection using LASSO. For the first feature 
selection, LASSO logistic regression was performed using the 
expression data of DEGs in the training set. The group‑wise 
classifications in 10‑fold cross‑validations were computed as 
default. A total of 31 DEGs were identified as optimal genes 
(Fig.  2A) with non‑zero regression coefficients (Table  I). 



ONCOLOGY LETTERS  17:  5057-5063,  2019 5059

Fig. 2B presents the results of PCA prior to feature selection 
using LASSO and Fig. 2C presents the results of PCA following 
feature selection using LASSO. As demonstrated in Fig. 2C, 
responders and non‑responders are easily distinguished using 
the 31 DEGs selected by LASSO.

Features selection using Boruta and construct of the random 
forest classifier. The Boruta function was used to further 
select features among the 31 DEGs. A total of 13 genes were 
confirmed as important, 7 genes were rejected and 11 tenta-
tive genes remained (Table I). Fig. 3 presents the variables' 
importance. These 13 important DEGs included small muscle 
protein X‑linked, pleckstrin homology like domain family A 
member 1 (PHLDA1), prostaglandin reductase 2 (PTGR2), 
chitinase 1 (CHIT1), histone cluster 1 H2B family member c, 

formin homology  2  domain containing  3, OTUD6B 
antisense RNA 1 (head to head), cholinergic receptor nico-
tinic β1 subunit (CHRNB1), RPA interacting protein, DNA 
ligase 4 (LIG4), ASAP1 intronic transcript 2, small integral 
membrane protein 30 and c‑Maf inducing protein. A random 
forest classifier was constructed using these 13  important 
DEGs.

Performance of the gene‑based classifier. The accuracy of the 
13‑gene classifier was 0.930 in the training set and 0.810 in the 
validation set. Based on accuracy, Se, Sp, PPV, NPV and area 
under curve (AUC) values, the sample recognition efficiency of 
the classifier was high (Table II). ROC curve analysis revealed 
that the AUC was 1.000 in the training set and 0.873 in the 
validation set (P=0.227; Fig. 4).

Figure 1. Significantly enriched GO annotation and enriched KEGG pathways of differentially expressed genes. GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.

Figure 2. LASSO model and principal component analysis. (A) 10‑fold cross‑validation for tuning parameter selection in the LASSO model. (B) PCA prior to 
and (C) following LASSO variable reduction. LASSO, least absolute shrinkage and selection operator; PCA, principal component analysis.
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Discussion

Personalized treatment may improve the treatment outcome 
of patients with tumors  (31). In CRC, the gene expression 
levels of vascular endothelial growth factor (VEGF) and 
epidermal growth factor receptor (EGFR) provide the basis 
for selecting EGFR and VEGF inhibitor combinations (32‑36). 
Monoclonal antibodies against VEGF and EGFR have been 
approved for treatment of metastatic CRC in combination 
with 5‑FU‑based regimens (3). The identification of subsets 
of patients that respond to specific chemotherapy regimens 
remains a challenge (3). A previous study demonstrated that 
tumors with microsatellite instability (MSI) respond well to 
5‑FU‑based therapies; however, further studies are required to 
substantiate these results (37). Another previously published 
study suggested that MSI status does not affect the outcome 

of the treatment (38). Therefore, effective tools for predicting 
the outcome of chemotherapy are currently lacking. The 
present study identified 13 genes from 791 DEGs using two 
feature selection algorithms and developed a 13‑gene predictor 
classifier for response to fluorouracil‑based chemotherapy in 
CRC. The predictor classifier demonstrated high accuracy 
in the training and validation sets. The training set included 
two datasets from different centers, and the validation set was 
from an additional independent center. ROC curve analysis 
revealed that the AUC was 1.000 in the training set and 0.873 
in the validation set, and their difference was not significant 
(P=0.227). These results suggested that the classifier was 
robust. The study established a foundation for further research 
into personalized treatment of CRC.

Previous studies have attempted to identify a single 
biomarker to predict response to fluorouracil‑based chemo-
therapy in CRC (17,39‑42). However, there is currently no single 
biomarker that is routinely applied in clinical practice. CRC 
is a heterogeneous disease, which is compounded by changes 
in the molecular profile of the tumor as it progresses (3). An 
in vitro study demonstrated that the measurement of multiple, 
rather than single marker genes, may provide a more accurate 
assessment of drug response in colon carcinoma (43). Previous 
studies have been designed to identify a pattern of gene expres-
sion capable of predicting response to fluorouracil‑based 
chemotherapy in CRC (15,16). One study identified a set of 
14 genes for predicting response to the FOLFIRI regimen 
based on 21 samples  (15), and an expression profile of 7 
genes was identified in another study (16). Compared with 
the two aforementioned studies, the current study performed 
a comprehensive analysis of more samples (n=58) from 
two centers and validated the predictor classifier in an inde-
pendent dataset (n=16). Furthermore, to the best of the authors' 
knowledge, the current study is the first to construct a random 
forest classifier to predict response to chemotherapy in CRC. 

Table II. Performance of the 13‑gene classifier.

			   Positive	 Negative		  Area under
Cohort	 Sensitivity	 Specificity 	 predictive value	 predictive value 	 Accuracy	 the curve

Training set	 0.970 	 0.960 	 0.910 	 0.960 	 0.930 	 1.000 
Validation set	 0.860 	 0.880 	 0.750 	 0.880 	 0.810 	 0.873

Figure 3. Z score evolution during Boruta run. Green lines correspond to confirmed attributes, yellow to tentative, red to rejected ones; and blue lines 
correspond to respectively minimal, average and maximal shadow attribute importance.

Figure 4. Receiver operating characteristic curves for training and validation 
sets. AUC, area under the curve.
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Considering the limited ability of Cox regression analysis 
to process high‑dimensional data (44), it was not performed 
in the current study. A random forest algorithm was used to 
construct the classifier, which was subsequently validated with 
an independent dataset. The results obtained in the current 
study suggest that the robust classifier developed warrants 
further investigation.

Functional enrichment analysis revealed that certain 
DEGs identified in the present study are involved in DNA 
replication and cell cycle pathways; however, none of the 
13 genes were involved in these two signaling pathways. A 
previous study suggested that PHLDA1 may be associated 
with CRC progression (45). A previous study demonstrated 
that PTGR2‑knockdown gastric cancer cells rendered them 
more sensitive to cisplatin and 5‑FU compared with the 
PTGR2‑overexpressing cells (46). In addition, two variants 
of CHIT1, rs61745299 and rs35920428, may increase expres-
sion of the gene and have been associated with CRC (47). 
CHRNB1 may be a biomarker for the detection of relapsed 
and early relapsed CRC (48). In addition, LIG4 may mediate 
Wnt signaling‑induced radioresistance in CRC (49). With 
the exception of the aforementioned studies, the association 
between the 13 genes identified in the current study and 
CRC or chemotherapy has not been investigated. Therefore, 
it is not clear whether these genes are causal or merely 
markers for response to fluorouracil‑based chemotherapy 
in CRC.

Although the current study provides novel insights into 
the treatment of CRC, it has some limitations. The present 
study was based on a relatively small sample size; however, it 
is worth noting that the sample size in our study is relatively 
large compared with previous studies (15,16). Future studies 
are required to verify and improve the 13‑gene signature in a 
larger independent cohort of patients.

In conclusion, the current study identified a 13‑gene 
predictor classifier for the response to fluorouracil‑based 
chemotherapy in patients with advanced CRC.
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