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ABSTRACT

Introduction: Epithelial-mesenchymal transition (EMT) induces the loss of cell—cell interactions in
polarized epithelial cells and converts these cells to invasive mesenchymal-like cells. It is also involved in
tissue fibrosis including that occurring in some ocular surface diseases such as pterygium and in sub-
epithelial corneal fibrosis in limbal stem cell deficiency. Here, we examined the effects of the secretome
of human adipose-derived mesenchymal stem cells (AdMSCs) on EMT in human corneal epithelial cells
(CECs).
Methods: EMT was induced with transforming growth factor-p (TGF-f) in primary human CECs isolated
from the human corneal limbus. The effects of the AAMSC secretome on EMT in these cells or stratified
CEC sheets were analyzed by co-cultivation experiments with the addition of AAMSC conditioned-
medium. The expression of EMT-related genes and proteins in CECs was analyzed. The superstructure
of CECs was observed by scanning electron microscopy. Furthermore, the barrier function of CEC sheets
was analyzed by measuring transepithelial electrical resistance (TER).
Results: The AAMSC secretome was found to suppress EMT-related gene expression and attenuate TGF--
induced corneal epithelial dysfunction including the dissociation of cell—cell interactions and decreases
in TER in constructed CEC sheets.
Conclusions: The secretome of AAMSCs can inhibit TGF-B-induced EMT in CECs. These findings suggest
that this could be a useful source for the treatment for EMT-related ocular surface diseases.
© 2019, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

prolonged inflammatory state or excessive EMT leads to tissue
fibrosis in organs such as the liver, lung, pancreas, and skin [2—4].

Epithelial-mesenchymal transition (EMT) is a phenomenon in
which polarized epithelial cells are transformed into mesen-
chymal- or myofibroblast-like cells. This process plays a critical role
in embryonic development and tumor metastasis. It also contrib-
utes to tissue repair such as in wound healing [1]. However, a

Abbreviations: CEC(s), corneal epithelial cell(s); EMT, epithelial-mesenchymal
transition; MSCs, mesenchymal stem cells; MSC-CM, MSC-conditioned medium;
TGF-B, transforming growth factor-f.
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EMT also contributes to various eye diseases such as proliferative
vitreoretinopathy and posterior capsule opacification, a complica-
tion of cataract surgery [5—8]. It has been suggested that EMT is
involved in ocular surface diseases such as pterygium [9], corneal
subepithelial fibrosis [10], and Epstein—Barr virus (EBV)-associated
keratitis [11]. Furthermore, when EMT occurs in corneal epithelial
cells (CECs), it leads to disruptions in proliferation and the main-
tenance of homeostasis [12,13]. Therefore, the suppression of EMT
in the ocular surface might represent an effective treatment for
EMT-related ocular surface diseases to maintain homeostasis.
However, the detailed mechanism underlying EMT in these con-
ditions has not been elucidated, and anti-EMT treatment for ocular
surface diseases is not well established.
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Mesenchymal stem cells (MSCs) are multipotent cells that can
differentiate into three germ Ilayer-lineages such as the
mesodermal-lineage including osteoblasts, adipocytes, and chon-
drocytes [14]. MSCs also possess proliferative potential and thera-
peutic properties such as anti-inflammatory and
immunomodulatory effects [15,16]. Thus, these cells are a very
useful source for cell-based therapies. Indeed, MSCs have been
clinically applied for the treatment of various ailments such as
graft-versus-host disease (GVHD) and cardiovascular, neurological,
and autoimmune diseases [17]. Further, paracrine effects are
thought to be responsible for the therapeutic effects of MSCs [18],
which have been shown to suppress not only internal organ fibrosis
such as visceral fibrosis, but also scaring and fibrosis on body sur-
face tissues such as the skin, processes suggested to be mediated by
EMT [19—23]. MSCs exist in various tissues. In particular, there are
many reports of the effects of bone marrow-, adipose-, and um-
bilical cord-derived MSCs. Since Adipose tissue is easy to obtain, as
compared to bone marrow, human adipose-derived MSCs
(AdMSCs) are considered useful for practical applications of
regenerative therapy [24].

Accordingly, the aim of this study was to examine the effects of
the AAMSC secretome on EMT in the ocular surface by utilizing
primary human corneal epithelial cells (CECs). This is the first
report describing these effects.

2. Methods
2.1. Cell culture

Primary cultures of human CECs were established as previously
described [25]. CECs were maintained with CnT-PR (CELLnTEC,
Bern, Switzerland) with or without 20 ng/mL of recombinant hu-
man keratinocyte growth factor (KGF; Wako Pure Chemical In-
dustries, Osaka, Japan) and 10 pM Y-27632 (Wako) for monolayer
culture and DMEM:F12 (Life Technologies, Chesterfield, MO, USA)
supplemented with 2% B-27 supplement, 20 ng/mL KGF, and 10 uM
Y-27632 to reconstruct CEC sheets [26]. Recombinant human TGF-
B1 used for induction of EMT into CECs was obtained from Pepro-
tech (Rocky Hill, NJ, USA). Human AdMSCs were acquired from
PromoCell (Heidelberg, Germany) and maintained with MSCGM-
CD (Lonza) or Mesenchymal Stem Cell Growth Medium DXF (Pro-
moCell). For the preparation of AAMSC-conditioned medium (CM),
AdMSCs were cultured to 70—80% confluence in a T-75 flask. Sub-
sequently, medium was changed to fresh medium. After 24—72 h of
culture, the supernatant was collected, centrifuged at 300xg, and
stored at —80 °C prior to use.

2.2. Co-culture of AAMSCs with TGF-f-treated CECs

Human CECs were seeded in 24-well plates at a density of
5 x 10 cells/well. After 24 h of incubation, they were cultured
with CnT-PR containing 10 ng/ml of recombinant human TGF-§1.
After 4 days of culture, the medium containing TGF-B1 was
removed and changed to CnT-PR. Subsequently, 10,000 or 20,000
AdMSCs per insert were co-cultured with MSCGM-CD medium
using cell culture inserts (BD Falcon, Franklin Lakes, NJ, USA) for 2
days.

2.3. Quantitative real-time reverse-transcriptase PCR (qRT-PCR)

Total RNA was extracted from cells using QIAzol reagent (QIA-
GEN, Valencia, CA, USA). SuperScript III First-Strand Synthesis
System for qRT-PCR (Life Technologies) was then used to synthesize
cDNA. gRT-PCR was performed using an ABI Prism 7500 Fast
Sequence Detection System (Life Technologies) according to the

manufacturer's instructions. TagMan® MGB was used as described
in Supplemental Table 1.

2.4. Immunofluorescence staining

Cells or cell sheets were fixed with 4% paraformaldehyde (PFA),
washed three times with tris-buffered saline (TBS, TaKaRa Bio, Otsu,
Japan), and incubated with TBS containing 5% donkey serum and
0.3% triton X-100 (Sigma—Aldrich, St. Louis, MO, USA) for 1 h. They
were then incubated with primary antibodies (anti-VIM antibody,
Abcam, ab92547, 1:200; anti-CLDN1 antibody, Life Technologies,
374900, 1:500) overnight at 4 °C and stained with Alexa Fluor®-
conjugated secondary antibodies (Life Technologies) and Hoechst
33342 (Molecular Probes, Eugene, OR, USA). Stained samples were
observed using an Axio Observer D1 and LSM710 (Carl Zeiss,
Oberkochen, Germany). Images of three-dimensional CEC sheets
were established using Zen software (Carl Zeiss).

2.5. Scanning electron microscopy (SEM)

After culturing hCECs on culture inserts, cells were fixed with 2%
glutaraldehyde/2% PFA in phosphate-buffered saline (PBS) for 2 h at
4 °C. After washing three times with PBS, it was dehydrated with an
ethanol series (30%, 50%, 70%, 80%, 90%, 95%, and 99.5% ethanol)
and further treated with t-butyl alcohol. Cells on culture inserts
were dried in a freeze-drying device (JFD-320; JEOL Ltd., Tokyo,
Japan). Then, the bottom side of the membrane of the culture insert
was adhered to the sampling stage with carbon tape. The sur-
rounding membrane was cut off using disposable biopsy punches
resulting in removal of the surrounding plastic container of the
insert. The specimen pasted onto the sampling stage was subjected
to platinum coating using an auto fine coater (FCL8 1600; JEOL) for
30 s. Then, the sample was observed by SEM (JSM-6510LA; JEOL) at
20 kV.

2.6. Measurement of transepithelial electrical resistance (TER)

Human CECs were seeded onto 12-well cell culture inserts.
Electrical resistance was measured using the MilliCell ERS-2 (Mil-
lipore, Billerica, MA, USA) according to the manufacturer's
instructions.

2.7. Statistical analysis

Data are expressed as the means + SEM. Statistical analysis was
performed based on the Dunnett's test and Steel test, and statistics
were calculated using StatLight 2000 software (Yukms Co. Ltd.,
Tokyo, Japan).

3. Results

3.1. Co-culture with AdMSCs attenuates TGF-(1-induced EMT in
CECs

We first examined the effects of TGF-f1 on primary CECs
isolated from the human cornea. Consistent with previous re-
ports, TGF-B1 induced an EMT phenotype and abolished cell—cell
interactions (Fig. 1a and Supplemental Fig. 1). Next, we investi-
gated the effects of the AAMSC secretome on TGF-f1-induced
EMT in CECs. After inducing EMT with TGF-B1, CECs were co-
cultured with AdMSCs using cell culture inserts (Fig. 1b). For
the non-TGFB1-treated normal (Nor) and TGFB1-treated control
(Con) groups, the culture insert was not seeded with AdMSC, and
only MSC maintenance medium was added. Co-culture with
AdMSCs attenuated the TGF-Bl1-induced up-regulation of
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mesenchymal-related genes such as VIM, SNAI2, ACTA2, and CDH2
in CECs. Moreover, this also increased gene expression levels of
epithelial genes such as CLDN1, OCLN, KRT12, and CDH1 (Fig. 1c).
These effects on suppression of VIM and the increase of epithelial
genes were dose-dependent (i.e., cell number-dependent). Im-
munostaining results also showed that TGF-f1-induced EMT
phenotypes including increased expression of VIM and the mis-
localization of CLDN1 between cells were abrogated by co-
cultivation with AdMSCs (Fig. 1d). These results showed that
the AAMSC secretome could attenuate TGF-B1-induced EMT in
CECs.

3.2. AAMSC-CM treatment attenuates TGF-31-induced EMT in CECs

We next examined whether AAMSC-CM could also have an anti-
EMT effect on CECs. After treating these cells with TGF-B1, as
described previously herein, the medium containing TGF-B1 was
removed and AAMSC-CM was added at a 1:1 ratio with medium for
CECs (Fig. 2a). For the non-TGFp1-treated Nor and TGFB1-treated
Con groups, MSC maintenance medium, without cultured AdMSC,
was added. Similar to the results of the co-culture experiment, TGF-
B1-induced up-regulation of mesenchymal-related genes such as
VIM, SNAI2, ACTA2, and CDH2 was attenuated by the addition of
AdMSC-CM. This treatment also increased the expression levels of
epithelial-related genes such as CLDN1, OCLN, KRT12, and CDH1
(Fig. 2b). Immunostaining results also showed that the increased
expression of VIM and mislocalization of CLDN1 in CECs were
mitigated by ADMSC-CM treatment (Fig. 2¢). We further confirmed
that these changes in expression induced by TGF-§3 were alleviated
by AdMSC-CM treatment at the protein level (Supplemental Fig. 2).
These results clearly showed that AAMSC-CM could suppress EMT
in CECs.

3.3. The apical application of AAMSC-CM attenuates TGF-{31-
induced EMT in CEC sheets

Next, in addition to the influence of the AAMSC secretome on
TGF-f1-induced EMT in CEC monolayers, we also examined
these effects on confluent and stratified CEC sheets, which more
closely resemble the physiological corneal epithelium, and
analyzed EMT-related molecules three-dimensionally. We
cultured CECs using cell culture inserts until they were
confluent and then added TGF-B1 on both the apical and basal
sides of the culture insert to induce EMT. Next, AAMSC-CM was
added from the apical side (Fig. 3a). Whole-mount immuno-
staining results revealed that AMSC-CM could attenuate the
TGF-B1-induced up-regulation of VIM and down-regulation of
CLDNT1, especially on the apical side of the CEC sheet (Fig. 3b).
Images of CEC sheets constructed three-dimensionally using Z-
stacks are shown in Fig. 3c. From these results, it was confirmed
that, even when CEC sheets were structured three-
dimensionally, TGF-B1-induced increase in the expression of
VIM and decrease in the expression of CLDN1 could be allevi-
ated by the addition of AAMSC-CM.

3.4. AAMSC-CM restores the TGF-3-induced disruption of cell—cell
interactions and barrier function in CEC sheets

To further investigate the apical surface of the cornea sheet in
detail, we observed the ultrastructure of CEC sheets using SEM. We

found that TGF-B1 treatment abolished cell—cell interactions and
that AAMSC-CM treatment could attenuate this phenotype (Fig. 4a).
TGF-p is also known to decrease TER in corneal epithelial cells [27].
We therefore examined whether the decrease in TER induced by
TGF-B1 could be recovered by the AAMSC secretome. We found that
this treatment could also mitigate the decrease in TER observed in
TGF-B1-treated CEC sheets (Fig. 4b). These results suggested that
the AdMSC secretome could rescue the TGF-B1-induced disruption
of cell—cell interactions, which could contribute to the recovery of
barrier functions in stratified CEC sheets.

4. Discussion

The purpose of the present study was to examine the effects of
the human AdMSC secretome on EMT in CECs. We demonstrated
that TGF-B1-induced EMT phenotypes in CECs were attenuated by
this treatment.

TGF-B is one of the main inducers of EMT. Previous studies
have reported the effects of TGF-f on CECs using an SV40-
immortalized CEC line [28]. In this study, we investigated the
effect of TGF-f1 on primary CECs derived from human donors
under serum-free conditions. Consistent with this previous report,
the addition of TGF-B1 induced the dissociation of cell—cell con-
tacts and the up-regulation of mesenchymal-related molecules in
primary CECs. We also showed that co-culture with AAMSCs and
the addition of AAMSC-CM could attenuate these changes in
expression in CECs (Figs. 1 and 2). In co-culture experiments,
there was a tendency for the effect to increase in a cell number-
dependent manner. Epithelial molecules such as CLDN1 were not
decreased by TGF-B1 treatment at the mRNA level but were
decreased at the protein level at the timepoint of analysis, and
this was also attenuated by the AdMSC secretome (Supplemental
Fig. 2). CLDN1 also showed aberrant localization with TGF-B1
treatment. However, with AAMSC secretome administration, the
localization of CLDN1 at the cell—cell boundary was restored
(Figs. 1 and 2). Similarly, the addition of TGF-B1 to CECs increased
rather than decreased E-cadherin mRNA level (Figs. 1 and 2). We
showed that E-cadherin was reduced at the protein level by
treatment with TGF-f1 (Supplementary Fig. 1.). In the assay
shown in Figs. 1 and 2, TGF-f1 removal time after TGF-$1 treat-
ment was more than 24 h. During this period, there may have
been changes in expression status such as restoration of mRNA
expression. To understand the detailed expression mechanism of
such epithelial genes showing complex regulation in response to
TGF-B1, detailed analysis of the time course and effect of the
addition of components to MSC maintenance medium is required.
At the same time, the expression at the protein level should be
investigated in future studies on regenerative therapy.

We also showed that the AAMSC secretome was effective in
attenuating EMT in stratified CEC sheets that recapitulate physi-
ological conditions (Fig. 3). TGF-B1 also caused phenotypic
changes in addition to the expression changes in EMT-related
molecules in CECs. TGF-B1 induced the dissociation of cell—cell
interactions. Moreover, as reported using an immortalized CEC
line [27], TGF-B1 decreased the TER in CEC sheets. However,
administration of the AAMSC secretome rescued the dissociation
of cell—cell interactions and the decrease in TER (Fig. 4). Further,
the AdMSC secretome alleviated the expression of mesenchymal
factors, which were elevated by TGF-B1, and increased the
expression of epithelial factors that were not altered by TGF-f1.

Fig. 1. Co-culture with mesenchymal stem cells (MSCs) attenuates TGF-B1-induced epithelial-mesenchymal transition (EMT) in corneal epithelial cells (CECs). (a) Phase contrast
images of CECs with or without TGF-B1 treatment. Scale bar, 100 um. (b) Schematic of experimental method. (c) Gene expression analysis of EMT-related markers in CECs with or
without co-culture with AdMSC (10,000 or 20,000 cells/insert). Data are expressed as the means + SEM; n = 4 cell samples; *p < 0.05, **p < 0.01, and ***p < 0.001. (d) Immu-

nostaining for VIM (red) and CLDNT1 (green) in CECs. Nuclei, blue; scale bars, 100 pm.
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Fig. 2. Conditioned medium from Adipose-derived mesenchymal stem cells (AdMSC-CM) attenuates TGF-B1-induced epithelial-mesenchymal transition (EMT) in corneal
epithelial cells (CECs). (a) Schematic of experimental method. (b) Gene expression analysis of EMT-related markers in CECs. Data are expressed as the means + SEM; n = 6 cell
samples; *p < 0.05, **p < 0.01, and ***p < 0.001. (c¢) Immunostaining for VIM (red) and CLDN1 (green) in CECs. Nuclei, blue; scale bars, 100 um (upper panels) and 50 pm (lower
panels).
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Fig. 3. Conditioned medium from Adipose-derived mesenchymal stem cells (AdMSC-CM) attenuates TGF-B1-induced epithelial-mesenchymal transition (EMT) in corneal
epithelial cell (CEC) sheets. (a) Schematic of experimental method. (b) Immunostaining for VIM (red) and CLDN1 (green) in CEC sheets at the apical and basal region. Nuclei, blue.
Scale bar, 50 pm. (c¢) Immunostaining for VIM (red) and CLDN1 (green) in whole-mounts of CEC sheets constructed as a three-dimensional image. Nuclei, blue. Scale bars, 20 pm.

3D whole mount

This caused the TER to be higher with AAMSC secretome treat-
ment compared to that observed in the untreated controls. This
improvement in phenotype when compared with the TGF-f1-
untreated group is consistent with the results in Figs. 1 and 2 that
show that AdMSC secretome increased expression of epithelial
genes when compared with the TGF-B1-untreated Nor group.
These results suggest that the AAMSC secretome increases the
expression of epithelial genes and molecules responsible for
barrier function of CECs, with or without TGF-f1 treatment, in

Control

hAdMSC-CM

addition to suppressing EMT. The barrier of the corneal epithe-
lium has an important function and protects against invasion by
pathogens. The pathways of substance permeation are mainly
paracellular and transcellular. Tight junction protein complexes
and the mucin layer are involved in the former and latter
pathway, respectively [29]. The AdMSC secretome was effective in
strengthening tight junctions and repairing abnormalities in
cell—cell interactions, which are critical for the barrier function of
the corneal epithelium.
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The results are presented as the means + SEM, n = 4 cell samples. **p < 0.01.

As EMT is known to be involved in fibrosis, it could be that
some of the effects of MSCs are meditated by suppressing EMT.
Actually, MSCs were found to exert an EMT-inhibitory effect on
peritoneal mesothelial cells and the human liver [19]. Regarding
the application of MSCs to the ocular surface, its efficacy has been
proven using in vivo models such as alkali injury [30,31], dry eye
[32], and limbal stem cell deficiency [33], and also dry eye in
patients with chronic graft-versus-host disease via intravenous
injection [34]. The MSC secretome has anti-inflammatory and
anti-angiogenic effects on the cornea [35]. A previous report also
showed that CEC damage induced by ethanol can be alleviated by
the MSC secretome, and that these therapeutic effects are
enhanced by pre-treating MSCs with inflammatory cytokines such
as TNF-a [36]. TSG-6 has been reported to be an active compo-
nent in the MSC secretome [37,38]. The effect of suppressing EMT

in CECs, revealed in this study, is expected to lead to therapeutics
based on the MSC secretome. Further studies are needed to verify
the efficacy of the MSC secretome using in vivo disease models
and to elucidate the underlying mechanism. The MSC secretome
is expected to have multiple effects, as previously reported. This
cell-free therapy might be associated with fewer safety concerns
and could be simply administered as eye drops. Thus, the MSC
secretome has great potential for the treatment of ocular surface
diseases. However, there are also some obstacles. One is diffi-
culties associated with standardizing ingredients. If we can
identify the active component or surrogate markers responsible
for the therapeutic effects of the secretome, such as TSG-6, HGF,
or BMP7, this will accelerate the development of such therapeu-
tics [39,40].



S. Shibata et al. / Regenerative Therapy 11 (2019) 114—122

5. Conclusions

This is the first study to report that the AAMSC secretome can

suppress EMT in CECs. This finding demonstrates usefulness for the
administration of the AAMSC secretome as a cell-free treatment
and suggests a novel mechanism through which MSCs could act on
EMT-related corneal diseases induced by elevated TGF-f1.
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