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The use of antibiotic growth promoters (AGPs) has historically been the most important

prophylactic strategy for the control of Necrotic Enteritis (NE) caused by someClostridium

perfringens toxin types in poultry. During the last five decades, AGPs have also been

supplemented in feed to improve body weight gain and feed efficiency as well as to

modulate the microbiome (consisting of microbes and their genes both beneficial and

potentially harmful) and reduce enteric pathogens, among other benefits. New regulatory

requirements and consumer preferences have led to strong interest in natural alternatives

to the AGPs for the prevention and control of illnesses caused by enteric pathogens.

This interest is not just focused on the direct removal or inhibition of the causative

microorganisms but also the improvement of intestinal health and homeostasis using a

range of feed additives. A group of promising feed additives is short- and medium-chain

fatty acids (SCFA and MCFA, respectively) and their derivatives. The use of SCFA and

MCFA, including butyric, caproic, caprylic, capric, and lauric acids, has shown strong

effects against NE in broilers both at experimental and commercial levels. These fatty

acids also benefit intestinal health integrity and homeostasis. Other effects have also been

documented, including increases in intestinal angiogenesis and gene expression of tight

junctions. Chemical modifications to improve stability and point of release in the intestine

have been shown to improve the efficacy of SCFA and MCFA and their derivatives. The

aim of this review is to give an overview of SCFA, MCFA and their derivatives, as an

alternative to replace AGPs to control the incidence and severity of NE in poultry.

Keywords: intestinal homeostasis, intestinal health, medium-chain fatty acids, short-chain fatty acids,

alpha-monoglycerides, clostridium perfringens, necrotic enteritis, antibiotic growth promoters

INTRODUCTION

Necrotic enteritis (NE) is a poultry illness caused by toxin-producing strains of Clostridium
perfringens (CP) type A, type C and type G (1). NE is a pathology of global concern, with important
consequences for flock productivity and economic viability (2). The total cost of NE outbreaks
worldwide has been estimated to be over 2 billion dollars annually (3, 4). NE can present itself
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as a sudden increase in mortality or simply as a subclinical illness
(2). CP is a normal inhabitant of the poultry gastrointestinal tract
(GIT), although it does not always lead to NE. As an illness,
NE is multifactorial requiring certain predisposing factors for
its development, including some not completely known specific
diet components (5), poor management leading to stress (6), and
the presence of other intestinal pathogens like coccidia (Eimeria
spp.) (7), Salmonella (Salmonella Typhimurium) (8) and Avian
Pathogenic Escherichia coli (9). For example, components of the
diet including b-glucans, mannans, cellulose, and lignin that
cannot be digested by the animal can increase the viscosity of the
intestinal contents, and can promote the development of NE (10).
In addition, high concentrations of diet protein of animal-origin,
such asmeat and (or) fishmeal are associated with a higher risk of
NE. The association of these diet ingredients with NE is primarily
due to the higher potential for undigested nutrients reaching
the lower GIT and becoming a substrate for pathogenic bacteria
such as CP and altering the microbiome of the chicken (11, 12).
Other dietary changes, or increases in stocking density and rapid
growth can also cause stress, leading to increased inflammation
and immune activity, which can make animals more susceptible
to infections like coccidiosis (6, 13, 14).

Eimeria acervulina and E maxima infection make vulnerable
to NE through the induction of local T cell-mediated
inflammatory outcomes that enhance intestinal mucogenesis
resulting in increased water, mucus content in fecal material
leading to diarrhea (15). A possible relation between coccidial-
induced mucogenesis and the NE outbreaks was supported in
a pig model of total parenteral nutrition (16). This nutritional
model induces small intestinal inflammation with concomitant
increase of acidomucin goblet cells and density of mucolytic
bacteria such as CP similar to intestinal coccidiosis in the
chicken. Mucin, the primary protein component of mucus, is
an ideal substrate for the proliferation of CP, as this bacterium
has chitinase which is involved in mucine degradation (17, 18).
On the contrary, mucus may exert a protection, during in vivo
conditions, in the ceca against Campylobacter jejuni avoiding
the bactericidal effects of medium chain fatty acids (MCFA) in
Broilers (19).

Since the 1980s antibiotic growth promoters (AGPs)
have been utilized widely in poultry diets to improve
performance and feed conversion (20). They have also
been utilized to protect animals from the adverse effects of
enteric microorganisms (pathogenic and/or opportunistic)
(21) as well as to modulate inflammation (22). Reports
shows that 24.6 million pounds of antimicrobials are used
for non-therapeutic purposes in chickens, cattle, and swine,
compared with just 3.0 million pounds used for human
medicine (23). Estimations by the pharmaceutical industry-
sponsored Animal Health Institute are more conservative,
suggesting that of 17.8 million pounds of antimicrobials
used for animals, only 3.1 million pounds are used non-
therapeutically (23). Antibiotics have come under increasing
scrutiny by some scientists, consumers, and government
regulators due to the potential development of human
pathogenic multi-drug-resistant bacteria after prolonged
use (24).

The control of NE in particular has been based on the use of
AGPs and ionophore anticoccidials. In some regions including
the United States and Asia, ionophore anticoccidials and AGPs
are used in combination. Therefore, there is an urgent need to
develop alternative strategies and interventions that allow for the
management of NE from a control and prevention perspective.

ETIOLOGICAL AGENT

The etiological agent of NE is NetB toxin-producing CP, a Gram-
positive non-motile rod bacillus that forms subterminal spores.
It is a strict anaerobe, although, these bacteria can survive in
the presence of oxygen and/or in low superoxide concentration,
which makes it an anaerobic aero-tolerant bacillus (25). CP is
mainly found in the environment and in the GIT of humans,
mammals and birds as a part of normal intestinal microbiota
(26). However, under certain predisposing conditions, CP can
act as a potent pathogen causing a variety of histotoxic and
enteric diseases in humans, pigs, sheep, cows, and birds (27).
CP produces at least 20 different toxins (28, 29) and a new
classification has been proposed into the 7 toxigenic types A to
G based on the combination of 6 exotoxins known as alpha,
beta, epsilon, iota, CPE (Clostridium perfringens enterotoxin) and
NetB (toxin related to necrotic enteritis) produced by the bacteria
(30). In addition to the above six toxins, CP produces several
hydrolytic enzymes and other toxins including lecithinase,
hyaluronidase, collagenase, dinases, sialidases (affecting sialic
acid in the host cell membrane), amylase, and hemolysin
(perfringolisin or PFO or theta toxin) (31).

PATHOGENICITY

NE occurs when CP proliferates in high numbers in the GIT
and produces extracellular toxins, resulting in necrotic lesions
which causes increased mortality, rapid loss in performance as
well as severe necrosis of the intestinal mucosa (32, 33). In recent
years it has been suggested that the pore-forming NetB-positive
CP is probably the main cause of NE in poultry (34). In fact,
CP NetB-toxin has been reported to induce NE without the
presence of alpha-toxin (35). The importance of NetB in NE
was demonstrated when a NetB-targeted mutant of a virulent CP
chicken isolate was constructed by homologous recombination
and did not cause NE in an experimental chicken model and
virulence was restored when the gene was reintroduced into the
same strain (36). The cause of tissue damage and cell death
appears to be similar to that caused by many other pore-forming
toxins in that the pores formed by NetB allow the free flow of
ions such as Na+, Cl−, and Ca2+ which can lead to osmotic cell
lysis (37). However, the mechanism of cell death has not been
conclusively elucidated for this toxin.

CONTROL OF NE IN BIRDS

Control strategies that can be utilized to manage NE include
reduction of infection pressure of pathogens, boosting of
the immune response and nutritional strategies using specific
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feed additives. Pathogen reduction strategies generally involve
establishing effective biosecurity at the farm site, use of AGPs,
and longer down-time between flocks as well as strict cleaning
and disinfection protocols.

AGPs have been used as an effective tool to improve animal
performance because they positively modify the GIT microbiota,
decreasing bacterial fermentation, reducing the thickness of the
GIT wall and suppressing bacterial catabolism (38). All of these
mechanisms potentially lead to improved nutrient availability as
well as contribute to the health and performance of the bird (20).
Thus, dietary AGPs not only improve poultry growth and feed
conversion ratio, can but also help control outbreaks of enteric
diseases (3).

Prior to the discovery of the NetB toxin, vaccination was
focused on toxins thatmay not have been associated withNE, e.g.,
α-toxin (39). Therefore, the vaccines had only limited efficacy in
controlling NE. On the other hand, coccidiosis vaccination has
been used to protect birds for the occurrence of NE (40, 41),
given that coccidiosis is one of the predisposing factors (3).
However, most NE experimental models are based on using oral
inoculation of coccidia with about 70.000 and 5.000 sporulated
oocyst per bird of E. acervulina and E. maxima respectively, in
non-vaccinated animals at day 7 of age (42, 43). This Eimeria
(E. acervulina and E. maxima) vaccination has been shown to
cause mucogenesis and intestinal damage favoring the growth
of CP resulting an NE lesions (15, 44). However, protection
of birds against NE was partially achieved by vaccination
with recombinant NetB (rNetB) or other antigen-related or
combination vaccines but further research and development is
needed if full protection is to be achieved (45).

NATURAL CONTROL ALTERNATIVES

Nutritional mitigation strategies have been widely used to
reduce enteric diseases such as NE, with a focus on intestinal
homeostasis (46). Some of the nutritional interventions that
have shown potential for improving intestinal health include the
inclusion in diets of short chain fatty acids (SCFA) andMCFAand
their derivatives, prebiotics, probiotics, essential oils, vaccination,
enzymes, and phytobiotics in poultry diets (1, 6, 47, 48).

SHORT AND MEDIUM-CHAIN FATTY
ACIDS

Organic and inorganic acids are widely used in both rawmaterials
and finished animal feeds to inhibit bacterial growth as well as
enteric pathogens. The mode of action of these acids is based on
the basic principle that undissociated organic acids (non-ionized,
more lipophilic) can penetrate the bacterial cell wall triggering
an ionization of fatty acids, which results in disruption of the
normal physiology of certain types of bacteria (49–51) including
an increase in fluidity, solubility, permeability, and instability of
the bacterial membrane (52, 53). Specifically, an in-vitro study
showed that E.coli was negatively affected by the presence of
acetate. In a modeling study based on the impact of weak
acids (Benzoic, Nitric and Sorbic) on yeast the mechanisms of

inhibition of the yeast are defined rapid diffusion of undissociated
molecules through the membrane followed by these molecules
once inside the cells releasing protons resulting in cytoplasmic
acidification and reduced growth. In an in vitro study, 100%
of Pseudomonas aeruginosa in a biofilm was killed by acetic
acid (51). During these activities, the detergent properties of
the fatty acids play a key role in preventing biofilm assembly
(54). After that, the bacteria inner fluid leak into the outside
of the cell, inhibiting growth and causing bacterial death (55).It
has been proposed that the undissociated fatty acids, once they
are inside of the bacteria, an intracellular acidification occurs,
which adversely affects their amino acids and enzymes (56,
57). In addition, MCFA inhibit bacterial toxin production and
expression of other virulence factors by interfering with signal
transduction (58, 59). The effect of these acids is both bactericidal
(killing) and bacteriostatic (growth-inhibiting) depending on the
concentration, synergism among them, and target bacterium
(60, 61). The acids most commonly used in diet supplementation
for the control of microorganisms are formic acid, benzoic acid,
citric acid, carboxylic acids (all SCFA) and their salts and as well
as someMCFA including Caproic (C6:0), Caprylic (C8:0), Capric
(C10:0) and Lauric acid (C12:0) (62, 63).

Although important health benefits of SCFA and MCFA
have been identified in in-vitro models, direct addition of these
compounds in animal feed had been limited due to their pungent
odor and unpleasant taste. New products have been developed
through the formation of calcium and/or sodium salt with the
fatty acids or esterification of these acids prior to addition to
feed. Esterification has an important advantage as the esterified
SCFA andMCFA escape gastric digestion thus reaching the small
intestine where they can exert their effect (61, 64). When these
acids, in salt or esterified form are fed to animals, positive effects
on growth performance, intestinal microbial growth and health
status of the animals are seen (65). The potential effect of SCFA
and MCFA without any protection would be limited because of
prompt absorption and metabolism or both in the gastric area of
the intestinal tract.

An important factor for an organic acid to control pathogens
in the animal is the pH of the digesta in different regions of the
GIT. For example, in the poultry GIT, the passage of organic acids
through the proventriculus is critical because of the effect of pH
on the dissociation of these acids (66). The pKa value of the acid
is the pH at which 50% of the acid appears in its undissociated
form (water-soluble molecule) and 50% in its dissociated form
(fat-soluble molecule). This balance changes depending on the
pH of the medium. The pKa value determines the capacity of an
acid to get close to bacteria, as well as determining whether it is a
pH-reducing or antimicrobial acid (Table 1).

MCFA have a higher pKa value than other organic acids, so
they are more effective in controlling microbial growth than
in reducing pH. The higher the pKa value and the smaller the
difference between the acid’s pKa and the pH in specific area of
the GIT (proventriculus, gizzard, small intestine, ceca, colon),
the more the balance will shift to the undissociated form and the
greater the antimicrobial effect (68). SCFA andMCFAwill remain
mostly undissociated in the acidic environment of the upper
gastrointestinal tract (69). Undissociated free fatty acids can
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TABLE 1 | pKa values for different organic acids with potential antimicrobial

capacity (67).

Acid Classificationa Chemical name pKa

Acetic SCFA Acetic acid 4.76

Propionic SCFA 2-propanoic acid 4.88

Butyric SCFA Butanoic acid 4.82

Caproic SCFA 1-Hexanoic acid 4.88

Caprylic MCFA 1-Octanoic acid 4.89

Capric MCFA Decanoic acid 4.90

Lauric MCFA Dodecanoic acid 5.30

aClassified as SCFA ≤ 6 carbons; MCFA ≥ 7–12 carbons.

readily cross the cell membrane of the pathogens and exert their
bactericidal activity more easily in the whole GIT and not only
in the proximal area (70). Additionally, the efficacy of SCFA and
MCFA may be enhanced when supplied in their monoglyceride
forms. The reason for this is that these fatty acids are not absorbed
in the upper intestine and would not be released as free fatty
acids without lipase activity that occurs in the duodenum, and,
hence, might have higher bactericidal activity in the distal part of
the intestine (i.e. hindgut). Given their molecular structure and
supposed undissociated character, monoglycerides of MCFA are
assumed to have antibacterial potency which is less pH dependent
when compared to their corresponding free fatty acids (71).

However, some studies have shown no consistent effects of
SCFA and MCFA. For example, the supplementation of 400mg
per ton of feed of Lauric acid did not reduce NE occurrence
when in a model of co-infection with netB-positive CP and
multi-species Eimeria was applied to induce NE (72).

ANTIMICROBIAL ACTIVITY OF SCFA OR
MCFA AND THEIR DERIVATIVES (ALFA
MONOGLYCERIDES)

Non-dissociated and non-polar acids pass more efficiently
through the liposoluble membrane of the bacteria. Once
inside the bacteria, the acid dissociates, releasing hydrogen
ions (protons), drastically reducing the intracellular pH of the
microbe. This decrease in pH causes the bacteria to try and
protect itself by expelling those protons which is an energy
demanding process (73). If the required expenditure of energy is
high, it can lead the death of the bacteria. Concurrently, the newly
dissociated acid inside the microbial cell also have antimicrobial
activity by interfering with gene transcription and subsequent
protein synthesis, which affects the capacity of the bacteria to
multiply and its ability to infect the intestinal mucosa (24, 74).

In addition to the need to be present in their undissociated
form, another characteristic of fatty acids, both in free and salt
forms, is their rapid intestinal absorption, which is closely related
to their solubility in the watery intestinal content. MCFA and
SCFA are quite soluble and as a result tend to diffuse directly
into enterocytes, showing little dependence on bile salts or other
emulsifying substances (3). This rapid absorption drastically

reduces the presence of acids in the intestine, especially in the
lower GIT. To increase the presence of these acids in the distal
portion of the GIT, high inclusion levels in the diet are required
with more than 0.5–1% diet inclusion often necessary to ensure
antimicrobial activity in the lower tract (75). To minimize rapid
intestinal absorption in the upper intestine, encapsulation in a
hydrogenated lipid matrix (3, 76) slows the release of these acids
in the GIT. The action of endogenous pancreatic lipases on the
lipid-based encapsulation allows for a slow release of the acids
contained inside. However, it is difficult to optimize the balance
between degradation of the lipid matrix along the small intestine
as it will depend, in large part, on levels of lipase secreted by the
animal (77, 78). The goal is to balance the rate of degradation of
the encapsulation matrix such that an effective amount of acid
reaches the distal intestine while minimizing the amount of acid
remaining to be eliminated in the excreta (79).

1-α monoglycerides (esterified adducts of a fatty acid and
a glycerol molecule) can be formed with several organic acid
including SCFA andMCFA. The linking of the acid to the glycerol
occurs at the first position of a glycerol molecule via an ester
bond. The success of alpha-monoglycerides lies in this unique
molecular structure. The molecules are pH independent and less
susceptible to enzymatic breakdown, which makes them active in
the entire GIT. Research shows that alpha-monoglycerides have
a much stronger antimicrobial effect compared to conventional
organic acids (73, 80, 81). The amphipathic monoglycerides form
micelles that penetrate the cell membrane and alter membrane
permeability (82). This is explained by their mixed character
(water and lipid soluble) leading to their entry through the
bacterial membrane. SCFA 1-α monoglycerides can penetrate
through the aquaglyceroporins in the bacterial wall (Figure 1).
These are protein structures that act as channels allowing
the entry of glycerol, which is used by the bacteria as an
energy source.

MCFA 1-α monoglycerides disrupt the phospholipid
membrane of pathogens forming micelles at lower
concentrations than MCFAs, which helps to explain why
monoglycerides are often more biologically potent than other
types of SCFA and MCFA. For some bacteria the longer-chain
acids or longer-chain monoglycerides may be more effective
(for example, C12 may prove to be more effective than C10
or C8), but with other types of bacteria the situation may
be the opposite. (84). For example, the C12 monoglyceride
(glycerol monolaurate, abbreviated as GML) has a lower critical
micelle concentration (CMC, defined as the concentration of
surfactant above which micelles form) value (60 µmol/L at
pH 7.4) and typically greater potency than both the C12 fatty
acid (lauric acid; CMC of 900 µmol/L at pH 7.4) and C10
monoglyceride (glycerol monocaprate; CMC of 600 µmol/L at
pH 7.4) (85). Another important consequence of MCFAs and
monoglycerides targeting pathogenic membranes is that it is
more difficult for susceptible pathogens to develop resistance
to these compounds. It is generally acknowledged that there
is a very high barrier for pathogens to develop resistance to
fatty acids and monoglycerides (80, 86). This antimicrobial
activity has been confirmed for different SCFA and MCFA
monoglycerides, which are effective against intestinal pathogens
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FIGURE 1 | Proposed mode of action of SCFA and MCFA Monoglycerides. Alpha-monoglycerides can pass through the GIT without dissociating (as a by-pass effect)

since they are linked to a glycerol. To carry out their antimicrobial functions, FA must penetrate the bacterial membrane and dissociate within the bacteria.

Alpha-monoglycerides are absorbed by the bacterium through membrane proteins called aquaporins, which are selective toward glycerol due to its energetic capacity.

Once they are inside the bacterium, the FA dissociates from the glycerol likely under the effect of specific enzymes (bacterial lipase), releasing its cationic (H+) and its

anionic (A–) fraction (83). As the bacterium does not have a nuclear membrane, the nucleic acids are free in the cytoplasm and the anionic portion of the acid interacts

directly with them, affecting the processes of translation, transduction, and replication. Bacterial pathogenesis depends on the expression of virulence factors that are

encoded at the DNA, and those depend on transduction and translation mechanisms, therefore there would be a negative impact on the pathogenic capacity and on

the expression of resistance mechanism in microorganisms (58, 59, 76). On the other hand, the cationic fraction (H+) of the acid decreases the internal pH of the

bacterium, denaturing proteins and affecting the enzymatic activity. The catabolic activity of the enzymes depends on the pH, therefore, if the pH decreases, the

isoelectric point needed for the catabolic activation is modified and the metabolism of the bacteria decreases, leading to bacteriostasis (73). To counteract the

decrease in pH, the bacterium tries to remove the hydrogen ions through membrane protein complexes (ATPases) that lead to significant energy expenditure.

such as Salmonella Typhimurium, E.coli, Campylobacter jejuni,
and Clostridium spp (62, 79, 86). An interesting effect was
shown with the inclusion of 3 mg/kg of Caproic acid to the
feed of Broiler Chickens which suppress the expression of
Salmonella pathogenic genes required for invasion of host cells
as well as decreasing the amount of bacteria (87). It was also
reported that the application of an emulsion mixture of MCFA
(Caproic, Caprylic, Capric and Lauric acids) in drinking water
at 0.4% vol/vol decreased the susceptibility to colonization and
prevented Campylobacter jejuni survival (88).

Minimum inhibitory concentrations (MICs) are defined as
the lowest concentration of an antimicrobial that will inhibit the
visible growth of a microorganism after overnight incubation
(89) and are considered the “gold standard” for determining
the susceptibility of bacteria to the antimicrobials and recently
has been used to test natural compounds as replacement for
antibiotics. When evaluating the antimicrobial effect of various
organic acids in vitro, MCFA showed lower minimum inhibitory
concentrations (MIC) compared to other fatty acids such as
butyric acid (Table 1). In an experimental in vitro model of NE
in broilers, lauric acid, butyric acid and essential oils (eucalyptus,

clove with its active ingredient eugenol and components of
essential oils such as thymol, carvacrol and cinnamaldehyde)
were tested individually, it was shown that lauric acid had
antimicrobial activity against CP with a MIC of 0.063 mg/mL
compared with butyric acid of 6.88 mg/mL (1).

When tested in vivo in Broiler Chickens, killing or inhibition
of CP was associated with the prevention of intestinal injuries (1).
These researchers also showed that butyrate did not inhibit CP,
although butyrate has been reported to be a stimulant of intestinal
villus growth (90). Butyrate is a preferred energy-providing
substrate over glucose and glutamine for colonic epithelial cells
and may account for approximately 70% of the total energy
consumption of the colonocytes (91). Other documented effects
of butyrate (in a Caco-2 cell culture model) are increase cell
proliferation in the small and large intestine (92, 93), and enhance
piglet intestinal barrier associated with its role in facilitating tight
junction assembly (90). Overall, the combination of butyric acid,
MCFA, and essential oils reduces the incidence of gross lesions
and promotes intestinal mucosal integrity in the control of NE.

However, research has shown better results using a mix of
organic acids (consisting of Formic, Lactic, Propionic, Butyric,
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TABLE 2 | MIC in mg/L (+SD) of various organic acids and their derivatives

against Clostridium perfringens strain ATCC strain 12,915 (control strain

recommended by the British Society for Antimicrobial Chemotherapy-BSAC) (62).

Compound MIC in mg/L (±SD) against Clostridium perfringens*

Butyric acid 1,200 (±400)

Valeric acid 1,300 (±700)

Sodium Formate 18,800 (±7,100)

Monopropionin 11,300 (±6,400)

Monobutyrin 2,600 (±1,300)

Monovalerin 3,100 (±1,200)

Monolaurin 300 (±400)

MIC, Minimum inhibitory concentration. *Clostridium perfringens ATCC 12,915.

Acetic, Citric, Sorbic and Benzoic acids) used in comparison
with MCFA blends included in feed at a 0.2%. This study
pointed out that organic acids improved the ceca environment,
beneficial microorganism (numbers and species variety of
probiotic bacteria in the ceca) more so than MCFA and that feed
to gain ratio over the whole production cycle (1 to 42 d of age)
was better in Broilers fed the organic acids as compared to those
fed the MCFA (94).

The antimicrobial activity of organic acids and their
derivatives against several gram-negative and gram-positive
bacteria including CP were reported in an in vitro trial (62). The
MICs in mg/L (±SD) of the organic acids and their derivatives
against CP strain ATCC 12,915 are shown in Table 2 for butyric
acid, valeric acid, and monobutyrin and monolaurin against CP
(62). The results suggested that valeric and butyric acid have
similar antimicrobial activity against gram-negative and gram-
positive bacteria. The mode of action of these acids is based on
their ability to penetrate the bacterial cell membrane and acidify
the cell cytoplasm and thus inhibiting bacterial growth. In vitro
conditions may be affected by buffering capacity of the solution
that contains the free acids (Butyric and Valeric). The solution
used for MIC determination in this study (41) had a low pH and,
in those conditions, the acids perform well.

Some combinations of encapsulated organic acids blended
with essential oils were assessed to mitigate NE, including Malic,
Fumaric, Capric, Caprylic, Caproic and Lauric acid as well as
calcium Butyrate, as sources of SCFA and MCFA in Broiler
Chickens. In a study, recycling litter was used as a challenge,
with this litter selected from a commercial poultry flock there
was clinical NE outbreaks was diagnosed (95). These researchers
reported that the supplementation with calcium Butyrate plus
essential oils (Cinnamaldehyde, Carvacrol and Thymol (8:1:1
parts of each) as well as a blend of organic acids (Fumaric and
Citric acid) and MCFA (Capric, Caprylic, Caproic and Lauric
acid) plus calcium Butyrate ameliorated the negative effects
of a NE challenge on performance and mortality (95). These
researchers found a dose was important as high doses were
detrimental to animal performance.

The efficacy of SCFA in combination with high doses ofMCFA
has been shown to be more effective in improving performance
parameters in a NE challenge model in Broiler Chickens.

(96). Moreover, a monoglyceride blend of MCFA (Butyric,
Caprylic and Capric acid) enhanced the overall feed efficiency
of birds compared with the non-supplemented group in a phase
dependent effect. Higher doses (0.2%) of monoglyceride MCFA
supplementation appear to be beneficial in grower phase (d
10–24) and low doses (0.075%) improved the performance in
the finisher phase (d 24–35) (96). In another study, a blend of
Monoglyceride of MCFA (Butyric, Caprylic, and Capric acids)
and buffered Formic acid, used at 0.03 to 0.05% inclusion rate in
the diet, showed the potential to improve intestinal health and
reduce the mortality caused by NE induced by inoculation of
a blend of field isolated Eimerias (E.acervulina, E.maxima and
E.brunetti) followed by a CP challenge (97).

Other researchers have evaluated individual MCFA
monoglycerides. Valeric acid (C5) was tested in a NE challenge
trial (Coccidia vaccine follow by CP) (98). They demonstrated
that low doses of Valeric acid (0.5 and 1.5%) improved
performance but did not decrease NE lesions. They also showed
that Valeric acid positively affected the morphology of the
intestinal mucosa (98). The effects of Lauric acid, a MCFA, on
induced NE was not effective in reducing the incidence and
severity of NE (72). This contrasts with a previous study showing
that the same inclusion of Lauric acid decreased NE incidence
(from 50 to 25%) compared with an uninfected untreated
group (1).

ROLE OF THE MICROBIOTA IN CONTROL
OF NE

As mentioned elsewhere in this review, other microbes can
have an important role in an NE mitigation and prevention
strategy. The acquisition of a diverse, stable microbiome during
development is very important in resisting endemic challenges
such as NE. The development of a healthy microbiome can
be aided in many ways through nutrition, water quality, and
other management choices. While the feed can be a source of
microbes for the GIT, many bacteria found in common feed
substrates are not ideally suited to long term survival in the GIT.
Bacteria that aid in the development of a healthy microbiome
can be supplemented with probiotic feed additives. The variety
of probiotics available in the poultry industry is too large to cover
in this review; however, some have shown promising benefits in
the reduction of the incidence and severity of NE (99, 100). In
addition to supplementation through the diet, the environment
can be an important factor in microbiome-mediated resistance to
NE. Studies evaluating the recycling or reuse of litter in poultry
barns have demonstrated lower levels of toxin-producing CP in
the ileum of broilers on used litter vs. fresh (101, 102), suggesting
the contribution that previous flocks can have in helping in the
development of a balanced and healthy microbiota in chicks.

The extent to which other GIT microbes affect or are affected
byNE is still under investigation. It has been reported that even in
the absence of clinical NE, the addition of predisposing factors of
NE such as high levels of fishmeal and non starch polysaccharides
can reduce the levels of several butyrate and lactate producing
bacteria (103). These bacteria include Lactobacillus johnsonii,

Frontiers in Veterinary Science | www.frontiersin.org 6 December 2021 | Volume 8 | Article 773372

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Gomez-Osorio et al. SCFA/MCFA Monoglycerides in NE

Ruminococcaceae, and Candidatus savagella, all of which have
previously been associated with GIT homeostasis and better
animal health (104, 105). It is difficult to demonstrate a
causal relationship between these microbiome changes and
susceptibility to CP overgrowth and NE, but the fact that these
and related species normally make up a significant portion of the
ileal and/or cecal microbial populations suggests that in healthy
animals, they play an important role in maintaining balance
between normal GIT microbial constituents (11, 106).

The impact other microbes have on the incidence of CP can
be driven by several mechanisms; competitive exclusion (the
competition for a particular resource or niche in the GIT), release
of bacteriocins, and possibly even the interruption of CP quorum
sensing in pathogenic populations. From in vitro studies into
the quorum sensing mechanisms used by NetB-producing CP
there is a strong suggestion that this is an important step in
the pathogenesis of CP in poultry (107). Our understanding
of quorum sensing in complex communities such as the GIT
microbiome is in its infancy. Researchers have reported several
instances of interspecies cross-talk and interference in quorum
sensing (108, 109).

SCFA, MCFA AND THE MICROBIOME

Though the GIT microbiome may help regulate CP pathogenesis
in several ways, secretion of metabolites such as butyrate
and other SCFA are likely an important part of these
mechanisms. Many common GIT bacteria ferment dietary fiber
and even protein and produce SCFA (110). Firmicutes such
as Faecalibacterium, Clostridium, and Ruminococcaceae are the
principal producers of SCFA in the hindgut, and Akkermansia
and Bifidobacterium also produce lactate and limited quantities
of butyrate (111). Cross feeding is an important factor in the
production of SCFA in the GIT, and one of many ways in
which changes in bacterial composition can affect the host.
Certain metabolites of bacterial fermentation are substrates for
other bacteria to ferment, altering the composition of the GIT
metabolome in important ways. For example, acetate and lactate
produced by Bifidobacterium and Bacteroidetes can be consumed
by butyrate-producing microbes such as Faecalibacterium and
Roseburia (112).

Additionally, the GIT contains a group of g-protein coupled
receptors called free fatty acid receptors, capable of reacting to
SCFA. This results in a variety of different responses affecting
various host systems, including the secretion of GIT hormones
such as peptide YY (PYY) and glucagon-like peptide 1 (GLP1)
(113). These molecules are important for the proper regulation of
insulin, satiety, and appetite stimulation. Additional downstream
impacts of SCFA-free fatty acid receptor (FFAR) signals include
various inflammatory and immune responses (114).

SCFA, specifically butyrate, and MCFA do not typically exert
strong effects on the microbial composition of the normal
chicken GIT (115). However, in situations in which the GIT
microbial homeostasis is challenged or susceptible to change, i.e.
during periods of stress or pathogen challenge, supplementation
with butyrate seems to reduce the impact of the challenge on

the microbiota (116, 117). This suggests that SCFA can exert
a homeostatic effect in the GIT microbial population. This
is an important part of minimizing intestinal pathogens, as
stress-related dysbiosis makes the normally resistant microbial
community more susceptible to pathogenesis from normal
constituents such as CP. Interestingly, supplementation with
butyrate can decrease some butyrate-producing species in the
chicken cecum. The authors speculate that this could be a
feedback mechanism in response to the increased sodium
butyrate coming into the GIT from the diet (117). This supports
an increasingly recognized facet of the microbiome, a relentless
movement toward stability and homeostasis. This complicated
community is comprised of hundreds of individual members,
each acting in conjunction with other species, the digesta
(substrates) and the host to achieve a balance that allows for stable
growth and colonization.

Work on MCFA and the microbiota lags considerably behind
SCFA, for a few reasons. Though MCFA are nutritionally
important and interact with the host in some of the same ways
as SCFA, they are not products of microbial fermentation, but
are in commercial diets that contain palm kernel, coconut or milk
meals or fats.While SCFA, particularly butyrate, aremajor energy
sources for enterocytes and microbes alike, MCFA are primarily
metabolized by the host, in the liver (118).

In the last 25 years, the approach to research and ultimately
solutions to production problems has had a reductionist
approach focusing on understanding parts of the system rather
than integrating parts with the whole. That is, looking at small
parts of the problem disregarding in most cases the animal as
a whole and as a superorganism. Recently, we have been seeing
more and more insights into the whole animal universe with
numerous components that interact and are the essence of whole
animal health. We are just beginning this incredible journey into
understanding, from a holistic standpoint, how the environment,
feed, digesta, microbiome, and host interact at every turn. A
new nascent knowledge on the interaction between the microbial
community in the GIT and the cells of immune system affecting
whole parts of the body is emerging based on the assumption
that intestinal microbes may shape the course of inflammatory
illnesses such as autoimmune human diseases like Crohn’s
disease and Multiple Sclerosis (119). However, outside influences
or runaway growth of a few members can upset this balance,
the pressure of other community members works constantly
to return the community to a balance that favors as many
members as possible, rather than a few opportunistic species. The
question that arises is if the microbiome differs because animals
that are sick or is it different because it causes disease? (120).
More mechanistic studies instead of only correlational studies are
needed to understand this relationship.

CONCLUSIONS

Enteric diseases, especially NE, are a major concern in the poultry
industry due to production losses, increased mortality, reduced
bird welfare and increased risk of contamination of poultry
products intended for human consumption. Additionally, public
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concern about the threat of antibiotic-resistant pathogens has
forced the poultry industry to consider alternatives to antibiotic-
based prevention of NE. Strategies to control NE in the absence
of AGPs have focused on nutrition and biosecurity. Some
promising alternatives include organic acids, SCFA, MCFA and
their derivatives, probiotics, prebiotics, enzymes, plant extracts,
bacteriophages, and vaccination.

The use of SCFA and MCFA in the form of alpha
monoglycerides as an alternative for the control of NE has shown
important results in the improvement of intestinal health and
therefore in the prevention of the proliferation of pathogenic CP
and the release of its toxins which generate strong damage in

the intestinal epithelium. Although the full mechanism of action
of SCFA and MCFA is not well-known, broad-spectrum activity
has been demonstrated against gram positive and gram-negative
bacteria such as Salmonella, Campylobacter, and Clostridium spp,
making them a viable solution to reduce the use of AGPs. They
also have synergistic effects when used together and can thus
reduce the magnitude and duration of treatments.
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