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A major controversy in psychiatric genetics is whether nonadditive genetic interaction effects

contribute to the risk of highly polygenic disorders. We applied a support vector machines

(SVMs) approach, which is capable of building linear and nonlinear models using kernel methods,

to classify cases from controls in a large schizophrenia case–control sample of 11,853 subjects

(5,554 cases and 6,299 controls) and compared its prediction accuracy with the polygenic risk

score (PRS) approach. We also investigated whether SVMs are a suitable approach to detecting

nonlinear genetic effects, that is, interactions. We found that PRS provided more accurate case/

control classification than either linear or nonlinear SVMs, and give a tentative explanation why

PRS outperforms both multivariate regression and linear kernel SVMs. In addition, we observe

that nonlinear kernel SVMs showed higher classification accuracy than linear SVMs when a large

number of SNPs are entered into the model. We conclude that SVMs are a potential tool for

assessing the presence of interactions, prior to searching for them explicitly.
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1 | INTRODUCTION

Schizophrenia has a complex, polygenic architecture in which a large

number of genetic variants spanning a wide spectrum of population

frequencies contribute to disease risk (International Schizophrenia

Consortium et al., 2009; Lee et al., 2012). In recent years, specific

schizophrenia-associated risk variants have begun to emerge from

large-scale genomic studies (Sullivan, Daly, & O'Donovan, 2012).

The standard approach to genome-wide association study

(GWAS) data assumes an additive model, which, in statistical terms, is

equivalent to looking for the main effects of variants contributing to

disease risk. The assumption of additivity has been an extremely

effective approach, but it is also pragmatic, since looking at the effects

of many 100,000 s of single nucleotide polymorphisms (SNPs) would

be rendered computationally expensive if all potential combinations

of interactions were considered (Cordell, 2009). In addition, the exces-

sive dimensionality of such an approach would require very severe

statistical correction for multiple comparison testing (Polderman et al.,

2015). Although testing for some interactions is now technically possi-

ble using graphical processing units (GPU) instead of central proces-

sing units (CPU; Hemani, Theocharidis, Wei, & Haley, 2011),

extremely large sample sizes will be required to achieve sufficient

power to detect small genetic interaction effect sizes, as are expected

in most complex genetic traits, at the very low significance thresholds

dictated by multiple testing correction.

The extent to which genetic interactions contribute to risk is

unknown. One study, which explicitly modeled and tested gene

expression traits for evidence of pairwise SNP interaction effects
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(Hemani et al., 2014), found strong evidence in favor of interactions.

Moreover, additional analyses (Hemani et al., 2014) suggested that

testing for interactions between SNPs with known main effects

(e.g., genome-wide significant SNPs) is unlikely to be the best strategy,

as the majority of interactions involved SNPs that did not have a sig-

nificant main effect on gene expression. Here, we sought to investi-

gate whether a support vector machine learning (SVM) approach can

identify the presence of interactions, without explicitly specifying

interaction terms in regression models.

Previous studies have employed machine learning for similar pur-

poses. The approaches used included neural networks (Tomita et al.,

2004), random forest (Jiang, Tang, Wu, & Fu, 2009; Lunetta, Hayward,

Segal, & Van Eerdewegh, 2004; Nicodemus, Malley, Strobl, & Ziegler,

2010), and SVMs (Fang & Chiu, 2012; Koo, Liew, Mohamad, & Salleh,

2013). SVMs were introduced by Vapnik and Chervonenkis (1981)

and are widely used due to their flexibility in analyzing data with

different distributions and their ability to deal with high-dimensional

data such as gene expression (Schölkopf, Tsuda, & Vert, 2004). Previ-

ously SVMs using SNPs as predictors were employed for the classifi-

cation of populations (Bridges et al., 2011; Schrider & Kern, 2018).

Our study attempts to use SNPs to distinguish schizophrenia patients

from controls, where genetic differences between the groups are

more subtle than between populations.

A landmark GWAS of schizophrenia, conducted by the Schizo-

phrenia Working group of the Psychiatric Genomics Consortium

(PGC; often referred to as the PGC2 study), identified 128 genome-

wide significant SNPs (of which 125 were autosomal), representing

108 independent loci (Schizophrenia Working Group of the Psychiat-

ric Genomics Consortium, 2014). No statistically significant pairwise

interactions were detected between genome-wide significant (GWS)

index SNPs. The prediction accuracy (Area under the Curve [AUC]) for

the classification of schizophrenia patients and controls, obtained

using polygenic risk scores (PRS) generated with (a) genome-wide sig-

nificant SNPs (p ≤ 5 × 10−8) and (b) SNPs with suggestive evidence

for an association with schizophrenia (p ≤ .01), was AUC = 0.58 and

0.70, respectively. In the present study, we employ SVM algorithms

which offer both linear and nonlinear modeling options and hence

may account for pairwise and higher order SNP interactions, to

explore a large schizophrenia case–control sample of 11,853 subjects

(5,554 cases and 6,299 controls) for classification of SZ cases and con-

trols. We use GWS SNPs and SNPs with suggestive evidence for asso-

ciation with schizophrenia.

Finding a suitable SVM model to accurately predict classification

in the data involves mapping the original data points into a higher

dimensional space via a kernel function. However, there is still no con-

sensus in the field as to the optimal approaches, and there is a specific

need for research to assess the advantages and limitations of machine

learning algorithms when applied to genetic data (Ban, Heo, Oh, &

Park, 2010). For example, a number of SVM kernel options exist;

depending upon the specific choice of kernel, performance of the

SVM can be further tuned by adjusting a number of parameters. We

chose to investigate linear and radial basis function kernel (RBF) ker-

nels as representatives of linear and nonlinear analyses. A number of

nonlinear kernels exist and in the absence of specific knowledge that

would suggest another choice, the RBF kernel makes a good default

kernel to test a nonlinear model. A linear kernel has one hyper-

parameter C, reflecting whether the separation between the points is

“strict” or “soft”, i.e., how strictly misclassifications are penalized; the

RBF kernel has an additional parameter γ which controls the curvature

of the decision boundary that separates the regions of classification.

In a direct comparison of the results of SVM analyses with those

derived from a standard additive model, we first analyzed the

125 GWS autosomal SNPs from PGC2 (Schizophrenia Working Group

of the Psychiatric Genomics Consortium, 2014) in our sample. We

tested (a) whether the prediction accuracy of the (additive) PRS built

upon GWS SNPs, was greater/smaller than that of SVM algorithm and

(b) whether SVM can indicate potential interactions between GWS

SNPs. We also explored a set of top ~5,000 independent SNPs most

associated with schizophrenia in the PGC2 study (Schizophrenia

Working Group of the Psychiatric Genomics Consortium, 2014), and

tested those for the presence of potential interactions.

2 | METHODS

2.1 | Schizophrenia case–control data

We used the CLOZUK sample of 5,554 schizophrenia cases with

treatment-resistant schizophrenia receiving the antipsychotic cloza-

pine, and 6,299 control samples. Individuals were genotyped on dif-

ferent arrays (see [Hamshere et al., 2013; Schizophrenia Working

Group of the Psychiatric Genomics Consortium, 2014] for details) in

two batches, called “Batch 1” (3,446 cases and 4,285 controls) and

“Batch 2” (2,108 cases and 2,014 controls) hereafter. To reduce the

batch effect bias in this study the data were imputed using 203,436

autosomal SNPs common to both batches. Standard quality control

steps were undertaken (Hamshere et al., 2013), including INFO score

threshold ≥0.9 for the SNP imputation, genotype missing rate < 2%,

Minor Allele Frequency (MAF) ≥10%; Hardy–Weinberg Equilibrium

(HWE) significance level p ≥ 10−4. In addition, the extended Major

Histocompatibility Complex (MHC) region (chr6: 25–34 Mb) was

removed due to the highly correlated nature of the SNPs in this

region. The imputed data were converted into the most probable

genotypes (probability >0.9), and Linkage Disequilibrium (LD) pruned,

keeping the schizophrenia associated SNPs and removing those in LD

(the window around associated SNPs 500 KB, r2 value for the LD

threshold 0.1). For SNP prioritization purposes, we used genome-wide

association summary statistic data, (available at https://www.med.

unc.edu/pgc/results-and-downloads) of the PGC2 study

(Schizophrenia Working Group of the Psychiatric Genomics Consor-

tium, 2014), excluding the CLOZUK subset. As the SVM algorithms

require complete data, missing genotypes were imputed using a multi-

nomial distribution with the corresponding SNP genotypes

frequencies.

A known problem when searching for gene–gene interactions in a

GWAS is that it cannot be expected that SNPs with the largest main

effects are also most likely to be involved in interactions. SNPs with

no main effects are just as likely to be involved in an interaction. For

example, the XOR and anti-diagonal disease risk models specify a
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nonlinear interaction in the absence of independent main effects

(Dong et al., 2008).

As a baseline case, we first focused on the top main effect SNPs

(i.e., GWAS SNPs) in the SVM analyses, for which pairwise interactions

were statistically tested (and not found) elsewhere (Schizophrenia

Working Group of the Psychiatric Genomics Consortium, 2014). Thus,

SVM models were initially built for the 125 GWS autosomal SNPs

identified by PGC2 (Schizophrenia Working Group of the Psychiatric

Genomics Consortium, 2014) that were available in our dataset. Data

from the larger (in terms of sample size) Batch 1 genotyped sample

were used to build and tune the SVM models' parameters. Data from

Batch 2, and from both batches combined were then analyzed to

explore the effect of sample size on the prediction accuracy of the

SVM algorithm. We then also explored the top 4,998 independent

schizophrenia associated SNPs (p-value threshold <.01) and tested

those for presence of potential hidden interactions. The choice of this

number of SNPs (just under 5,000) was dictated by the sample size, to

avoid the problem of overfitting the data when the number of features

(SNPs) exceeds the number of individuals (Noble, 2006); however, we

note that it is not strictly necessary to constrain the number of predic-

tors to be less than the number of observations.

2.2 | SVM

The data analyses were carried out in Python, using two main pack-

ages (scikit-learn and pandas) for machine learning and data proces-

sing (McKinney, 2011; Pedregosa et al., 2011). To assess the potential

contribution of interactions to the risk prediction of schizophrenia, we

ran SVMs with the linear and radial basis function (RBF) kernels and

compared the predictive performance of these models against each

other and that of the PRS (see description of the PRS method below).

We have chosen the linear kernel to compare the classification results

with PRSs prediction/classification directly, and the commonly used

RBF kernel function to exemplify a nonlinear classification (Chen

et al., 2008). The inputs used for SVM were the reference allele

counts for each polymorphism, standardized to have zero mean and

variance 1. Initially, to build and test the model, we split the data into

training (90%) and test (10%) subsets. The test subset had been kept

separate from this CV procedure for the purpose of verifying the

accuracy of the resulting predictive model. Then the hyper-parameters

were optimized in the training set using four-fold split cross-validation

(CV) by the following Monte Carlo method. The hyper-parameters

(C and γ) for each model were selected by randomly sampling from

exponential probability distributions C ~ Expon(λ = 1) for both ker-

nels, and, additionally, γ ~ Expon(λ = 0.01) for the RBF kernel. These

exponential probability distributions were used since our preliminary

analysis trials suggested that lower values of the hyper-parameters

tended to result in higher classification accuracy. Each selection of

hyper-parameters was assessed by taking the mean score across the

four folds of the training data. The near optimal hyper-parameters

C = 1 for the SVM-Linear model and C = 0.5 and γ = 0.02 for the RBF

kernel SVM model were selected and used for these 100 simulations

below.

In order to compare the accuracy of linear and nonlinear modeling

with the objective of identifying the presence of SNP x SNP

interactions, the full datasets were used to build the SVM models. The

data were randomly split into train/test subsets using 75%/25% pro-

portions, then the SVM models were built and tested on a large num-

ber (100 times) of such splits for each of the different kernels to

obtain distributions of accuracy scores for each model. The metric

used for all of the performance assessment was the Area Under the

receiver operating characteristic (ROC) curve (AUC) metric, also

known (ROC) score (Metz, 1978).

2.3 | Polygenic risk score

PRS is a method to summarize the trait variance captured by a set of

genetic variants. We followed the approach previously described by

the International Schizophrenia Consortium (International Schizophre-

nia Consortium et al., 2009). PRS analysis requires two independent

datasets. For the first, summary data (effect size and p-value) are suffi-

cient as this dataset is used to select the SNPs, the risk score alleles

and their genetic effects. The second dataset is used generate the

PRS for each individual and requires individual genotypes. The PRS

for each subject is calculated as a sum of risk alleles in the second

dataset, weighted by the SNP effect sizes (β-coefficients) derived from

the first dataset. Logistic regression analysis is then used to assess

whether the PRS distributions are different in cases and healthy indi-

viduals and to estimate the classification accuracy. This method is

widely used in medical and population genetics (Escott-Price et al.,

2014; Escott-Price et al., 2015; International Schizophrenia Consor-

tium et al., 2009) to explore the genetic architecture of common disor-

ders and assess the risk prediction utility. To compare the PRS

approach with SVMs, we used exactly the same random splits

(75%/25%) as for SVMs and generated individual PRSs in the 25% of

the data, using summary results (β-coefficients) from the 75% of the

data. As above, this procedure was repeated 100 times.

Finally, the performances of the PRS and SVM models were

compared using a t test for differences in mean AUC-ROC scores for

each approach, for different data classification models (PRS, SVMs

with linear, and RBF kernels) in each data set (Batch 1 and Batch 2)

separately, and in the combined dataset (Batch 1 + Batch 2).

3 | RESULTS

@@Overall, the maximal prediction accuracy achieved by SVM was

AUC = 0.60–0.66, indicating that this approach did not give a practi-

cally applicable model for prediction of schizophrenia using these

data. The following results focus on the comparison of the perfor-

mance of the linear and nonlinear prediction modeling.

3.1 | GWAS significant SNPs

Initially, we built and tested models using the 125 GWS SNPs in the

Batch 1 dataset only (3,446 cases and 4,285 controls).

The linear kernel SVM showed similar prediction accuracy values

(AUC-ROC scores) across different values of C. Figure 1 shows the

distributions of ROC scores in the Batch 1 sample for PRS and SVMs
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with linear (SVM-Linear) and RBF kernels (SVM-RBF), obtained from

the best model at each cross-validation iteration (N = 100).

The results (Figure 1) show that the median PRS AUC-ROC score

was 0.644, similar to previously reported results (Schizophrenia Work-

ing Group of the Psychiatric Genomics Consortium, 2014). The SVM-

Linear model performed slightly worse with a median AUC-ROC score

of 0.634, whereas the SVM-RBF model showed the lowest accuracy,

AUC-ROC score = 0.629. The performances of the same models built

on the Batch 2 data only (2,108 cases and 2,014 controls), were simi-

lar to the Batch 1 data (the median AUC-ROC scores were 0.644,

0.630, and 0.628 for PRS, linear and RBF kernels, respectively).

To assess whether an increase in sample size improves the accu-

racy of the SVM models, we combined the two data sets and repeated

the analyses. The results are shown in Figure 1. The results show that

the accuracy of the PRS and SVM-RBF models did not improve in the

larger dataset analysis (p = .895 and p = .2, respectively), whereas in

contrast, the accuracy of SVM-Linear model did improve (p = .005).

However, the fact that the accuracy of the RBF kernel SVM did not

improve with the larger sample indicates that it is unlikely that there

are detectable nonlinear effects in the data (i.e., no detectable interac-

tions between the GWAS significant SNPs). The latter result replicates

the finding of an absence of interactions between these SNPs from

(Schizophrenia Working Group of the Psychiatric Genomics Consor-

tium, 2014).

3.2 | GWAS significant and suggestive SNPs

Following a similar strategy to the above, we compared the analyses

on the data for 4,998 independent top SNPs, initially in the larger

Batch 1 data and then in the combined dataset (Batch 1 + Batch 2).

The accuracy of PRS and SVM-RBF models improved compared to

models built upon the 125 GWS SNPs (compare Figures 1 and 2). In

Batch 1 data (red boxes in Figures 1 and 2), median ROC-AUC scores

increased from 0.644 and 0.629 (125 GWS SNPs) to 0.697 and 0.649

(4,998 SNPs), for PRS and SVM-RBF models, respectively whereas

the SVM-Linear model accuracy decreased slightly (from 0.633 to

0.614). A similar pattern was observed for the Batch 2 alone (results

are not shown). In the combined dataset (blue boxes in Figures 1 and

2), median ROC-AUC scores of the SVM-RBF model increased from

0.629 (125 GWS SNPs) to 0.662 (4,998 SNPs), and decreased from

0.635 (125 GWS SNPs) to 0.625 (4,998 SNPs) for the SVM-Linear

model. The results of the analyses of the combined dataset in compar-

ison with just the larger of the two datasets show that the accuracy of

SVM models benefited from the additional samples from the Batch

1 (p < 10−16), but the PRS model did not (p = .525), see Figure 1.

3.3 | Polygenic risk scores versus multivariate
regression and linear kernel SVM

We note that in the results shown, the PRS has consistently higher

accuracy than the SVM models. This may be related to the fact that

PRS also outperforms multivariate regression, for the following rea-

son. Since the SNPs contributing to the PRS are prioritized for associ-

ation with the disease, the risk alleles are more common among cases

for each SNP. Therefore, even if associated SNPs are pruned for LD,

they appear to be correlated in a case/control sample, because they

are associated with disease. To illustrate this effect, we ran 1,000 sim-

ulations generating two independent SNPs which were both associ-

ated with disease in 10,000 individuals. The strength of each SNP's

association to disease was varied from OR = 1 to OR = 4 and the

effect of each SNP on disease risk was independent of the genotypes

present at the other. Both SNPs had a MAF of either 0.2 or 0.3. The

correlation in the whole sample, and in cases and controls separately

was computed for each simulation. The average of these values was

found across all 1,000 simulations. Figure 3 shows that separately in

cases only and controls only, the correlation coefficients are approxi-

mately zero, suggesting that SNPs are independent. However, there is

a larger correlation in the combined case/control data, with correla-

tion coefficient r increasing as the strength of association and MAF

increase. Figure 4 shows the direct comparison between −log10(p-

values) obtained with multivariate logistic regression (model including

each SNP as an independent variable) and PRS for two independent

SNPs with effect sizes OR = 1.2 and MAF = 0.3 in 1,000 simulations.

FIGURE 1 Box plots of the distribution of prediction accuracy (AUC-

ROC score, y-axis) of PRS and SVM algorithms in Batch 1 data and in
the combined (Batch 1 + 2 data) using 125 GWAS significant SNPs.
The box plot represents the distribution of data with the horizontal
line being the median, the boundaries of the box are the first and third
quartiles and the extremes are minimum and maximum values on the
sample [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 The distribution of prediction accuracy of PRS and SVM

models in Batch 1 data and in the combined (Batch 1 + 2) using
4,998 SNPs [Color figure can be viewed at wileyonlinelibrary.com]
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The p-values for PRS analyses are systematically lower than for multi-

variate regression. The effect is even more pronounced when the

number of SNPs increases. We also compared the prediction accuracy

of the linear kernel SVM and multivariate logistic regression models.

The accuracy, as expected, was very similar (results are not shown).

Since both the multivariate regression and SVM-Linear models include

all SNPs as separate variables for prediction, a direct comparison of

the SVM-Linear model with the multivariate regression analysis is

natural. However, such comparison was not viable in our schizophre-

nia samples due to the limitation on the number of predictor vari-

ables in multiple linear regression modeling for accurate estimation

of regression coefficients (Austin & Steyerberg, 2015), and therefore

we used PRS as a proxy.

4 | DISCUSSION

The aim of this study was to examine the application of linear and

nonlinear SVMs to identifying the presence of genetic interactions

which may contribute to the risk of schizophrenia, and to compare

their prediction accuracy with polygenic risk score approach.

The results from genome-wide significant SNPs indicate that

since RBF (nonlinear) SVM models did not improve the prediction

accuracy over the SVM-Linear model. This implies that it is unlikely

that there are SNP × SNP interactions among this set of SNPs with

sufficiently large interaction effect sizes to be detected with the cur-

rent sample size. When expanding analyses to a larger set of SNPs, for

the Batch 1 dataset the performance of the linear kernel decreased,

while that of the RBF kernel showed a modest increase. The addition

of the data samples from Batch 2 resulted in a clear increase in predic-

tion accuracy in both models. This increased benefit of including the

additional samples was not seen in the models using only the GWS

SNPs. In addition, we observed that the SVM model with RBF kernel

displayed superior performance over the linear kernel, indicating pos-

sible evidence for interactions between the SNPs. In contrast, the pre-

diction accuracy of PRS did not increase with the sample size. To

corroborate this evidence, it would be informative to explore whether

the SNPs contributing most to SVM classification tend to contain

interaction effects; however, current nonlinear SVM implementations

do not naturally provide information on which SNPs these are.

Neither of the SVM models demonstrated a better predictive

accuracy than the polygenic risk score approach. However, we have

shown that due to the selection of SNPs for the PRS, the PRS

approach will have an advantage in terms of statistical power and pre-

diction accuracy over multivariate analyses, including SVM with linear

kernel and multivariate regression analyses. We note that the PRS

score can be adjusted to remove the SNP–SNP correlation in the data,

which makes the PRS approach essentially equivalent to multivariate

regression (Yang et al., 2012). It is also possible to remove only LD

between SNPs, but retain the correlation due to association by using

the POLARIS method (Baker et al., 2018).

In conclusion, the RBF kernel prediction accuracy shows substan-

tial improvements over the results from the linear kernel in real data

with 4,998 SNPs. This finding indicates the potential presence of

interactions between these relatively weakly associated schizophrenia

genetic variants, over and above the main effects of these SNPs,

whilst we found no evidence for interactions among genome-wide

significant index SNPs. Based on the results of the present study, we

conclude that PRS remains the better option for the purpose of classi-

fication of schizophrenia cases from controls, although its currently

demonstrated accuracy is insufficient for clinical practice.
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