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B cell antigen receptor (BCR) signaling is a tightly regulated process governed by both 
positive and negative mediators/regulators to ensure appropriate responses to exog-
enous and autologous antigens. Upon naïve B  cell recognition of antigen CD79 [the 
immunoreceptor tyrosine-based activation motif (ITAM)-containing signaling subunit of 
the BCR] is phosphorylated and recruits Src and Syk family kinases that then phos-
phorylate proximal intermediaries linked to downstream activating signaling circuitry. This 
plasma membrane localized signalosome activates PI3K leading to generation of PIP3 
critical for membrane localization and activation of plecktrin homology domain-contain-
ing effectors. Conversely, in anergic B cells, chronic antigen stimulation drives biased 
monophosphorylation of CD79 ITAMs leading to recruitment of Lyn, but not Syk, which 
docks only to bi-phosphorylated ITAMS. In this context, Lyn appears to function primarily 
as a driver of inhibitory signaling pathways promoting the inhibition of the PI3K pathway 
by inositol phosphatases, SHIP-1 and PTEN, which hydrolyze PIP3 to PIP2. Lyn may 
also exert negative regulation of signaling through recruitment of SHP-1, a tyrosine 
phosphatase that dephosphorylates activating signaling molecules. Alleles of genes that 
encode or regulate expression of components of this axis, including SHIP-1, SHP-1, 
Csk/PTPn22, and Lyn, have been shown to confer risk of autoimmunity. This review will 
discuss functional interplay of components of this pathway and the impact of risk alleles 
on its function.

Keywords: B cells, anergy, SHiP-1, Pten, lyn, SHP-1, phosphatases, kinases

inTRODUCTiOn

The stochastic nature of lymphocyte repertoire diversification leads to production of many B cells 
that are autoreactive. In fact, it is estimated up to 70% of newly generated B cells recognize self-
antigens (1). These autoreactive cells must be silenced to prevent the production of pathogenic 
autoantibodies and presentation of autoantigen-derived peptides to potentially pathogenic 
T  cells. Silencing of these cells occurs by three known mechanisms. If B  cell antigen receptor 
(BCR) interactions with autoantigen are of high avidity and the cell is immature, antigen receptor 
signals activate receptor editing, wherein immunoglobulin light chain allele usage changes to an 
alternative allele (2, 3). If this process eliminates BCR autoreactivity, now harmless cell proceeds 
to the periphery where it can participate in protective immune responses. If alternate light chain 
usage does not remove sufficient autoreactivity, continued autoantigen-induced signaling results 
in apoptotic death, a process known as clonal deletion (4, 5). If remaining autoantigen avidity 
is significant, but too low to drive receptor editing or clonal deletion, the B cell proceeds to the 

https://www.frontiersin.org/Immunology/
https://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.00665&domain=pdf&date_stamp=2018-04-06
https://www.frontiersin.org/Immunology/archive
https://www.frontiersin.org/Immunology/editorialboard
https://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.00665
https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:john.cambier@ucdenver.edu
https://doi.org/10.3389/fimmu.2018.00665
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00665/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00665/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00665/full
https://loop.frontiersin.org/people/543805
https://loop.frontiersin.org/people/42339


2

Franks and Cambier Kinases and Phosphatases Maintaining Anergy

Frontiers in Immunology | www.frontiersin.org April 2018 | Volume 9 | Article 665

periphery where it exhibits reduced lifespan and is hyporespon-
sive to further antigen stimulation, a condition termed anergy 
(6). Anergic B  cells fail to mobilize calcium (7), upregulate 
activation markers (8), and/or proliferate and differentiate in 
response to antigen (9).

It seems intuitive that among these silencing mechanisms, 
anergy is most fragile. Residence in the periphery increases the 
likelihood that anergic cells encounter inflammatory cytokines, 
stimulatory pathogen- and damage-associated molecular patterns, 
PAMPS, and DAMPS that may compromise their unresponsive-
ness. In addition, maintenance of the anergic state is dependent 
on continued occupancy of antigen receptors by antigen (10). 
Removal of autoantigen results in acquisition of responsiveness 
within minutes (10). This “reversibility” likely confers additional 
risk of participation in autoimmunity, but is also informative 
regarding the molecular mechanisms underlying anergy.

The rapid reversibility of anergy suggests that unresponsive-
ness is maintained by non-durable biochemical pathways and 
not by genetic reprogramming. Consistent with this possibility, 
analysis of differences in the transcriptomes of naïve and anergic 
B cells have failed to reveal mediators of anergic B cell unrespon-
siveness (11). This review is focused on the molecular regulatory 
mechanisms that are uniquely induced in anergic cells and are 
involved in maintenance of their unresponsiveness.

CHARACTeRiSTiCS OF AneRGiC  
B CeLLS

Naïve B lymphocyte recognition of antigen leads to transduction 
and propagation of signals that induce expression of activation 
markers and prepare the cell to interact productively with T cells. 
However, chronic binding of antigen in the absence of secondary 
signals provided by T  cells, DAMPs, and/or PAMPs, leads to 
unresponsiveness (12). This anergy is maintained when as few 
as 20% of receptors are occupied (13), thus unresponsiveness is 
not caused by inability to bind self or cross-reactive exogenous 
antigen. Further, this state is not maintained by tonic regulators 
as it must be induced by antigen receptor stimulation (14–16). 
Therefore, the mechanisms that maintain the antigen unrespon-
siveness of anergic B cells can be expected to have the following 
properties: they require induction by chronic antigen receptor 
stimulation, they are non-durable, and they affect receptor-
proximal signaling events.

Although the concept evolved from studies of normal mice 
(17), most of what is known about B cell anergy was learned by 
studying immunoglobulin transgenic mice in which all B cells 
share reactivity with an autoantigen. Perhaps most notable are 
MD4 immunoglobulin transgenic mice that express mIgM 
and mIgD BCR with high affinity for hen egg lysozyme (HEL). 
When these mice were crossed to ML5 mice expressing soluble 
HEL, B  cells developed and occupied peripheral lymphoid 
organs, but the animals were unresponsive to immunization  
(9, 18). Transfer of naïve MD4 B cells or MD4xML5 B cells to 
B6 recipients with CD4 T cells that recognize sheep red blood 
cells (SRBCs), followed by immunization with HEL-SRBCs, 
led to a response by both populations, though the response 

of the latter cells was greatly reduced. MD4xML5 cells did 
not respond when transferred to ML5 recipients. The former 
must reflect gradual dissociation of autoantigen from BCR 
following transfer to the autoantigen free environment, with 
attendant loss of unresponsiveness, or “anergy” (19). The 
inability of anergic B  cells to mount an equivalent immune 
response following transfer could be due to an inability of 
cells to cooperate with cognate T  cells, due either to failure 
to process and present antigen or to respond to T cell derived 
signals. To determine whether the defect in these anergic cells 
lay in the ability to internalize, process, and present antigen 
to T cells, they were modified to constitutively express MHC 
class II with peptide, bypassing the need to process and present 
antigen, and allowing interaction with cognate T helper cells 
(7). If the defect lay only in antigen processing and presenta-
tion, adoptive transfer of these B cells into B6 or ML5 recipient 
mice, followed by immunization, should have led to an immune 
response. However, these MD4xML5 anergic B cells failed to 
respond by producing anti-HEL antibodies (7). Interestingly, 
naïve MD4 B cells adoptively transferred into ML5 recipients 
responded to antigen by proliferation and differentiation. 
This evidence suggests that the immune response defect in 
anergic B cells must reflect more than an inability to process 
and present antigen. To determine the ability of anergic B cells  
to respond to T  cell help, naïve MD4 B  cells and anergic 
MD4xML5 B  cells were stimulated in  vitro with IL-4 and 
anti-CD40 and responses assessed. Both naive MD4 B  cells 
and anergic MD4xML5 B  cells upregulated MHC class II 
and costimulatory molecules, i.e., CD86, in response to these 
stimuli that mimic T cell help (7, 8). These data demonstrated 
the reversibility of anergy, as well as suggest there is not an 
inherent defect in the ability of an anergic B cell to respond to 
T cell help. They left open the possibility that the defect could lie 
in an inability of the anergic cell to upregulate T cell costimula-
tory ligands such as CD86 in response to antigen.

Because the previous experiments indicated that the inability 
of anergic B cells to respond to antigen is not limited to an antigen 
processing and presentation defect, it seemed likely that there was 
defect(s) in antigen receptor signaling. To determine the ability 
of anergic B cells to respond to BCR ligation, in vitro responses 
of naïve MD4 B cells and anergic MD4xML5 B cells were com-
pared. Unlike naïve cells, MD4xML5 failed to proliferate, increase 
RNA synthesis indicative of entry into cell cycle, or upregulate 
CD86 (7). These data suggest that there is an inherent defect in 
the ability of an anergic B  cell to signal through their antigen 
receptors. Confirming this, anergic B  cells failed to mobilize 
calcium in response to BCR stimulation. Antigen stimulation of 
anergic B cells did not lead to a significant increase in protein 
phosphorylation (7). Tolerant B  cells show a decrease in cell 
surface IgM antigen receptors, possibly explaining the decrease in 
signaling. However, anergic B cells transferred into B6 recipients 
and “parked” for 36 h led to normalization of receptor levels and 
equivalent fluorescently labeled antigen binding, but the cells 
remained unresponsive to antigen based on calcium mobilization 
(7). It is important to note that while anergic B cells downregulate 
mIgM, they do not downregulate mIgD, which constitutes 90% 
of the antigen-binding capacity of most splenic B cells (20). This 
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FiGURe 1 | Antigen receptor signaling in naïve and anergic B cells. B cell antigen receptor (BCR) aggregation in naïve cells leads proximally to phosphorylation of 
CD79a and CD79b immunoreceptor tyrosine-based activation motif (ITAM) tyrosines. This phosphorylation allows recruitment of the Src-family kinase Lyn to the 
receptor where it binds through its SH2 domain and its activity is derepressed. Lyn mediates activation of the phosphoinositide 3-kinase (PI3-kinase) pathway via 
phosphorylation of CD19, and the PI(3,4,5)P3 product of this pathway sequesters BLNK, PLCγ, and BTK for function in signaling. Phosphorylation of both ITAM 
tyrosines leads to binding of SYK via its dual SH2 domains and to subsequent activation. Under conditions of chronic antigen stimulation (anergy), the ITAMs on 
CD79a are preferentially monophosphorylated, recruiting Lyn to the complex. Lyn, in its negative regulatory role, recruits the function of the inositol phosphatases, 
SHIP-1 and PTEN, as well as the tyrosine phosphatase, SHP-1. These regulatory phosphatases will then exert their inhibitory function on downstream effector 
molecules, abrogating stimulatory BCR signaling. Bias toward stimulation of inhibitory circuitry is reversed upon removal of the antigen receptor stimulus.
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alone would argue that hyporesponsiveness of anergic B cells is 
not attributable to reduced antigen-binding capacity.

Protein tyrosine phosphorylation is the earliest quantified 
event in BCR signaling. Loss of this event in anergic cells suggests 
that unresponsiveness may reflect a defect in initial transduction 
of signals across the plasma membrane (7, 21). Consistent with 
this possibility, it has been reported that antigen stimulation can 
lead to rapid destabilization of the interaction of mIgM with 
the CD79a/b (Igα/β) heterodimer (22). Reductionist studies 
using B cell lines ectopically expressing association-competent 
versus incompetent BCR demonstrated that incompetent BCRs 
can compromise competent receptor signaling within the same 
aggregate/complex. In fact, receptor complexes containing as 
few as 13% incompetent CD79-associated mIg showed defects in 
signaling (22). Thus, mechanisms that act to limit BCR signaling 
in anergic cells may somehow target the structural integrity of 
the antigen receptor itself.

The discussion above describes extant knowledge of biological 
and BCR signaling defects associated with B cell anergy in the 
MD4 anti-HEL model. The findings described were confirmed in 
another model, the Ars/A1 model, in which B cells are reactive 
with chromatin (13). Below, we drill more deeply into proximal 
BCR signaling pathways and negative regulatory mechanisms 
that limit the antigen responsiveness of anergic cells.

AnTiGen ReCePTOR SiGnALinG in 
nAÏve AnD AneRGiC B CeLLS

In naïve B cells, BCR stimulation leads most proximally to the 
tyrosine phosphorylation of two conserved tyrosine residues 
embedded in immunoreceptor tyrosine-based activation motifs 
(ITAMs) found in CD79a and CD79b, the heterodimeric signal-
ing component of the BCR, as indicated in Figure 1 (23–26). This 
phosphorylation appears to be governed by the balanced activity 
of phosphotyrosine phosphatases and SRC family kinases for 
which ITAMs are substrates (27–29). Phosphorylated ITAMs 
stimulate Lyn activation, presumably through association with 
the kinase SH2 binding and derepression of its enzymatic activ-
ity (30). ITAM bi-phosphorylation enables receptor binding of 
the Syk tyrosine kinase via its dual SH2 domains leading to its 
phosphorylation and activation (28, 31). BCR stimulation leads 
to concurrent Lyn-mediated tyrosine phosphorylation of CD19, a 
BCR accessory/co-receptor, enabling its association with Lyn and 
phosphoinositide 3-kinase (PI3-kinase) (32). CD19, functioning 
in conjunction with the adaptor BCAP, mediates activation of 
PI3-kinase and generation of PI(3,4,5)P3 (33). The head group of 
this inner leaflet phospholipid second messenger binds the pleck-
trin homology (PH) domains of a number of critical downstream 
effectors, including PLCγ, AKT, PDK1, and BTK, localizing them 
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to the receptor where they can be activated by phosphorylation 
(31). Multiple parallel pathways diverge from this activated 
receptosome, leading ultimately to cell activation.

Anergic B  cells are chronically stimulated by autoantigen 
in vivo, but at least in MD4xML5 and Ars/A1 models, cell surface 
BCRs are not saturated. Indeed, on immediately ex vivo anergic 
cells most receptors are unoccupied (13). Additionally, chronic 
in vivo autoantigen stimulation results in monophosphorylation 
of receptor ITAMs (16). Findings from cell-free experiments 
in which the ability of specific kinases to phosphorylate CD79 
ITAMs was assessed demonstrate that Lyn and Fyn, but not 
Syk efficiently phosphorylate these substrates. However, this 
phosphorylation occurs primarily on the more N-terminal 
ITAM tyrosines, and ITAM bi-phosphorylation is a minor 
event (~20%) (28, 30). This may indicate that the degree of 
ITAM tyrosine phosphorylation is highly regulated by factors 
in addition to degree of aggregation. In terms of downstream 
consequences, it should be noted that because activation of Syk 
requires binding of both SH2 domains to phosphorylated ITAM 
tyrosines, monophosphorylation is associated with Lyn, but not 
Syk activation (30). Consistent with this, induced phosphoryla-
tion of the Lyn substrate CD19 appears normal (Getahun and 
Cambier, unpublished) in anergic cells, but pathways down-
stream from Syk are silent. Phosphorylation of CD19 suggests 
that PI3-kinase is active in these cells. Anergic B  cells exhibit 
increased basal and BCR-mediated tyrosine phosphorylation 
of the PI(3,4,5)P3 5-phosphatase SHIP-1 and its adaptor Dok-1 
(34), previously shown to be associated with their activation  
(11, 35). They are also characterized by an increase in expression 
of PTEN, a PI(3,4,5)P3 3-phosphatase, that is subject to regula-
tion by a number of microRNAs (36, 37).

ReGULATiOn OF BCR SiGnALinG in 
nAÏve AnD AneRGiC B CeLLS

Lyn
Interestingly, Lyn, the primary BCR-associated Src-family kinase, 
plays both positive and negative functional roles in antigen 
receptor signaling (38–40). Allelic differences in the LYN gene 
leading to reduced expression of the kinase confer increased risk 
of developing SLE, and patients with lupus have decreased Lyn 
expression in B cells (41, 42). In mice, Lyn deficiency increases 
negative selection in the bone marrow with fewer Lyn−/− B cells 
being found in the periphery of Lyn−/− MD4 mice (43). Peripheral 
Lyn−/− B cells fail to fully mature (43, 44). Lyn−/− B cells exhibit 
delayed but exaggerated and more sustained calcium response to 
antigen (39, 45), further suggesting both positive and negative 
roles in BCR signaling. In the absence of Lyn, other Src-family 
kinases expressed in B cells (Blk and Fyn) act to propagate BCR 
signaling, but down modulation of BCR signaling is abrogated, 
suggesting loss of anergy. The balance of Lyn and Fyn is further 
explained in vivo with Lyn deficiency exacerbating nephritis and 
arthritis, while loss of Fyn is protective from auto/inflammatory 
disease (46). Moreover, patients with SLE present in the clinic 
with a Fyn-activating signature, further suggesting a negative  
role for Lyn in BCR signaling.

Lyn−/− mice develop an SLE-like disease as indicated by 
autoantibody production and glomerulonephritis (47). B  cells 
from these mice undergo enhanced proliferation in response to 
BCR crosslinking. Macrophages and dendritic cells also play a 
role in development of disease in Lyn−/− mice. However, B cell-
specific conditional deletion of Lyn, achieved by crossing the 
Lynfl/fl mouse to a mouse carrying Cre expressed under the CD79a 
promoter, leads to autoantibody production, IgG immune com-
plex deposition ultimately resulting in glomerulonephritis (44).

Lyn may exert its negative regulatory function through 
phosphorylation of immunoreceptor tyrosine-based inhibitory 
motifs (ITIMs) on CD22, leading to recruitment of SHP-1 
(48), a tyrosine phosphatase that dephosphorylates activating 
signaling molecules, such as CD79a/b ITAMs, Syk, and BLNK 
(49, 50). Lyn also drives inhibitory signaling by promoting the 
inhibition of the PI3-kinase pathway, by phosphorylating the 
inositol phosphatase, SHIP-1 and its Doc family adaptors, Doc-1 
and Doc-3. SHIP-1 hydrolyzes PI(3,4,5)P3 yielding PI(3,4)P2, 
preventing recruitment, and activation of PH domain-containing 
effectors and consequent propagation of BCR signals. Alleles of 
genes that encode components of this regulatory axis, including 
SHP-1 (38, 51), Csk (52), PTPn22 (53–56), and Lyn (41), have 
been shown to confer risk of autoimmunity (57). Reduced PTEN 
and SHIP-1 levels presumably caused by increased in expression 
of microRNAs that regulate them are also seen in autoimmunity. 
Demonstrating their critical roles in maintenance of anergy, we 
have shown that acute deletion of these proteins from anergic 
B cells in vivo results in rapid cell proliferation and differentiation, 
and production of autoantibodies.

SHP-1
An allele of the regulatory SH2-containing tyrosine phosphatase 
SHP-1 has been associated with increased risk of developing SLE 
(38). SHP-1 and SHP-2 mediate the function of certain inhibitory 
ITIM containing receptors, such as CD22, PD1, and FcγRIIB, 
although there is evidence that SHP-1 is dispensable for the latter 
(58, 59). SHP-1 was first described as being crucial for FCγRIIB-
mediated negative regulation of anti-BCR induced proliferation 
in motheaten mice (me) (60). The ultimate resolution of this 
inconsistency came from studies of Lasourne and colleagues who 
showed that the degree of packing of phosphorylated FcγRIIB 
ITIMs determined the relative involvement of SHIP-1 and SHP-1 
in downstream inhibitory signaling. Higher level aggregation, as 
probably occurred in the D’Ambrosio studies, would be expected 
to evoke SHP-1 function.

Viable motheaten mice (mev/mev) have a mutation that 
interferes with a splice site in the gene that encodes SHP-1, 
Ptpn6, reducing the enzyme activity to 10–20% of wild type. 
These animals exhibit severe B  cell immunodeficiency and 
autoantibody production. In mev crossed to the MD4, SHP-1 low 
B cells undergo increased intracellular calcium flux responses to 
antigen. SHP-1 deficiency also leads to increased serum levels 
of IgM, IgG1, and IgG3 (61). Furthermore, B  cell-specific loss 
of SHP-1 leads to an accumulation of B-1a cells and systemic 
autoimmunity (62, 63). Acute B cell targeted deletion of SHP-1 
from anergic B cells in vivo leads to cell activation, proliferation, 
differentiation to plasmablasts and autoantibody production 
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(62). Genetic complementation studies indicate that SHIP-1 and 
SHP-1 act in distinct regulatory pathways both of which must be 
functional to maintain anergy.

Studies indicate that in a subset of SLE patients, B cells express 
reduced SHP-1 protein, suggesting these patients have a decreased 
ability to maintain B cell anergy (51). A decrease in SHP-1 (both 
protein and mRNA) in PBMCs isolated from multiple sclerosis 
patients is associated with an increase in inflammatory gene 
expression (64). This is particularly interesting given both mev 
mice and the inducible mouse model of MS, experimental 
autoimmune encephalomyelitis, have more severe disease when 
SHP-1 deficiency is observed (65, 66).

SHiP-1 and PTen: Cooperative 
enforcement of Anergy
Phosphoinositide 3-kinases function in the promotion of numer-
ous biological functions by the generation of lipid second mes-
sengers. Mice that lack the dominant PI3-kinase isoform found 
in B  cells, p110δ, show a reduction in calcium mobilization, a 
decrease in serum immunoglobulin levels, as well as a decrease in 
germinal center formation in the spleen (67, 68). Tight regulation 
of this pathway by the inositol phosphatases, SHIP-1 and PTEN, 
is critical for maintaining tolerance to self-antigens.

Studies utilizing adoptive transfer of anergic B cells, followed 
by targeted deletion of SHIP-1, have shown that this inositol 
phosphatase is crucial for maintenance of anergic B  cell unre-
sponsiveness to self-antigen. Upon deletion of SHIP-1, B cells that 
were once anergic become activated, upregulating costimulatory 
molecules, and proliferate and differentiate into antibody secreting 
cells (62). Furthermore, B cell targeted deletion of SHIP-1 results 
in systemic autoimmunity (16, 69). In addition to its enzymatic 
activity, SHIP-1 functions as an adaptor protein, binding effectors 
such as rasGAP (34). To determine if SHIP-1’s role in maintaining 
anergy is a function of its regulation of the PI3-kinase pathway as 
opposed to its adaptor functions, Getahun et al. used genetic mod-
els to conditionally delete PTEN or express a constitutive active 
PI3-kinase p110α in anergic B  cells in  vivo (62). Loss of PTEN 
expression or enforced over-production of PI(3,4,5)P3 led to a 
breach of anergy. Interestingly, while haploinsufficiency of either 
SHIP-1 or PTEN alone does not lead to loss of anergy, haploinsuf-
ficiency of both inositol phosphatases does, consistent with the fact 
that these phosphatases act in the same regulatory pathway.

SHIP-1 levels are decreased in FasMRL/lpr mice due to an increase 
in the microRNA that regulates its expression, microRNA 155 
(36). microRNA 155 is also elevated in SLE patients and has been 
correlated with disease activity (70). Additionally, descriptions of 
decreased PTEN expression, caused by an increase in expression 
of microRNA 7, in B cells from patients with SLE have been corre-
lated with disease severity (37). These data confirm that induced 
inhibition of the PI3-kinase pathway is critical for maintaining 
tolerance and preventing anergic B cells from participating in an 
autoimmune response. They further implicate microRNA levels 
as indirect regulators of anergy.

Csk/PTPn22
PTPn22 variants are among the risk alleles most strongly linked  
to human autoimmunity, but the molecular mechanism of 

PTPn22 action and consequence of risk allele defect(s) remains 
unclear. The PTPn22 R620W allele is found at high frequency in 
patients with type 1 diabetes, RA, SLE, Grave’s thyroiditis, and 
myasthenia gravis, but does not predispose to other diseases, such 
as multiple sclerosis, Crohn’s disease, or psoriasis vulgaris. While 
there are additional PTPn22 risk alleles that are associated with 
increased risk of autoimmunity (71), we will focus on the more 
understood R620W allele.

PTPn22 is a nonreceptor tyrosine kinase that binds Csk, a 
known suppressor of antigen receptor signaling. PTPn22 has 
also been shown to negatively regulate signaling by dephospho-
rylating Src family kinases (72, 73). PTPn22−/− mice develop 
increased serum immunoglobulin levels and germinal centers 
although overt autoimmunity is absent. The R620 is located in 
a position critical for binding of PTPn22 to Csk, suggesting that 
R620W would decrease the interaction of the two molecules, 
possibly resulting in increased antigen receptor signaling. 
However, Liston et al. demonstrated R620W causes reduced TCR 
signaling, leading to reduced thymic selection and subsequent 
deletion, allowing for more autoreactive T cells to exit into the 
periphery to later become activated and participate in an autoim-
mune response (74). Furthermore, R620W human B cells have 
decreased BCR signaling and BCR-mediated responses, but have 
an increased autoreactive B cell compartment, coupled with less 
effective central and peripheral tolerance. Patients who carry the 
mutated form of PTPn22 have an increased autoreactive B cell 
compartment, coupled with less effective central and peripheral 
tolerance. This is also seen in mice that express the human 
equivalent mutation, R619W, in B cells only. These mice develop 
autoimmunity (75).

COnCLUDinG ReMARKS

This review summarizes a body of work that has defined B cell 
anergy and the molecular mechanisms that maintain antigen 
unresponsiveness of anergic B cells. It further describes the effects 
of allelic variations of regulatory signaling molecules that confer 
increased risk of autoimmunity. Role for these risk alleles in failed 
silencing of autoreactive B cells per se, underscore the potential 
of targeting B cells for therapeutic intervention in autoimmunity 
[reviewed in Ref. (76)]. In the era of precision medicine, therapy 
will be based on genetics in addition to symptomology. As with 
all therapies for autoimmunities, there is a balance to be struck 
between controlling the autoimmune response while still leaving 
patients competent to mount protective immune responses to 
pathogens.
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