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Abstract: Adult stem cells (SCs) participate in tissue repair and homeostasis regulation. The relative
ease of SC handling and their therapeutic effect has made of these cell popular candidates for cellular
therapy. However, several problems interfere with their clinical application in cancer treatment,
like safety issues, unpredictable pro-tumour effects, and tissue entrapment. Therefore cell-free
therapies that exhibit SC properties are being investigated. It is now well known that adult SCs exhibit
their therapeutic effect via paracrine mechanisms. In addition to secretory proteins, SCs also release
extracellular vesicles (EV) that deliver their contents to the target cells. Cancer treatment is one of the
most promising applications of SC-EVs. Moreover, SC-EVs could be modified to improve targeted
drug delivery. The aim of the review is to summarise current knowledge of adult SC-EV application
in cancer treatment and to emphasise future opportunities and challenges in cancer treatment.
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1. Introduction

Adult mammalian stem cells (SCs) are found in various organs, where they reside in specific
niche environments and participate in tissue homeostasis [1]. However, it appears that many human
organs lack cells that meet stringent SC criteria, and a more open research approach focusing on the
function of SCs instead of their physical entity may be useful [2]. Mesenchymal stromal cells (MSCs)
as transplantable repair cells could fit into such broader criteria. Their SC function should then be
well demonstrated, similarly to the function of bone marrow MSCs (BM-MSCs) in bone marrow niche
formation [3,4].

MSCs are a culture-adapted heterogeneous population of cells that can be established from
various tissues, most notably from the bone marrow (BM-MSCs), fat (AD-MSCs), and umbilical cord
(UC-MSCs). MSCs are identified based on a set of surface markers and differentiation towards adipocyte,
chondrocyte, and osteocyte phenotypes in vitro [5]. It is a bulk population of cells representing a mix
of various clones of committed progenitors that can include SCs from the original tissue [6]. Despite
the common name, which is a subject of debate [7], MSCs from different organs display distinct gene
expression patterns, DNA methylation status, and in vivo differentiation potential [8,9]. The precise
location and function of endogenous MSCs equivalents are also elusive, but the current data suggest
that the origin of MSCs in various tissues is the perivascular niche [10,11]. Such an association with the
vasculature would make MSCs omnipresent, and it is tempting to assume that these cells are ready to
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respond to injury and contribute to local tissue repair [9]. However, genetic tracing experiments have
lately put a shadow on this assumption and suggest that there may be other explanation for the origin
of MSCs [12,13]. Whether endogenous MSCs can be mobilised from distant locations and home to
the sites of injury remains controversial [14]. However, the migration of transplanted MSCs towards
tumours and injury sites has been demonstrated [15].

The relative ease of MSC handling and clinical safety have made of them popular candidates for
cellular therapy [16]. A search for ‘mesenchymal stem cells’ on ClinicalTrials.gov returns more than
1000 results. The therapeutic potential of MSCs in various malignancies is the subject of many clinical
trials [17]. Vast pre-clinical data suggest the involvement of these cells in virtually all important aspects
of cancer progression including tumour growth [18], epithelial to mesenchymal transition (EMT) [19,20],
the formation of the tumour microenvironment [21], angiogenesis [22], immune response [23], and
drug resistance [24]. Both pro- and anti-cancer effects of MSCs have been observed in these studies.
For extensive reviews on the topic, see references [17,25]. Promising data from animal studies are,
unfortunately, often followed with underwhelming performance in clinical settings [16]. Nevertheless,
clinical trials have demonstrated the beneficial effects of MSCs in conditions like steroid-refractory graft
versus host disease [26] and complications of Crohn’s disease [27]. This has resulted in MSC-based
products reaching the market (e.g., AlofiselTM), and some adjustments like augmenting the properties
of MSCs, finding the right therapeutic window, and improving the clinical trial design, might bring
more success in the future [16,28].

The mode of action of MSCs is not completely understood but is likely associated with soluble
factors and extracellular vesicles (EVs) derived from these cells acting in a paracrine manner to achieve
immunomodulatory and pro-regenerative effects [29]. In fact, MSC-derived EVs are considered as
an alternative to MSCs in a cell-free therapeutic approach for various clinical indications [30]. Therefore,
in this review, we will focus on EVs derived from adult SCs, and specifically on the most investigated
ones, the MSCs.

EVs are a heterogeneous group of membrane-enclosed vesicles that are released by various types
of cells, including SCs [31]. Initially, EVs were considered as cell debris in the 1940s [32], but now they
have become one of the most widely studied means of intercellular communication [33]. Their ability
to transfer different types of molecules from cell to cell [34] and influence the behavior of recipient
cells has led to an increased amount of studies about their role in cancer progression and potential
applications in cancer treatment [35–38].

Due to their highly heterogeneous nature and overlapping size and markers, it is challenging
to categorise EVs into subtypes [39]. Nevertheless, based on their biogenesis EVs are generally
classified into three groups: exosomes, microvesicles (MVs), and apoptotic bodies [31]. Exosomes
usually have a diameter of 30 to 150 nm and are capable of passing through biological barriers like
the blood-brain barrier (BBB) [40]. They originate in multivesicular bodies (MVBs) and are secreted
into the extracellular space upon MVB fusion with the plasma membrane [41]. MVs, often termed
ectosomes or microparticles, are vesicles of 100 to 1000 nm in diameter that are formed by outward
budding of the plasma membrane followed by a fusion step [42,43]. Apoptotic bodies, which are
released as blebs from apoptotic cells, are usually larger EVs ranging in diameter from 1 to 5 µm [44].
Although EV biogenesis routes have been studied to some degree, the molecular machinery of these
processes is not completely understood. For extensive reviews of EV classification, biogenesis, uptake,
and functions, see [33,45–48]. In the current review, we will use the ISEV (International Society of
Extracellular Vesicles) accepted generic term, EVs, which covers all particles naturally released from
the cell that are delimited by a lipid bilayer and cannot replicate [39].

This review focuses on the current state-of-the-art applications of adult SC-derived EVs in cancer.
We will emphasise future implications, challenges, and opportunities these EVs hold for cancer
treatment and highlight their progress into the clinic.

ClinicalTrials.gov
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2. Stem Cell-Derived EVs

It has been shown that EVs are released by progenitor cells like MSCs [49,50], endothelial
progenitor cells (EPCs) [51], neural SCs (NSCs) [52], induced pluripotent SCs (iPSC) [53,54], embryonic
SCs (ESCs) [55,56], and cardiomyocyte progenitor cells (CPCs) [57]. SC-derived EVs, similar to EVs
released by other cell types, contain signaling proteins, ECM proteins, growth factors, transcription
factors, metabolic enzymes, DNA and RNA-binding proteins, as well as different types of RNA and
both genomic and mitochondrial DNA (Figure 1a) [39,58].

Figure 1. Inhibitory and tumour promoting effects of native and modified EVs from adult SC populations
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in preclinical in vivo cancer models. (a) MSCs can be derived from various adult human tissues, e.g.,
bone marrow of the iliac crest, adipose tissue, umbilical cord, liver, and many others. Unmodified
MSCs are a source of native EVs that can carry a rich cargo of various nucleic acids, lipids, proteins,
and even organelles like mitochondria. (b) Native SC-EV inhibitory and tumour promoting action.
Key publications and molecules implicated in the observed effect on important processes of tumour
progression, including angiogenesis, proliferation, cell death, EMT, immune evasion, metastasis,
and resistance to chemotherapy. (c) SC-EVs can be modified in many different ways. Pre-loading
methods imply altering the cell to modify EV cargo. Post-loading methods aim to package the
desired molecules inside of the isolated EVs. Here we mention the methods discussed in this
review. (d) Modified SC-EV effects in tumour xenograft models. The most important in vivo
findings are highlighted. Abbreviations: L—liver, UC—umbilical cord, IC—iliac crest, AD—adipose
tissue, TAX—taxol, PAX—paclitaxel, POR—porphyrins, shRNA—small hairpin RNA, siRNA—small
interfering RNA, lncRNA—long non-coding RNA, tRNA—transport RNA, NKT—natural killer T cell,
M2 Mφ—M2 polarised macrophage. Image created using BioRender.com.

While it is well recognised that the content of EVs is dependent on their biogenesis pathway,
the cell type of origin, and physiological conditions [39], it also has become clear that SC-EV release,
cargo, and functions are influenced by the surrounding microenvironment [59,60]. For example,
Lai et al. performed proteome analyses of EVs released at three time points from MSCs and detected
379, 432, and 420 proteins [61]. Only 154 proteins were found in all three samples. Such dynamic
changes in EV content are currently one of the reasons that hamper research progress in the field.

In an attempt to standardise the methodology, a recent position paper suggested that
MSCs-EV characterisation should follow the “minimal Information for studies of EVs” (MISEV2018)
guidelines [39], and minimal criteria defining MSCs immunophenotype should be attributed to
MSCs-EV characterisation. Ramos et al. have neatly demonstrated that, in addition to EV-specific
markers such as CD63, CD9, and CD81, MSC-EVs bear MSC markers such as CD29, CD73, CD90, CD44,
and CD105 (Figure 1a) [62]. A meta-analysis of the MSCs-EV proteome revealed an enrichment of cell-
and protein-adhesion proteins, and particularly collagens I and VI were abundant in MSC-EVs [63].
Also, several studies show that MSC-EVs contain high levels of interleukins (IL) IL-6, IL-8, IL-10,
and other cytokines [61,64,65]. Meanwhile, analysis of BM-MSC- and UC-MSC-derived EVs revealed
a presence of different immunomodulatory protein coding mRNAs and different anti-inflammatory
and tissue healing potentials in target cells [66]. Similarly, MSC-EV enclosed miRNAs also contribute
to regeneration, inflammation, and angiogenesis through various related signaling pathways [67].
A comparative high-resolution lipidomic analysis of large and small EVs derived from BM-MSCs,
glioblastoma (U87), and hepatocellular carcinoma (Huh7) cells showed that acylcarnitines and
lysophosphatidylcholines where enriched only in large MSC-EVs. Moreover, lysoderivatives of
phosphatidylserines, phosphatidylglycerols, and phosphatidylinositols showed enrichment in small
MSC- and Huh7-EVs. These lysoderivatives were also enriched in large MSC-EVs, but depleted
from large U87- and Huh7-EVs. Taken together, these results indicate that MSCs release large and
small EVs with a unique lipid composition compared to other cells [68]. Next, EV membrane protein
studies suggest that adult SC-EVs contain certain membrane proteins, like prominin-1 (also known
as CD133) and prominin-2 that bind to specific lipids, such as cholesterol [69,70]. Larger cargo,
like whole organelles, can also be shuttled to other cells by EVs. MSCs experiencing oxidative
stress, for example, can dispose of depolarised mitochondria and transfer them to macrophages [71].
Such fueling of neighboring macrophages via EVs represents an intricate way by which MSCs can
perform immunomodulation.

Equipped with such a broad range of active signaling molecules, SC-EVs, as mediators of cell-to-cell
communication, seem to participate in many fundamental biological processes like development [55]
and tissue homeostasis [72,73]. Numerous studies have highlighted the role of progenitor/SC -derived
EVs in tissue repair. MSC-EVs, for example, have been reported to promote wound healing [74],
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enhance the hepatic regeneration after liver damage [75], protect against hypoxia-induced lung
injuries [76] and lessen kidney trauma [77]. Furthermore, EPC-EVs have been reported to promote
neovascularisation in hindlimb ischemia in vivo [78], and CPC-EVs are suggested to improve cardiac
functions after myocardial injury [79,80]. Interestingly, iPSC-EVs are more effective for cardiac repair
than iPSCs [54]. Additionally, iPSC-EVs may also reduce liver fibrosis in vivo [53]. Altogether, these
studies support the therapeutical potential of SC-EVs.

Many hallmark processes of cancer progression such as increased proliferation, cell migration,
angiogenesis, inflammation, and extracellular matrix (ECM) remodeling have parallels with the events
seen in wound repair and fibrosis [81] to the extent that tumours are viewed as wounds that fail to
heal [82,83]. SC-EVs seem to play a dual role in cancer and can either promote or suppress cancer
progression. For example, BM-MSC and UC-MSC derived EVs decrease proliferation and induce
apoptosis of glioblastoma cells, whereas AD-MSC-EVs enhanced tumour cell growth and had no effect
on apoptosis [35].

These contradicting observations suggest that adult SCs-EV functions can be highly dependent
on their cell of origin and their cargo. The involvement of normal endogenous adult SCs in cancer
progression is not well understood, apart from observations that cancer can develop as a result of
mutations in adult SCs, for example, in the intestine [84]. Even less is known about the endogenous
SCs-derived EVs and their role in cancer. There is some evidence for EV-mediated interaction between
SCs and other cells in the SC niche, e.g., in the way a crucial SCs factor such as Wnt is transferred [85],
but the significance of such EVs for tissue regeneration or cancer in vivo remains to be further
elucidated [86].

Building on the knowledge of SC-EVs, different studies are exploring the potential of these EVs as
carriers for drug delivery in cancer therapy. Multiple approaches have been described to improve the
selectivity, efficiency, and safety of therapeutic EVs. The strategies for using SC-EVs in cancer treatment
can be divided into two major categories: (i) using native MSC-derived EVs, and (ii) modification of
SC-EVs by targeting parent SCs (pre-loading) or targeting EVs after their release (post-loading) [87,88].
The role of native and modified EVs will be discussed in the following sections.

3. Unmodified (Native) Adult SCs-EVs Effect on Cancer

In this chapter, we will give a comprehensive summary of research performed with native SC-EVs
in various cancer models. Most of the studies have investigated the effects in vitro and have been
followed up by xenograft models. The studies included in this review are summarised in Tables 1
and 2 and Figure 1b.

Table 1. Summary of pro-cancer effects of MSC-EVs.

EV Source Target Cargo/Mechanism Method Effect

BM-MSC

Human primary GC, colon cancer
cells ↑VEGF through ERK1/2 In vivo ↑growth & angiogenesis

[89]

MM patients
primary

multiple myeloma
cells

miRNA15a, oncogenic
proteins In vivo ↑homing to BM & growth

[38]

Human primary breast cancer cells miRNA21, miRNA34a In vivo ↑growth & angiogenesis
[37]

Human primary osteosarcoma, GC
cells HH pathway activation In vitro ↑growth & migration [90]

Human
commercial

lung cancer cells
A549 and H23

hypoxia-induced
miRNA-21-5p

In vitro
In vivo

↑proliferation, survival,
invasiveness, EMT
↓apoptosis,

macrophage M2
polarisation [91]
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Table 1. Cont.

EV Source Target Cargo/Mechanism Method Effect

Human
commercial

metastatic breast
cancer cells

suppression of MARCKS
by miRNA23b

In vivo, clinical
sample analysis

↑cancer cell dormancy
and ↓sensitivity to

docetaxel [92]

Human primary nasopharyngeal
carcinoma cells

FGF19 activated
FGFR4-dependent ERK

cascade
In vivo ↑EMT, ↑tumour

incidence & growth [93]

p53-/- knockout
mouse primary

p53+/+ primary
mouse BM-MSC
and MFC cells

UBR2 protein and mRNA In vitro
↑proliferation, migration,
expression of stemness

related genes [94]

Human primary GC cells miRNA-221 pre-loaded In vitro
↑proliferation, migration,
invasion, and adhesion

[95]

AD-MSC

Human primary breast cancer cells Wnt pathway activation In vitro ↑migration
[96]

UC-MSC

Human primary GC cells ↑ CaMKs -Raf/MEK/ERK
pathway In vivo

↑ resistance to
5-fluorouracil ↓apoptosis

[97]

Human primary
lung

adenocarcinoma
cells

miRNA-410 transfer,
↓PTEN expression

In vivo, in silico
prediction

↑growth, ↓apoptosis
[98]

Human primary breast & ovarian
cancer cells enzyme transfer In vitro ↑ cancer cell

heterogeneity [99]

Wharton’s jelly
primary renal cancer cells ↑HGF, ↑ ERK1/2 and AKT

pathways In vivo ↑ tumourigenesis &
tumour growth [100]

Table 2. Summary of anti-cancer effects of native, modified, and engineered adult SC EVs.

EV Source Target Cargo/Mechanism/
Modification Method Effect/Reference

BM-MSC

Human
commercial

Kaposi sarcoma, ovarian
cancer, hepatoma cells N/A In vivo ↓growth, ↑apoptosis

[50]

Mouse commercial breast cancer cells miRNA-16, ↓VEGF In vivo ↓growth &
angiogenesis [36]

Human primary multiple myeloma cells
lack of miRNA-15a &

oncogenic protein
transfer

In vivo ↓homing to BM &
growth [38]

Mouse commercial human pancreatic
cells CFPAC-1 PTX pre-loaded EVs In vitro ↓proliferation

[101]

Human
commercial

breast cancer cells
MDA-MB-231 PTX pre-loaded EMs In vitroIn vivo

↓viability
↓tumour growth

[102]

Human primary human commercial and
primary GBM cells

Cy5-tagged
anti-miRNA-9 pre-loaded

EVs
In vitro

↓chemoresistance to
TMZ
[103]

Human
commercial

human-derived glioma
cells and GSC

Cy3-miRNA-124a &
miRNA-145 pre-loaded

EVs

In vitro
In vivo

↓migration of glioma
cells and the

self-renewal of GSCs
[104]

Human
commercial

human osteosarcoma
cells 143B

miRNA-143 pre-loaded
EVs In vitro ↓migration

[105]

Rat primary rat model of primary
brain tumour

miRNA-146b pre-loaded
EVs In vivo

↓glioma xenograft
growth

[106]
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Table 2. Cont.

EV Source Target Cargo/Mechanism/
Modification Method Effect/Reference

Human primary Breast cancer cells
MDA-MB-231 and T47D

Anti-miRNA-222/223
pre-loaded EVs In vivo

↑carboplatin-based
therapy efficiency

[107]

Mouse primary mouse breast cancer cells
4T1 and TUBO

LNA-anti-miRNA-142-3p
post-loaded EVs

In vitro
In vivo

↑APC and P2X7R
expression

[108]

Primary human T47D and HCC-1954
(HCC) breast cancer cells

miRNA-379 pre-loaded
EVs In vitroIn vivo

↓COX-2
↓tumour formation

and growth rate
[109]

Human
commercial 5 GSC primary cells miRNA-124a pre-loaded

EVs
In vitro
In vivo

↓ FOXA2, viability,
clonogenicity,
↑survival

[110]

AD-MSC

Human
commercial

metastatic prostate cancer
cells miRNA-145 In vitro ↓growth, ↑apoptosis

[111]

Human primary ovarian cancer cells miRNA mediated
↓BCL2 In vitro

↓growth & migration,
↑apoptosis

[112]

Rat primary Hepatocellular carcinoma
animal model

NKT-cell anti-tumour
response In vivo

Improved tumour
grading, ↑NKT-cells

[113]

Human
commercial

human-derived glioma
cells and GSC

Cy3-miRNA-124a &
miRNA-145 pre-loaded

EVs

In vitro
In vivo

↓migration of glioma
cells and the

self-renewal of GSCs
[104]

Human primary human liver cancer cell
line HepG2

miRNA-122 pre-loaded
EVs

In vitro
In vivo

↑anti-tumour efficacy
of sorafenib

[114]

UC-MSC

Human primary Breast cancer lines
miRNA-148b-3p by
regulating TRIM59

expression
In vivo

↓EMT, tumour growth,
↑apoptosis

[115]

Wharton’s jelly
primary bladder carcinoma

inhibition of Akt
pathway, cleaved

Caspase3 induction
In vivo ↓growth, ↑apoptosis

[116]

Human primary

cancer cell lines:
A549

SK-OV-3
MDA-hyb1

Taxol pre-loaded EVs In vitro
In vivo

↑cytotoxicity
↓subcutaneous

primary tumours &
metastasis [117]

Human
commercial

human-derived glioma
cells and GSC

Cy3-miRNA-124a &
miRNA-145 pre-loaded

EVs

In vitro
In vivo

↓migration of glioma
cells and the

self-renewal of GSCs
[104]

Wharton’s jelly
primary GBM cells U87 miRNA-124 pre-loaded

EVs In vitro

↓CDK6
↑Chemosensitivity to

temozolomide
[118]

Other ASCs

Human liver MSCs
primary/

commercial

Hepatoma [119],
tumour-derived

endothelial cells [120],
renal CSC [121]

miRNA-31, 451 [119]
miRNA-15a, 181b, 320c,

874 [120]
miRNA-145, 200 [121]

In vivo

↓tumour growth
[119]

↓angiogenesis
[120,121], ↑apoptosis

[121]
delayed metastasis

[121]
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Table 2. Cont.

EV Source Target Cargo/Mechanism/
Modification Method Effect/Reference

Human
placenta-derived
MSC commercial

human-derived glioma
cells and GSC

Cy3-miRNA-124a &
miRNA-145

pre-loaded EVs

In vitro
In vivo

↓migration of glioma
cells and the

self-renewal of GSCs
[104]

MSC with
unspecified origin

bladder cancer cells
UMUC3 & SW780

PLK-1 siRNA
post-loaded EVs In vitro

↓PLK-1 expression
↑apoptosis and

necrosis
[122]

Human MSC with
an unspecified

origin
11 different cancer cells TRAIL pre-loaded EVs In vitro

↑apoptosis in 11
cancer cell lines

including
TRAIL-resistant cells

[123]

Human MenSC
primary

chemically-induced
OSCC N/A In vivo

↓ tumour growth,
↓angiogenesis

[124]

3.1. EVs from BM-MSCs

Many studies have investigated BM-MSC-derived EVs. An early report showed that these
EVs decreased cell proliferation in several cancer cell lines (HEPG2 hepatoma, Kaposi sarcoma,
SK-OV-3 ovarian) in vitro, as well as induced cell cycle arrest and reduced tumour burden in xenograft
models [50]. Likewise, Lee at al. found a reduced proliferation in the breast cancer cell line 4T1 and
observed that BM-MSC-EVs down-regulate vascular endothelial growth factor (VEGF) expression
in tumour cells, which results in the inhibition of angiogenesis both in vitro and in a subcutaneous
xenograft [36]. These effects were partially attributed to miRNA-16 present in BM-MSC-EVs, which
down-regulates VEGF in 4T1 cells.

A thorough study addressed the importance of the source of human BM-MSCs for the generation
of EVs. Whereas multiple myeloma (MM) patient-derived BM-MSC-EVs promoted tumour growth
and homing to the bone marrow, normal MSC-EVs inhibited the growth of MM cells and metastasis
formation [38]. A study of the molecular composition of MSC-EVs derived from MM patients found
enrichment in oncogenic proteins, cytokines, and adhesion molecules, and lower levels of the tumour
suppressor miRNA-15a compared to MSC-EVs from healthy donors. This led the authors to hypothesise
that BM-MSCs use EVs to modulate tumour cells and form a supportive niche in MM.

Zhu and colleagues reported that human BM-MSC-EVs can promote tumour growth [89].
Contrary to observations in breast cancer cells [36], in this study, EVs promoted VEGF expression in
gastric carcinoma SGC-7901 and colon cancer SW480 cells, prompting angiogenesis and xenograft
growth [89]. BM-MSC-EVs exhibited tumour supportive effects in another breast cancer line
(MCF-7) [37]. Vallabhaneni and colleagues investigated the composition of these EVs and identified
a range of potentially tumour-supportive proteins. The authors also noted that stressful culture
conditions influence the composition of MSC-EVs. In fact, serum-deprived MSCs release EVs containing
higher levels of tumour-promoting miRNAs, such as miRNA-21 and miRNA-34a, that favour breast
cancer cell proliferation and metastasis in a xenograft model [37]. Moreover, Ren et al. reported that
EVs secreted by BM-MSCs under hypoxia increased A549 and H23 (lung cancer) cell proliferation,
survival, invasiveness, and EMT as well as decreased apoptosis and macrophage M2 polarisation
in a xenograft model by increasing the delivery of miRNA-21-5p [91]. Another study demonstrated
that the co-culture of the metastatic breast cancer cell line MDA-MB-231 with BM-MSC-EVs resulted
in decreased sensitivity to docetaxel and acquisition of the dormancy features in breast cancer cells.
In subsequent experiments, such effect was attributed to miRNA-23b enclosed in EVs, which can target
the expression of MARCKS, a protein known to promote proliferation and cell motility [92].



Cells 2020, 9, 1171 9 of 26

In addition, Qi et al. showed that BM-MSC-EVs can promote the growth of MG63 osteosarcoma
cells and SGC7901 gastric cancer cells through activation of hedgehog (HH) signalling in vitro [90],
while the EV-activated FGF19-FGFR4-ERK signalling axis has been implicated in nasopharyngeal
carcinoma xenograft formation and growth [93]. The authors suggested that increased FGF19 protein
content in EVs stimulates EMT and migration of tumour cells [93]. Another interesting finding was
reported by Mao and colleagues, who showed that p53-/- knockout mouse primary BM-MSCs produce
more EVs, which are enriched in UBR2. Treatment of p53+/+ primary mouse BM-MSCs and MFC
(murine foregastric carcinoma) with these EVs resulted in overexpression of UBR2 in target cells and
elevated cell proliferation, migration, and expression of stemness related genes [94].

3.2. EVs from UC-MSCs

Similarly, both pro- and anti-tumour effects are observed using human UC-MSC-EVs. For
example, UC-MSC-EVs carrying miRNA-148-3p were recently shown to regulate the expression of
tripartite motif 59 (TRIM59), a protein involved in malignancy and overexpressed in some cancer
types. In MDA-MB-231 breast cancer cell xenografts, these EVs were linked to stimulated apoptosis,
decreased proliferation, and diminished levels of EMT-related proteins [115].

The opposite effects, namely increased proliferation and apoptosis prevention, were observed
for UC-MSC-EVs in a lung adenocarcinoma model. Pre-treatment of cancer cells with UC-MSC-EVs
markedly increased the xenograft size by transferring miRNA-410 to tumour cells and causing a decrease
in PTEN expression [98]. Another study suggested an EV-mediated transfer of proteins (matrix
metalloproteinase 2 and 5’-nucleotidase) and their enzymatic activity to MCF-7 breast cancer cells and
SCCOHT-1 ovarian cancer cells, and subsequent increase in cancer cell heterogeneity [99]. Along these
lines, UC-MSC-EVs were shown to activate calmodulin kinase Raf/MEK/ERK signaling axis in several
gastric cancer cell lines, and partially reverse the anti-tumor effects of 5-fluorouracil in a xenograft
model [97]. This is another demonstration of MSC-EVs being able to confer resistance to chemotherapy.
Such effects can also be seen as protective, e.g., UC-MSC-EVs can prevent cisplatin-induced apoptosis of
ovarian granulosa cells, which is correlated to primary ovarian insufficiency and chemotherapy-related
infertility [125].

Not surprisingly, EVs derived from Wharton’s jelly MSCs (WJ-MSCs) of the umbilical cord also
demonstrated contrasting effects in different models. In one study, the growth of a T24 bladder
carcinoma cell xenograft was inhibited by WJ-MSC-EVs through the downregulation of the Akt
pathway and activation of cleaved Caspase 3 [116]. However, the incidence and growth of tumours
from xenografts of renal cell carcinoma cells were increased and associated with higher hepatocyte
growth factor (HGF) expression in the tumour cells [100].

3.3. EVs from AD-MSCs

So far, only a few studies have tested the effects of EVs from AD-MSCs. Lin et al. demonstrated
that human AD-MSC-EVs can contribute to tumour cell migration in vitro [96]. Other in vitro studies
found tumour inhibitory effects. It has been shown that AD-MSC-EVs decreased the proliferation
of the ovarian cancer cell lines SK-OV-3 and A2780 and hampered their migration ability and
clonogenicity [112]. Another group showed that AD-MSC-EVs carry miRNA-145 that potentially
inhibits the growth of prostate cancer cells (PC3M). The knockdown of this miRNA abrogated the
anti-proliferative and pro-apoptotic effects of AD-MSC-EVs [111].

EVs derived from rat AD-MSCs were studied in an N1S1 cell line induced rat hepatocellular
carcinoma. The animal group that received systemic EV administration displayed improved tumour
grading, while histological and blood sample analysis revealed an increase in the numbers of circulating
and intratumoural natural killer T-cells in these animals. The results from this orthotopic tumour cell
transplantation model provided a rare link to a potential immunomodulatory effect of MSC-EVs [113].
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3.4. EVs From Other Stem/Progenitor Cells

Several studies have looked at the properties of EVs derived from MSC-like cells. An early
study found the growth of an HepG2 hepatoma xenograft to be reduced in animals treated with liver
MSC-EVs, and this effect was correlated with the delivery of miRNA-451 and miRNA-31 to the tumour
cells [119]. A later study by Lopatina and colleagues demonstrated that liver MSC-EVs can inhibit the
angiogenesis potential of tumour-derived endothelial cells in vivo [120]. Furthermore, in contrast to
EVs from the liver, BM-MSC-EVs were found to be highly angiogenic. Authors suggested that several
nucleic acid molecules could be involved, including miRNA-15a, -181b, -320c, and -874. Moreover,
it was recently tested if the liver MSC-EVs could inhibit renal cancer stem cell (CSC) growth [121].
Pre-treatment of renal cancer cells with EVs from both liver and BM MSCs resulted in delayed tumour
development in immunocompromised mice. Corroborating the previous observations, intravenous
treatment with EVs from liver MSCs and not BM-MSCs impaired xenograft growth and vascularisation
and resulted in improved survival. The tumour-suppressive effects are possibly tied to the transfer
of miRNA-145 and miRNA-200 [121]. A hamster model of chemically-induced oral squamous cell
carcinoma (OSCC) was used to study the effect of EVs derived from human menstrual fluid MSCs
(MenSC). EVs were repeatedly injected at the base of the tumour, which markedly slowed further
growth of the neoplasia and reduced the density and area of the vasculature [124].

The studies listed above signify the inconsistency of native SC-EV action in tumour models.
The opposite effects of native SC-EVs in cancer could depend on the cell source, cell priming, and
culture conditions, as well as on the underlying disease if primary cells are used [38]. We also note
that there is not much data on how SC-EVs influence immune cells in cancer. This can probably be
explained by the prevailing use of xenograft models to study EV effects in vivo.

Additionally, some initial readouts from the experiments can be interpreted in different ways.
For example, decreased proliferation and migration can be seen as a positive effect, but they can
also indicate the gain of cancer cell dormancy, that renders cells chemoresistant [92]. In the future,
further testing of native EV fractions using more advanced tools, e.g., genetic cancer models or in vitro
migration assays that avoid conflating cell motility with proliferation, could be beneficial and reveal
more about the action of native SC-derived EVs. Nevertheless, the accumulating data from such
experiments have already highlighted several molecules with anti-tumour effects and are instrumental
for some of the EV modification approaches that are discussed in the following sections.

4. Effects of Modified SC-EVs on Cancer

In this chapter, we will summarise the use of modified SC-EVs in novel cancer treatment strategies
(additionally, see Tables 1 and 2 and Figure 1c,d).

These studies demonstrate that pre- and post-loading of small-molecule drugs, proteins, and
small RNA into SC-EVs via different methods can be effective and modified MSC-EVs hold promising
potential for cancer treatment applications. However, depending on the approach, some limitations
still exist, including poor packaging efficiency, decreased stability, and potential immunogenicity and
toxicity [126,127]. Therefore several parameters like the cell source, the yield of EVs, the EV cargo
encapsulation method, and the choice of the therapeutic agent are important elements to consider
before moving into a clinical setting. Also, modified EV production and isolation protocols should be
developed and standardised to produce high-quality clinical grade EVs similar to those described in
MISEV2018 [39]. While EV modification protocols depend on the desired application, in the future, the
combination of different techniques could improve and even broaden the applications and efficiency
of MSC-EVs.

4.1. Drug Loading

There are several approaches to load therapeutic agents like chemotherapy drugs into EVs.
For example, treating MSCs with Paclitaxel (PTX) promotes MSCs to sort this drug into EVs. These EVs
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are functionally active in a pancreatic adenocarcinoma cell line, suggesting that MSCs can be used as
small factories to produce targeted cancer drugs [101]. The same approach was reported as a potential
breast cancer treatment strategy. The authors showed that BM-MSCs treated by PTX produced EVs
with enclosed PTX. Administration of these EVs significantly decreased breast cancer cell viability
and growth in xenografts [102]. Moreover, Melzer et al. [117] reported that UC-MSCs incubated with
taxol produce EVs with the drug enclosed. Treatment with these EVs caused 80–90% cytotoxicity in
lung cancer (A549), ovarian cancer (SK-OV-3), and breast cancer (MDA-hyb-1) cell lines compared
to MSC-EVs with no taxol, which showed very little cancer cell growth inhibition. Interestingly,
taxol-loaded EVs from HUVEC endothelial cells displayed much less effect on the same cancer cell
lines compared to loaded MSC-EVs. Systemic intravenous application of MSC-derived taxol-loaded
EVs caused more than 60% reduction of primary subcutaneous tumours in vivo, while 50% fewer
metastases were observed in distant organs. Similar results were observed with taxol alone, although
the concentration of the drug in EVs was about 1000-fold reduced. These strategies are considered as
pre-loading techniques, where cargo is loaded into the cells and encapsulated into EVs during their
biogenesis. This approach relies on high drug concentrations, long incubation times, and endocytosis
of the therapeutic agent. These factors can cause reproducibility challenges.

Another approach is to load drugs directly into EVs after EV isolation, and this technique is
called post-loading. One study that systematically compared the cancer cell line MDA-MB-231, the
endothelial cell line HUVEC and BM-MSC-derived EV loading with model drugs (porphyrins of
different hydrophobicity) by passive co-incubation, electroporation, saponin, extrusion, and dialysis
showed that saponin allowed an 11-fold higher drug loading compared to passive methods. The authors
also showed that hydrophobic compounds were loaded into EVs significantly more efficiently than
into standard liposomes. Loading into EVs increased the cellular uptake of the drug by 60% in vitro
compared to a free or liposome-encapsulated drug [128]. However, the main drawbacks of post-loading
are that only relatively small molecules can be loaded and that the method has relatively low efficiency
and large variability among studies [129,130].

4.2. Protein Loading

Considering therapeutic protein post-loading into EVs, several strategies have been described,
including sonication and freeze/thaw cycles [131]. However, there are no studies published so far
regarding protein post-loading into SC-EVs with these methods in the context of cancer treatment.

One of the most common approaches to pre-load proteins into EVs is to stably transfect SCs
by applying a lentivirus system to overproduce certain proteins. A recent study showed that
overexpressing TRAIL (TNF-related apoptosis-inducing ligand) in MSCs by a lentivirus system resulted
in approximately 95% of EVs containing the protein. Interestingly, TRAIL overexpression also induced
EV secretion, suggesting that this protein could be involved in EV biogenesis. These EVs induced
apoptosis in 11 cancer cell lines in a dose-dependent manner compared to recombinant TRAIL [123].
Clinical trials using recombinant TRAIL had shown poor benefits in cancer treatment because of
limited bioavailability, resistance to this ligand, and low activity [132]. One of the explanations
authors provided for the observed differences is that the TRAIL enclosure into EV membranes allows
higher clustering of the ligand, which is necessary for effective activation of the extrinsic death
pathway [123]. Considering endogenous protein loading into EVs, another sophisticated method
called EXPLOR (exosomes for protein loading via optically reversible protein-protein interactions) has
been developed [133]. This approach has not been tested in MSC-EVs so far.

4.3. RNA Loading

Compared to small molecule drugs, nucleic acid loading into EVs is more challenging due to the
size and molecular charge. One of the most often used nucleic acid pre-loading approaches was reported
by Munoz and co-authors [103]. They transfected MSCs with anti-miRNA-9-Cy5 oligonucleotide and
showed that the majority of anti-miRNA-9 was transferred to the glioblastoma multiforme (GBM) cells
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by EVs and reversed the expression of multidrug resistance 1 in temozolomide-resistant GBM cells.
Likewise, BM-MSC transfection with synthetic double-stranded Cy3-miRNA-124 and Cy3-miRNA-145
resulted in localisation of this miRNA into EVs. Delivery of the miRNA-124 mimic via MSC-EVs
decreased migration and self-renewal of glioma cells derived from GBM specimens [104]. Similarly,
miRNA-124 transfected WJ-MSCs produced EVs with more miRNA-124. Delivery of miRNA-124 to
GBM cells enhanced their sensitivity to temozolomide and decreased migration in vitro, suggesting
that miRNA delivery by WJ-MSC-derived EVs could provide a new strategy for miRNA replacement
therapy in GBM cancers [118]. Likewise, BM-MSC transfection with synthetic double-stranded
miRNA-143 resulted in an increased number of EVs containing miRNA-143 that could inhibit the
migration of the osteosarcoma cell line 143B compared to control EVs [105].

A slightly different approach was applied by transfecting MSCs with miRNA-146b expression
vector by electroporation. This resulted in a 7.3 fold increased miRNA-146b concentration in
MSC-secreted EVs compared to controls. Intratumour injection of these EVs significantly reduced
glioma xenograft growth in a rat model of primary brain tumour compared to control EVs, suggesting
that sorting of therapeutic miRNA into MSC-EVs represents a new potential treatment strategy for
malignant glioma [106]. The same approach was reported by Lou and colleagues [114] who transfected
AD-MSCs with miRNA-122 expression vector producing EVs with an increased amount of miRNA-122.
Intratumour administration of these EVs by injection significantly improved the anti-tumour efficacy
of sorafenib in a hepatocellular carcinoma (HCC) model in vivo. Another study demonstrated that
dormant breast cancer cells prime MSCs in vitro to secrete EVs with miRNA-222/223, which can induce
cellular quiescence and drug resistance in some types of cancer cells. According to these findings,
dormant breast cancer cells could be targeted by the systemic application of MSCs transfected with
anti-miRNA-222/223 resulting in increased sensitivity to chemotherapy and an increased survival
rate in vivo [107]. However, Ma et al. demonstrated the opposite effect of miRNA-221 carrying EVs
produced by BM-MSCs transfected with a miRNA mimic. These EVs increased proliferation, migration,
invasion, and adhesion of the gastric cancer cell lines BGC-823 and SGC-7901 [95].

Similar to proteins, also overexpression of RNA by lentivirus system results in their increased
EV enclosure. For example, O’Brien and colleagues engineered adult BM-MSCs with lentivirus
to secrete EVs enriched with tumour suppressor miRNA-379 [109]. The authors demonstrated
that systemic administration of cell-free EVs enriched with miRNA-379 had a therapeutic effect
in vivo through regulation of COX-2 (cyclooxygenase-2), while the administration of miRNA-379
engineered BM-MSCs resulted in no adverse effects. Moreover, the addition of BM-MSC-EVs containing
miRNA-124a to glioblastoma stem cells (GSC) caused a significant reduction in cell viability and
clonogenicity. In vivo treatment resulted in 50% of animals living long term, and histological analysis
of the survivors did not show the presence of tumours [110]. Another possible approach to load
RNA into SC-EVs is to manipulate endogenous RNA sorting mechanisms. There is evidence that
the RNA profile in EVs depends on the type and origin of the parental cells, and some RNAs are
enriched in certain cell types [134]. These observations suggest that distinct mechanisms exist for RNA
sorting into EVs, and these mechanisms could be used to deliver specific therapeutic RNAs to EVs
in a more sophisticated manner by applying gene engineering. Currently, there are several known
possible RNA sorting mechanisms involving the RISC (RNA-induced silencing complex), the ceramide
pathway, miRNA-mRNA ratio, non-template terminal nucleotide additions and ribonucleoprotein
interaction with a specific RNA sorting sequence motif [135]. Commercially available systems like the
XMIRXpress lentivirus system (SBI System Biosciences) that contains a miRNA sorting sequence motif
or an artificially introduced RNA sorting sequence could be applied to MSCs in the future.

RNA post-loading approaches have also been studied in SC-EVs. For example, Greco et al.
used electroporation to load PLK1 (polo-like kinase 1) siRNA into EVs derived from HEK293 [122].
The subsequent co-incubation of these EVs with bladder cancer UMUC3 cells increased their PLK1
siRNA concentration by almost 30 times. Similar results were obtained with MSC-derived EVs.
Eventual co-incubation of UMUC3 cells and MSC-EVs loaded with siRNA showed that suppression of
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PLK-1 induced both apoptosis and necrosis in UMUC3 cells. Similarly, BM-MSC-EVs were efficiently
loaded with LNA (locked nucleic acid) anti-miRNA-142-3p by electroporation and successfully used
to reduce miRNA-142-3p levels and restore Apc and P2x7r gene expression in mouse breast cancer cell
lines (4T1 and TUBO) in vivo [108].

4.4. SC-EV Modifications to Improve Tissue Targeting

While there are several studies done to modify SC-EV content, additional research needs to be
performed to modify the membrane of SC-EVs with a technology called EV display [126,136–138].
While systemically administered EVs can accumulate in undesired locations [138], EV display
technology might allow engineering EV membranes in a way that EV uptake in target tissues
is increased. So far, several approaches have been developed like overexpression of specific EV
membrane proteins, antibody/antigen conjugation, modification of surface proteins, EV surface
synthetic modification, or hybrid EV production. For example, Sato et al. proposed a new technique for
tailoring EVs with desired characteristics based on the direct membrane fusion between pre-isolated
EVs and synthetic liposomes [139]. This approach enables to obtain personalised EVs where multiple
ligands can be inserted into a variety of preformed liposomes containing a number of drugs. Another
option is to use commercial products like XStamp (SBI System Bioscience), that allow virtually unlimited
targeting options by decorating EVs with streptavidin, followed by binding of biotinylated targeting
molecule. However, to the best of our knowledge, there are no reports of EV display technology in
MSCs for cancer treatment.

4.5. Increase of SC-EV Yield

Besides MSC-EV modification for loading and targeting purposes, some studies aim to increase
MSC-EV yield with engineering methods. The rationale behind this is that finite MSC expansion
capability for EV generation, and the yield of MSC-EVs are limiting factors in large scale production for
cell-free therapies. There are some good manufacturing practice (GMP)-grade standard protocols for
MSC-EV isolation [140], but they suffer from the same problem. One of the solutions is to immortalise
MSCs. For example, Lai and colleagues demonstrated that the production of EVs is scalable under
stringent GMP conditions using MSCs immortalised by overexpression of c-Myc [141]. An alternative
cell source for EV production are PSC-derived MSC-like cells, that can be robustly induced in vitro
(iMSCs—induced MSC-like cells). Current in vitro studies indicate that iMSCs could overcome
EV production limitations. However, more studies are needed to demonstrate the safety of such
an approach [142]. Besides engineering, other methods to increase EV yields like lowering pH in
the culture medium, hypoxia treatment, small molecule treatment, 3D ECM, large scale expansion
methods, i.e., spinner flasks and hollow-fibre bioreactor among other methods, have been tested in
MSCs [137,143,144]. The current achievements of methods to increase the production of MSC-derived
EVs are reviewed by Wang et al. [143] and Phan et al. [144].

5. Adult SCs versus EVs: Advantages and Disadvantages in Cancer Treatment

In the last decades, SCs have raised increasing interest regarding their therapeutic potential
not only in regenerative medicine but also in cancer treatment. SCs have the intrinsic ability to
migrate towards inflammatory and tumour sites and exert anti-tumour and immunomodulatory
activities [145–147]. Although the mechanism of MSC tropism is not fully understood, several studies
indicate that it may depend on different chemoattractant-receptor pairs, such as the stromal cell derived
factor 1 and its receptor C-X-C chemokine receptor type 4, or monocyte chemoattractant protein-1
and C-C chemokine receptor type 2 receptor [148]. Moreover, genetically engineered SCs that express
higher levels of chemokine receptors are more efficient in targeting glioma cells [149], thus providing
a powerful tool to increase homing and improve treatment outcomes.

SCs naturally secrete therapeutic substances that inhibit cancer development. Friedman et al. [150]
reported that human UC-MSCs secrete significant amounts of cytokines, including TGF-β, tumour
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necrosis factor-alpha, and interferon alpha and gamma. These molecules have both direct
anti-proliferative and pro-apoptotic effects and an immunostimulatory effect that potentiates the
anti-cancer immune response, resulting in a dual attack. Moreover, native MSCs have been described to
release Dickkopf related protein 1, leading to the inhibition of Wnt signaling pathways, which ultimately
affects tumour cell cycle [151,152]. Nevertheless, various studies have also reported a pro-cancer
behaviour of adult SCs [153]. In a xenograft model, the mixing of human colorectal cancer cells with
MSCs resulted in increased angiogenesis and tumour growth rate [154]. The authors claimed that
the secretion of IL-6 from MSCs, which in turn induces endothelin-1 release from cancer cells and
the following recruitment of endothelial cells upon activation of Akt and ERK, is responsible for the
observed enhanced angiogenic capacity. These opposite pro- and anti-tumour effects of SCs could
possibly be explained in the light of the source of SCs. In fact, SCs have been demonstrated to be
sensitive to microenvironment priming, i.e., MSCs derived from neoplastic pancreas promote cancer
growth to a larger extent than the healthy counterpart [155]. Moreover, Sheng et al. showed that
proinflammatory cytokines, such as IFNγ, play an important role in priming the immunosuppressive
property of MSCs [156].

Despite the large number of preclinical studies that use SCs for cancer therapy, their application
in cancer treatment clinical trials is still relatively rare compared to other clinical conditions. One of
the main reasons is the safety concerns regarding SC transplantations in patients. Although less
immunogenic than other allogeneic cells, allogeneic MSCs have been shown to elicit an immune
response in vivo resulting in their rejection [157], thus meaning that they should not be considered
as immune-privileged but rather to have the ability to escape host rejection transiently. A possible
way to overcome host rejection is to apply autologous SCs, either directly derived from patients or
reprogrammed from adult somatic cell iPSCs. Both approaches have limitations since patient-derived
SCs could be already primed towards a pro-tumourigenic behaviour [155] and iPSCs, which are forced
to express pluripotency factors, tend to form teratomas in mice [158,159]. A possible strategy to prevent
SC neoplastic transformation in vivo is to engineer them in order to express a “suicide gene” that
converts non-toxic prodrugs into cytotoxic products [160]. Once transplanted into tumour-bearing
models, engineered SCs localise to tumour tissues, and the exogenous enzyme converts systemically
administrated prodrug into a cytotoxic molecule. As a result, a high concentration of the cytotoxic
drug is locally acquired, which harms tumour cells with no or few off-target effects and eradicates
SCs at the same time. Cultivation of SCs in vitro introduces a bias that could potentially impact
the therapeutic outcome. In particular, long-term cultures of MSCs have been shown to undergo
spontaneous malignant transformation [161]. Senescence bypass upon deletion at the Ink4a/Arf locus
and hyperphosphorylation of retinoblastoma protein are suggested as an explanation [162]. Also,
the in vivo therapeutic effects of MSCs are hampered by the relatively large size of the cells (15–30 µm
in diameter) that leads to mechanical entrapment of MSCs in lung capillaries within minutes after
intravenous injection. The cells are then redistributed to the liver and spleen and finally cleared by
phagocytes within 7–10 days after their administration [163]. This indicates that the biodistribution of
exogenous MSCs is rather limited to lung, liver, and spleen and has reduced accessibility to other target
organs. Indeed, only 0.2% of MSCs were detected in a subcutaneous xenograft of PC3 cells in a prostate
cancer model at day seven post-infusion [164]. Ultimately, these safety concerns reduce the clinical
application of SCs for cancer therapy and underline the need to move to more easily standardisable
cell-free systems.

To improve the tumour-targeted delivery and therapeutic efficacy of MSCs, it has been suggested
to either use EVs secreted by native or engineered MSCs or to fabricate synthetic MSC therapeutic
particles that possess the paracrine activity of the parent MSCs and escape lung entrapment [164–166].

Previous studies have revealed that MSC-EVs participate in the paracrine transfer of signalling
molecules and, similarly to MSCs, could regulate tumour cell proliferation, angiogenesis, and
metastasis [167]. SC-EVs share many similarities with their donor cells, including similar
immunophenotype, protein signature, RNA content, and functional properties that make them
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an attractive model for novel targeted cell-free anti-cancer therapy design. Comparing to adult SCs,
SC-EVs have several advantages as therapeutic agents (see Table 3).

Table 3. Advantages and disadvantages of MSC-EVs over MSCs.

Advantages Disadvantages

1. Less mechanical entrapment in tissues
2. Paracrine function

3. Tumour homing similar to MSCs
4. Good safety profile

5. Modification options
6. Easier and less costly to handle

7. Yield can be easier increased compared to MSCs

1. Lack of standardised production,
modification, and characterisation

2. Modifications can cause immunogenicity or
toxicity risk

3. Potential of tumour promoting effects similar
to MSCs

4. Lack of information on tumour selectivity
depending on the EV source

For example, as other EVs, they can pass biological barriers, like the BBB, blood-cancer barrier, and
shuttle bioactive molecules from one cell to another, also causing the exchange of genetic information
and reprogramming recipient cells. Moreover, SC-EVs have been considered as an attractive therapeutic
agent shuttle to cancer cells thanks to their cancer cell tropism, which is similar to their parental
cells, and to a more efficient internalisation in cancer cells than liposomes of comparable size [168].
Adult SC-EVs also have prolonged time in the circulation due to the smaller size, and they are not
trapped to the same extent in the lungs, liver, or spleen compared to MSCs. SC-EVs raise fewer safety
concerns as they are not capable of undesired proliferation and differentiation upon administration in
the body.

Additionally, adult SC-EV tissue targeting efficiency can be enhanced by surface protein
engineering and the versatility of cargo molecules that can be uploaded by passive or active methods.
SC-EVs are also easier to handle, less expensive, and can be generated on a relatively large scale [87].
However, there are several challenges to overcome to make SC-EVs a superior cancer treatment (See
Table 3). There is no standardisation in the usage of SC-EVs in vitro and in vivo studies, which could
be one of the main factors limiting the start of new clinical trials. The lack of consistency between
studies makes it difficult to compare existing studies. Therefore, the reproducibility of EV purification
and characterisation methods have to be established. There are already established GMP protocols
for MSC-EV isolation, as mentioned in a previous chapter [140]. Moreover, there is no standard way
to quantify the number of EVs given to cells. EV concentration measurements are often based on
EV protein concentration, which varies significantly between studies, and the number of particles
per milliliter is not considered a precise method of EV quantification [169]. Thorough preclinical
pharmacokinetics and pharmacodynamics evaluation have to be done before EV-based anti-cancer
therapeutics can be used in the clinic. Several initiatives are taken to functionally test and characterise
MSCs to determine their potency before application, and SC-EV production could benefit from adopting
similar procedures [170]. In summary, there are clear advantages of EVs over SCs. Therefore MSC-EVs
are promising therapeutic agents for cancer treatment in the future. Current MSC-EV pre-clinical
application results in vivo demonstrate almost no side effects compared to cellular therapies [171].
Also, modified or engineered SC-EVs might prove to be more effective than native MSC-EV in the
future, but more studies and standardised protocol for modified EV production and characterisation
are necessary.

6. Perspectives and Future Challenges of Adult SC-EV in Cancer Treatment

Currently (April 2020), there are over 160 trials listed on www.clinicaltrials.gov involving exosomes,
47 trails using EVs, 298 trials with MVs and/or microparticles, and 31 mentioning the use of apoptotic
bodies. While 83 studies use exosomes in cancer clinical trials, nine cancer trials involve EVs, 56 cancer
trials involve MVs or microparticles, and 18 cancer trials mention apoptotic bodies. Only 13 trials

www.clinicaltrials.gov
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use the term SC exosomes, five SC-EVs, 33 involve SC-MVs or microparticles, and three mention SC
apoptotic bodies.

So far, there are only two clinical trials that use AD-MSCs and fibroblast-like MSCs (FL-MSCs) as an
EV source for cancer treatment. The study entitled “iExosomes in Treating Participants With Metastatic
Pancreas Cancer With KrasG12D Mutation” (NCT03608631) plans to use FL-MSC-EVs engineered to
carry siRNA or shRNA specific to oncogenic KRASG12D to treat pancreatic ductal adenocarcinoma.
In the in vivo proof-of-concept study, iExosomes containing KRASG12D siRNA induced sustainable
tumour growth inhibition in an orthotropic mouse model [172].

The trial “The EXOPRO Study: How Does Prostate Cancer Metastasize?” aims to explore the role
of EV communication between patient-derived adipose tissues, presumably including also adult SCs
and prostate cancer cells lines to find out the differences in prostate cancer progression between lean
and obese patients (NCT04167722). The effect of small RNAs transferred by human adipose tissue EVs
on prostate cancer regulation will be analysed. The study started recruiting patients in 2019, and the
estimated completion date is 2023. Since cancer treatment clinical trials using SC-EVs are generally
novel, it is premature to make any conclusions.

To promote SC-EV application in cancer treatment, there are still fundamental and methodological
questions that should be addressed to fully understand the biology of these EVs. As we have discussed
previously, SC-EVs clearly have the ability to influence various aspects of tumour progression.
Mixed outcomes are observed using native EVs, while more unified responses are reported when
EVs are modified. In addition, there is a clear need to do more studies involving in vivo models or
sophisticated in vitro systems, like organoid co-cultures or organ on a chip, to validate the effects of
SC-EV on tumourigenesis before starting cancer clinical trials and subsequent therapy.

Despite the established immunomodulatory action of MSCs [173] and EVs [174,175] and the
importance of EV-related immune evasion response in tumour progression [176], we could not
find many studies demonstrating direct SC-EV-mediated immune modulation. Perhaps this could
be addressed by using genetic tumour models as recently demonstrated [177], or more advanced
in vitro platforms. For example, tumour organoid-T-cell co-cultures models are available to study
tumour-immune cell interactions and could be adapted to include stem and progenitor cells or
EVs [178]. The use of such models could also help to address the importance of cells versus EVs for
immunomodulatory response in future cancer therapies.

The realisation that transplanted MSCs are short-lived and that the effects of infused cells could
be mediated by their secretome has produced the concept of a cell-free MSC-based therapy that would
include EVs and other components released by cells [30]. A recent report has questioned the need
for a living fit MSC in a transplantation product and suggested that apoptotic cells could be used for
immune modulation [179]. Along these lines, another report showed that MSCs are phagocytosed by
the monocytes that subsequently modulate the adaptive immune system [180]. It would be interesting
to uncover if these observations are related to the apoptotic bodies released by MSCs, whether EVs
can be phagocytosed to trigger a similar immune modulation and what implications it might have in
cancer models. Some data already suggest that stressed MSCs [71,91] and some apoptotic cells [181]
do release EVs that can modulate macrophages and attenuate inflammation.

Another intriguing aspect is the role of endogenous progenitor- and SC-derived EVs in cancer.
Based on the involvement of EVs in developmental signaling [85,182], one could assume that some of
the functions of adult SCs in tissue repair and cellular plasticity could also be EV-mediated. Given the
many parallels between mechanisms seen in tissue repair and cancer [83], further speculation can be
made about the possible involvement of endogenous adult SC-EVs in cancer progression. Transplanted
MSCs are known to display injury and tumour tropism [15], and perhaps endogenous adult SCs
perceive tumour lesions in a similar way and engage in EV-mediated regulation. What makes this path
particularly challenging is identifying the origin of EVs. A better understanding of EV subpopulations,
unique marker identification, and being able to label and track the EVs from their origin to acceptor
cell [183] and between organs [184] could greatly facilitate this research area in the future. Alternatively,
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some insights can be gained from in vitro models. Recent advancements in organoid culture methods
have allowed to expand adult SCs and progenitor cells from different organs and study them in settings
that better resemble the in vivo environment [185].

In conclusion, SC-EVs demonstrate a high potential for cancer therapy. Moreover, engineered
SC-EVs are anticipated to find applications in a unique niche between molecular and cellular medicine
and play a part in personalised cancer therapy. However, our fundamental knowledge of EV biology
is in a relatively early stage, and much effort needs to be made in order to guarantee their safe and
effective therapeutic use. Moreover, adequate standards for SC-EV manipulation need to be established
to bring SC-EVs a step closer to clinical application.
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