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Abstract: Helicobacter pylori (H. pylori) is a 0.5–1 µm wide, 2–4 µm long, short helical, S-shaped Gram-
negative microorganism. It is mostly found in the pyloric region of the stomach and causes chronic
gastric infection. It is estimated that these bacteria infect more than half of the world’s population.
The mode of transmission and infection of H. pylori is still not known exactly, but the faecal–oral and
oral–oral routes via water or food consumption are thought to be a very common cause. In the last
three decades, research interest has increased regarding the pathogenicity, microbial activity, genetic
predisposition, and clinical treatments to understand the severity of gastric atrophy and gastric
cancer caused by H. pylori. Studies have suggested a relationship between H. pylori infection and
malabsorption of essential micronutrients, and noted that H. pylori infection may affect the prevalence
of malnutrition in some risk groups. On the other hand, dietary factors may play a considerably
important role in H. pylori infection, and it has been reported that an adequate and balanced diet,
especially high fruit and vegetable consumption and low processed salty food consumption, has a
protective effect against the outcomes of H. pylori infection. The present review provides an overview
of all aspects of H. pylori infection, such as clinical features, treatment, and nutrition.
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1. Introduction

Helicobacter pylori (H. pylori) was first identified in the stomach of dogs as a spiral
microorganism by Giulio Bizzozero in 1892 [1]. As they are Campylobacter-like spiral
microorganisms, they were named Campylobacter pyloridis by Barry Marshall and Robin
Warren in 1983 [2]. Goodwin et al. named it “Helicobacter pylori” in 1989, as it has a helical
structure and is mostly found in the pyloric region of the stomach [3]. H. pylori is a 0.5–1 µm
wide, 2–4 µm long, short helical, S-shaped Gram-negative microorganism and infects more
than half of the world’s population [4].

The relationship between H. pylori and gastric cancer was investigated in 1991 and
1994, and the International Agency for Research on Cancer, a branch of the World Health
Organization, reported that H. pylori is carcinogenic in humans, which was reconfirmed in
2009 on the basis of epidemiological data [5,6]. In the United States, the National Institute
of Health reported in 1994 that H. pylori may be the primary cause of peptic ulcer disease
and should be treated. Marshall and Warren were awarded the Nobel Prize in 2005 for their
work on H. pylori in the field of physiology “for discovering the role of H. pylori bacteria in
gastritis and peptic ulcer disease” [7]. H. pylori plays a role in the development of diseases
such as gastritis and mucosa-associated lymphoid tissue (MALT) lymphoma, as well as
peptic ulcer and gastric cancer [8].

The mode of transmission of H. pylori is not known exactly, but the faecal–oral or
oral–oral routes via water or food consumption are thought to be a very common cause [9].

Diseases 2021, 9, 66. https://doi.org/10.3390/diseases9040066 https://www.mdpi.com/journal/diseases

https://www.mdpi.com/journal/diseases
https://www.mdpi.com
https://orcid.org/0000-0002-4866-2818
https://orcid.org/0000-0003-0010-0012
https://orcid.org/0000-0002-3335-1822
https://doi.org/10.3390/diseases9040066
https://doi.org/10.3390/diseases9040066
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diseases9040066
https://www.mdpi.com/journal/diseases
https://www.mdpi.com/article/10.3390/diseases9040066?type=check_update&version=2


Diseases 2021, 9, 66 2 of 19

The frequency of H. pylori infection increases with age. The rate of development is higher in
societies with low socioeconomic status [10]. The fact that H. pylori survives in the stomach
and creates chronic inflammation shows that it can be resistant to both the immune response
and acid [11]. Many antibiotic treatments are used for the treatment of H. pylori, and studies
show that the number of strains resistant to antibiotics used for treatment is increasing
rapidly [12,13], which has led to the search for alternative agents to create safer and more
effective results in addition to antibiotic treatments [14].

It is thought that dietary factors may play a considerably important role in H. pylori
infection, and it has been reported that an adequate and balanced diet, especially high and
abundant fruit and vegetable consumption, has a protective effect against the outcomes
of H. pylori infection [15]. However, some studies have suggested a relationship between
H. pylori infection and malabsorption of essential micronutrients, and it may cause mal-
nutrition in some groups in the long term [16]. This review aimed to discuss the general
clinical features of H. pylori and its relationship with nutrition, in addition to the treatment
practices related to the disease.

2. H. pylori Infection Epidemiology

There are many studies on the prevalence of H. pylori, and its risk factors and path-
ways [9,17,18]. It is claimed that half of the world’s population is infected with H. pylori, but
it is clear that more evidence-based research is still needed. The incidence of this infection is
higher in low socioeconomic status groups and developing countries [19]. Vilaichone et al.
found that the prevalence of H. pylori varies not only from country to country but also
in different regions of the same country [20]. Its prevalence is significantly difficult to
determine, as no health system compiles registry-based results of the prevalence of H. pylori
in developing countries [21].

According to the regional prevalence estimates, there are approximately 4.4 billion
H. pylori-infected people worldwide [22]. The countries with the highest H. pylori bur-
den compared with the general population were found to be Nigeria, Portugal, Estonia,
Kazakhstan, and Pakistan, and the lowest burden was in Switzerland [21]. In the study of
Mezmale et al. (2020), a high prevalence of H. pylori infection was determined in Russia,
Jordan, Iran, China, Canada, and Latin American countries [23].

Studies conducted in Turkey show that the rate of H. pylori infection is high. For
example, in a study by Uyanıkoğlu et al. in 2010, 918 of 1298 patients who had antrum
biopsy were positive for H. pylori. The prevalence of H. pylori infection is similar in males
and females, and the incidence of H. pylori infection is 73.2% between the ages of 14 and
30, 71.5% between the ages of 31 and 45, 68.6% between the ages of 46 and 60, and 70.4%
between the ages of 61 and 88 [24]. In a study conducted by Özen et al. in 2011, 161 of 473
children studying in four different primary and secondary schools in Istanbul were found
to be H. pylori-positive [25]. Similarly, Özaydın et al. screened 4622 people for H. pylori
infection in 55 cities using the C-urea breath test in 2013, and 3852 people (2075 females
and 1777 males) were found to be positive for H. pylori [26]. In the review by Hooi et al.,
it was reported that three studies were conducted in Turkey up to 2015, the total number
of participants was 6036, and the prevalence was 77.2% [21]. In a study conducted by
Soylu et al. in 2019, the number of H. pylori-positive patients was found to be 46 (21 females
and 25 males) in biopsy samples taken from 88 patients (53 females and 35 males) aged
18–77 years with dyspeptic complaints. Compared with the total number of participants,
male patients were found to be more H. pylori-positive [27]. A study conducted in Nepal
reported that 18.2% of 6- to 59-month-old children, 14% of boys and 16% of girls aged 10–19
years, and 40% of non-pregnant women aged 20–49 years were infected with H. pylori [28].

3. H. pylori Transmission

Although the mode of transmission of H. pylori is not known exactly, it is thought that it
can be transmitted directly from one person to another or indirectly from the environment
to people [29]. Person-to-person transmission is thought to be the primary mode of
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transmission, especially in developed countries. Food- and waterborne transmission are
more likely in developing countries and H. pylori spreads more rapidly in areas with poor
hygienic conditions [30,31].

In a study evaluating the prevalence of H. pylori infection in the rural community,
Goodman et al. reported that people who are consumers of raw vegetables are more likely
to be infected. Moreover, swimming in streams and rivers and using streams as drinking
water may increase infection because of contamination by irrigation water or unpurified
water [32]. Although some studies suggested that the transmission of H. pylori is from
environmental contamination to food products, there is insufficient evidence to confirm
this information [30,33]. It is accepted that interpersonal transmission routes are more
frequent than environmental exposures. However, special attention should be paid to
the sources of contamination (unhygienic water) that may lead to contamination through
food [29].

Person-to-person transmission is thought to occur through the oral–oral, faecal–oral,
gastric–oral, or sexual routes [29]. The literature indicates that H. pylori is present in
the dental plaque and saliva of infected individuals [34–36], which shows that H. pylori
infection spreads at a much higher rate than expected and, especially, transmission between
family members is very frequent [37].

4. H. pylori Diagnosis

Each of the diagnostic tests used to detect the presence of H. pylori has advantages,
disadvantages, and limitations, and the necessity of endoscopy is taken into account when
classifying the methods. Histological evaluations using gastric biopsy specimens include
rapid urease testing, culture, and polymerase chain reaction (PCR) [38]. Where invasive
methods are time-consuming and not cost-effective, non-invasive diagnostic methods are
used. Non-invasive tests include serological evaluation, stool antigen analyses, and the
commonly used urea breath tests [39]. On the other hand, there is also non-Helicobacter
pylori helicobacter (NHPH), which does not have a spiral morphology in the stomach [40].
Neither is the gold standard due to poor sensitivity or specificity. Combinations of more
than one test give more reliable results [41].

5. H. pylori Pathogenesis

H. pylori is easily killed in hydrochloric acid solutions with a pH below 4.0. It is quite
paradoxical for a microorganism whose primary site is the stomach. H. pylori continues
to live in the lower part of the stomach by penetrating the mucus layer of the stomach
through the contribution of its spiral shape and flagella [42]. To neutralise the acidic
pH-related bactericidal activity against H. pylori, which can colonise the gastric epithelial
surface, H. pylori hydrolyses urea to ammonia and carbon dioxide with the urease enzyme it
produces [6]. In addition to its toxic effects on gastric mucosal epithelial cells, the ammonia
formed increases the mucosal pH [43]. By damaging the protective mucus layer, which
is rich in phospholipid and lipase, with the bacterial protease enzyme, it also delays the
diffusion ability of H ions and increases its damaging effect [44].

It is known that H. pylori secretes a vacuole-forming cytotoxin (VacA) that adheres
to the surface epithelium with adhesin proteins and causes vacuolization. The vacuole-
forming cytotoxin induces host cell death through pore formation and apoptosis in mi-
tochondrial membranes [45]. In addition to VacA, cytotoxin-associated antigen (CagA),
known as an oncoprotein, is delivered into gastric epithelial cells and disrupts vesicular
trafficking and autophagy pathways. Various studies have shown that cytotoxin-associated
antigens affect the cell shape of bacterial proteins, disrupt cell assembly activity, increase
cell motility, and are responsible for gastric ulcers and cancers [46–48].

Lipopolysaccharide (LPS), found in the outer membrane of H. pylori, is an effective
immunomodulator in the human body and causes chronic inflammation by triggering the
immune system. LPSs of H. pylori can mimic Lewis blood group antigens and, during
infection, LPS can produce pathogenic anti-Lewis antibodies [49]. Lewis blood group
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antigens in the glycoprotein structure found on gastric epithelial surfaces mediate the
binding of BabA, known as an adhesin, which binds to blood group antigens on the outer
membrane of H. pylori, to surface mucosal cells and the gastric pit, and causes tissue
destruction [50].

6. Potential Metabolic Responses to H. pylori

Similar to plant and animal species throughout history, humans have been prone to
infection by pathogens. It has been suggested that infection formation is associated with
many diseases [51]. The gastrointestinal tract constitutes the most intense region in terms
of the diversity of microorganisms in the human body, and therefore they have critical
roles in the development of the immune system [52]. The stomach was considered a sterile
organ unsuitable for the growth of microorganisms. However, the discovery of H. pylori
has shown that this idea is not correct. With the development of molecular techniques,
it has been shown that there are abundant microorganisms in the stomach. In addition,
various evidence has indicated that the stomach microbiota is effective in the development
and progression of gastric disease [53].

The immune response caused by H. pylori causes damage to the gastric mucosa.
During H. pylori infection, surface proteins and LPS are released, stimulating the host’s
macrophages and promonocytes [54]. Proinflammatory factors such as interleukin-1 beta
(IL-1β), interleukin-8 (IL-8), and reactive oxygen species (ROS) are produced in the gastric
mucosa. Moreover, H. pylori can interact with epithelial cells to produce IL-8 [55]. IL-1β
plays a significant role in the initiation and proliferation of inflammatory responses against
bacteria and is effective in the suppression of acid secretion as a key cytokine in the gastric
mucosa [56].

H. pylori induces the expression of neutrophils and adhesion molecules such as
CD11b/CD18 and the production of ROS for potent chemotactic activity by stimulat-
ing the secretion of the proinflammatory cytokine IL-8 from the gastric mucosal cells of
H. pylori [55]. In an in vitro study by Fazeli et al., it was proven that IL-8 is induced by
CagA-positive strains of H. pylori, causing mucosal damage [57].

Davies et al. have suggested that host neutrophils are involved in the activation of
ROS production by H.pylori [58]. Excessive ROS production creates oxidative stress in the
gastric mucosa and can damage cellular components, including polyunsaturated fatty acids
(PUFA), proteins, and DNA [59]. It is thought that H. pylori has antigens similar to some
humoral compounds that play a role in essential physiological and structural formations in
human cells, and that cellular and humoral immune responses can direct tissue destruction
towards a pathological inflammatory response [49].

7. H. pylori and Chronic Gastritis

Inflammation of the gastric epithelium associated with mucosal damage is defined as
gastritis [60]. It has been determined that the most common cause of chronic gastritis world-
wide is H. pylori infection [61]. Proinflammatory cytokine production and inflammation
induced by H. pylori infection affect gastrin-producing G cells, somatostatin-producing D
cells, and acid-producing parietal cells, resulting in significant changes in acid homeostasis
in the stomach [62].

Gastritis caused by H. pylori also reduces somatostatin levels. Since somatostatin
negatively affects gastrin secretion, it causes an increase in gastrin levels and an increase in
gastric acid secretion in these patients. Gastrin expression can be enhanced by the direct
stimulating effect of H. pylori-induced proinflammatory cytokines on G cells [63].

Corpus-dominated gastritis predisposes individuals to gastric cancer, which is partly
thought to be due to reduced acid secretion. Infection of the gastric antrum causes increased
acid production and predisposes individuals to duodenal ulcer disease, which is associated
with a reduced risk of gastric cancer [64].

ROS or reactive nitrogen species production is generated by the neutrophils and
macrophages/monocytes in response to H. pylori infection. These have the potential to
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cause DNA damage. DNA damage is thought to trigger a series of events in gastric
carcinogenesis, represented as a gastritis–atrophy–metaplasia–dysplasia–cancer sequence,
by leading to mutations of some important genes in the stomach tissue [65,66].

8. H. pylori and Stomach Cancer

The risk factors of gastric cancer, which is the fifth leading type of cancer worldwide
and the third cause of death linked to cancer worldwide, include H. pylori infection, age,
high salt consumption, and low consumption of fruit and vegetables [67].

The pathogenicity of H. pylori and bacterial factors, including urease, VacA, CagA,
and peptidoglycan outer membrane proteins (BabA, OipA, SabA), affect gastric epithelial
cells [68]. Besides, the host’s genetics are affected by H. pylori infection, which affects genes
encoding cytokines such as IL-8, IL-1β, IL-10, and TNF-α that cause polymorphisms, and
increases proinflammatory responses, resulting in gastric cancer risk [69]. Thus, gastric
cancer is affected not only by the H. pylori strain’s characteristics but also by the host’s
genetic determinants and environmental factors [70]. It has also been proven that one of
the environmental factors associated with an increased risk of gastric cancer is high dietary
salt intake [71].

The noteworthy point in the studies is that a high salt food intake increases CagA levels
in H. pylori and thus promotes infection [70,72]. The eradication of H. pylori may reduce
the risk of gastric cancer, and studies have confirmed that it can reduce the occurrence of
gastric cancer, including in those at highest risk [73,74].

9. H. pylori and Peptic Ulcers

Peptic ulcer disease, which is a significant source of morbidity and mortality world-
wide, usually progresses asymptomatically. Symptoms of symptomatic peptic ulcer disease
are epigastric pain associated with bloating, dyspepsia, nausea, early satiety, or abdominal
fullness [75]. A peptic ulcer is frequently detected in the stomach and proximal duode-
num [76]. Most cases of peptic ulcer disease are thought to be associated with H. pylori
infection, use of nonsteroidal anti-inflammatory drugs (NSAIDs), or both [77].

People with non-atrophic antral-dominant gastritis have high stimulated acid produc-
tion and increased gastrin levels due to decreased somatostatin in the antrum. Clinically,
duodenal ulcers are common in this group [78]. In particular, gastritis caused by H. pylori
causes a decrease in somatostatin levels [63]. On the other hand, people with atrophic
gastritis (concerning both the antrum and corpus mucosa) have impaired acid production.
This phenotype is thought to be associated with proximal gastric ulcers, more advanced
precancerous lesions, and an increased risk of gastric cancer [79].

Studies have shown improvements in peptic ulcers with the eradication of H. pylori [80–82].
H. pylori chronically colonises the gastric/duodenal mucosa, inducing gastroduodenal diseases
such as gastritis and peptic ulcer, and inducing innate and specific immune responses; however,
if the infection is not eliminated, the chronic active gastritis condition may continue for life [83].

10. H. pylori and Anaemia

Iron is an important micronutrient for animals and microorganisms as a cofactor for
enzymes involved in oxygen and electron transport and DNA synthesis. The response to
infection is mediated by an iron-retaining mechanism that indirectly reduces the redistri-
bution from the cell cytosol to the cell surface, and reduces circulating transferrin and the
growth of infecting pathogens [84].

Kato et al. demonstrated that the SabA gene in the pathogenesis of H. pylori is highly
expressed in bacterial isolates from patients with iron deficiency anaemia, proving that
this virulence factor has a role in the development of anaemia [85]. Moreover, H. pylori
causes hypochlorhydria and atrophic gastritis, in addition to peptic ulcer disease and
increasing the risk of gastric malignancies. In this case, weakening of iron absorption can
cause iron deficiency anaemia [86]. Atrophic corpus gastritis causes impaired intrinsic
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factor secretion, hypochlorhydria, or achlorhydria and can lead to intestinal iron and B12
malabsorption [86,87].

11. H. pylori and Insulin Resistance

Since the immune system is triggered by H. pylori infection, some inflammatory
cytokines such as tumour necrosis factor α (TNF-α) and leptin and adipokines create
an immune response to this inflammation. Relevant studies have revealed that leptin
deficiency can induce the insulin resistance (IR) of high TNF-α and IL-6 levels [88,89].
Inflammatory cytokines induce the phosphorylation of serine residues on the insulin
receptor substrate, causing disruption of insulin function and disrupting the substrate’s
interaction with insulin receptors. Thus, diabetes can occur with the deterioration in blood
glucose regulation [90,91].

12. H. pylori Infection Treatment

Infection treatment is carried out with a combination of antimicrobial agents and anti-
secretory agents, and gastric pH must be increased with antisecretory agents to achieve the
bactericidal effect of antimicrobial agents. Alternatively, herbal medicines and probiotics
are used as complementary therapy to help eradicate H. pylori, although their mechanism
of action is not yet clear [92]. The increasing prevalence of antimicrobial resistance in
H. pylori from person to person has led to the failure of eradication therapy with decreased
compliance with clinical nutrition therapies [93].

In the treatment of H. pylori, drug resistance can easily develop against antibiotics
used alone, so the recommended treatment is a combination of several antibiotics [39].
Many antimicrobial agents, antisecretory agents, and proton pump inhibitors are used
in the H. pylori treatment protocol, including clarithromycin, amoxicillin, levofloxacin,
metronidazole, tetracycline, rifabutin, and bismuth-containing compounds [92,94]. Ac-
cording to several international guidelines, first-line therapy for the treatment of H. pylori
infection is a triple therapy consisting of a clarithromycin antibiotic given for 7–14 days,
using any antibiotic from amoxicillin or metronidazole, and a PPI or ranitidine bismuth
citrate [95,96]. If the treatment is not successful, second-line treatment is started. This
treatment is carried out according to individual antibiotic resistance and sensitivities, or ex-
perimentally [96]. Second-line therapy is usually designated as tetracycline, metronidazole,
a bismuth salt, or PPI. After failure of the second-line treatment, antimicrobial susceptibility
test should be performed on the H. pylori culture from which the gastric biopsy was taken,
and local resistance to antibiotics should be taken into account and treatment should be
continued [78].

It has also been stated that PPIs, which have been used for a long time in the treatment
of H. pylori infection, may prevent the absorption of micronutrients as well as their bene-
fits [97]. The United States Food and Drug Administration has suggested that long-term
use of PPIs may cause an increased risk of hypomagnesemia and fractures [98].

13. H. pylori and Nutrition

H. pylori infection has the main pathogenic effect, especially in diseases of the upper
digestive tract. In addition to its cytotoxic and proinflammatory effects, H. pylori, similar
to other microorganisms in the alimentary tract, affects the brain–gut connection, though
indirectly [99]. It produces different biological effects on hormones such as ghrelin and
leptin, which control both growth and appetite, causing changes in appetite and food
intake, while causing changes in immunological symptoms and responses [99,100].

H. pylori is a factor that causes malnutrition and growth retardation, especially in
childhood, due to malabsorption of nutrients and increased susceptibility to enteric infec-
tions, especially in developing countries [16]. Nweneka et al., in a meta-analysis study,
reported that people with positive H. pylori had lower circulating ghrelin concentrations in
19 studies. On the other hand, the eradication of H. pylori also showed no significant effect
on ghrelin in the circulation. This discrepancy in results depends on the amount of damage
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to ghrelin-producing cells before eradication, the time it takes for these cells to regenerate,
and the duration of infection in the circulation [101].

Dietary modification to inhibit cancer formation promoted by H. pylori, which is a
risk factor for cancer, should include eradication as well as practical strategies for the
prevention of gastric cancer [102]. In addition, general nutrition has proven to be very
important in dietary approaches, as it is known that various nutrients such as vitamin C,
iron, cobalamin, and vitamin E cause malabsorption and lead to significant outcomes of
nutrition [100].

13.1. H. pylori and Salt

H. pylori infection, besides being a pathogenic strain, may not be a sufficient reason for
the development of gastric cancer. However, the risk for gastric cancer increases with high
salt intake [72]. Epidemiological studies have shown a link between high salt consumption
and an increased risk of gastric cancer in many parts of the world [103,104].

It has been determined in many studies that high salt intake can affect interactions
between the stomach tissue and bacteria, with synergistic effects with H. pylori, and in-
creases the possibility of permanent infection [105,106]. CagA, a bacterial oncoprotein,
may contribute to the formation of gastric cancer by disrupting the signalling pathways
of epithelial cells in the stomach. On the other hand, it has been determined that CagA
protein makes an indirect contribution to the pathogenesis of gastric cancer by stimulating
increased gastric mucosal inflammation, as it stimulates the proinflammatory cytokine IL-8
and causes an increase in secretion [72].

A study by Gaddy et al. examining the effects of high salt intake with H. pylori infection
reported that Mongolian gerbils (H. pylori infection causes chronic gastritis, gastric ulcer, and
intestinal metaplasia in Mongolian gerbils, so it is the best animal model) were infected with
a wild-type strain of CagA+ H. pylori. Infected animals fed a high-salt diet were reported to
have more severe gastroenteritis and a higher rate of gastric adenocarcinoma, with increased
expression of the proinflammatory cytokines IL-1β and nitric oxide synthase (iNOS), compared
with those fed the normal diet (Figure 1) [107]. Besides, Caston et al. determined an increase in
VacA toxin levels in the extracellular space in response to high salt under in vitro conditions.
These salt-induced changes have been proven to contribute to an increased risk of gastric cancer
in people infected with H. pylori who consume a high-salt diet [108].

Figure 1. High salt intake may contribute to the formation of gastric cancer by disrupting the
molecular pathways and some secretions of the epithelial cells in the stomach.
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13.2. H. pylori and Iron

Iron is involved in the maintenance of metabolic functions as a cofactor in biological
systems that participate in various oxidation–reduction processes, electron transport, and
amino acid and nucleotide synthesis, which are essential for life [84,109]. It is also a very
important growth factor for almost all bacteria. There is usually a race between bacteria
and the host for iron absorption [110]. On the other hand, the interaction of iron with free
oxygen creates the Fenton reaction, contributing to the generation of oxygen radicals that
can cause serious damage to cellular biomolecules’ structures [111].

H. pylori, a pathogen for gastric tissues, undoubtedly encounters a series of environ-
mental stresses in the human stomach it colonises. Iron deficiency is expected in the long
term and in some risk groups (Figure 2), as the human body tightly holds the available
iron to prevent both bacterial growth and oxidative damage [112]. At the same time,
acid secretion due to gastritis caused by H. pylori can prevent iron absorption and cause
insufficiency [113].

It is thought that iron deficiency, which is a cause of H. pylori infection, may also be
effective in H. pylori virulence (Figure 2) [112,114]. In support of this, an in vitro study
found that iron deficiency affected the virulence factors of H. pylori, leading to the activity
of Cag T4SS and inhibition of gastric acid secretion by the host with increased expression
of IL-8, contributing to the increased incidence and severity of gastroenteritis, and thus the
development of gastric cancer [115,116].

Figure 2. H. pylori and related nutritional factors. High salt intake can increase the risk of permanent
infection. H. pylori can cause iron deficiency and decrease the bioavailability of vitamin C. Some
nutrients (allicin, lycopene, capsaicin, etc.) have positive effects on H. pylori.

13.3. H. pylori and Vitamin C

Vitamin C is a micronutrient essential for human health. Unlike many animals,
humans have lost their ability to biosynthesise vitamin C (ascorbic acid) due to various
mutations of the gulonolactone oxidase enzyme [117].

Vitamin C is a chemical reducing agent or electron donor. On the other hand, electrons
from ascorbate can reduce metals such as iron and copper, leading to the formation of
hydrogen peroxide and superoxide and the formation of reactive oxidant species. As a
reducing agent, ascorbate can form oxidants in some cases [118]. While vitamin C protects
against oxidative stress in cancer cells with its antioxidant effect, it can also increase the
risk of cancer with its pro-oxidant activity [119].

The bioavailability of vitamin C can be significantly reduced by H. pylori infection
(Figure 2). In support of this, a study in 1995 showed that H. pylori can oxidise and
neutralise ascorbic acid in the stomach [120]. In another study, gastric juice and plasma
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vitamin C levels were significantly reduced with decreased vitamin C intake in people with
H. pylori [121]. In such studies, it is expected that vitamin C levels will return to normal
after H. pylori eradication [122,123]. Atrophic gastritis, which is a result of H. pylori and
triggers the formation of gastric cancer, may disrupt the secretion of vitamin C in the gastric
mucosa and increase the pH of gastric juice [124].

In a study conducted by Waring et al., when a control group consisting of 48 gastritis
patients without supplementation and an experimental group of 32 gastritis patients who
were given 500 mg vitamin C twice a day for 2 weeks were compared, it was found that
high vitamin C intake could reduce the risk of gastric cancer, but showed that the protective
effect may be greater if gastritis is treated with H. pylori eradication [125]. In another study,
Zojaji et al. divided the study group into two, created the same treatment protocol for both
groups, and added vitamin C to the second group. The experimental results showed that
78.0% of individuals in the group receiving supplemental vitamin C had increased H. pylori
eradication rates compared with 48.8% of individuals in the other group [126].

On the other hand, side effects such as gastrointestinal disturbances and especially
osmotic diarrhoea may occur due to high doses of vitamin C. It also causes an increase in
uric acid and oxalate excretion, and may also be associated with an increased risk of kidney
stones caused by calcium oxalate [127]. In rare cases, due to its pro-oxidant activity at high
concentrations, especially in supplement form, high concentrations (500 mg/day or more)
are expected to cause various adverse effects such as DNA damage and, indirectly, some
types of cancer in the presence of high iron stores in the human organism [128]. Given
that it is a water-soluble vitamin, alongside the chance of toxicity from a single daily bolus
dose and its short biological half-life, more clinical research is required to determine the
correct dosage [129]. However, vitamin C, which is generally taken with natural nutrition,
increases mucosal immune responses by eliminating free radicals, especially through
fruit and vegetable consumption [130]. It reduces the content of N-nitrosamine in the
gastric juice and inhibits cell proliferation. It may especially be protective against gastric
carcinogenesis associated with H. pylori by directly affecting the growth of H. pylori [131].

13.4. H. pylori and Antioxidants

Oxidative stress is a physiological process experienced by every living organism and
plays a role in the aetiology of many diseases and the ageing process [132]. The stomach,
which is a bioreactor, is an excellent environment to increase the co-oxidation of vitamins
but is constantly exposed to reactive species and ingested carcinogens, bacterial pathogens,
and oxidative compounds associated with food digestion [132,133].

After H. pylori reaches the gastric epithelium, it activates nicotinamide adenine din-
ucleotide phosphate hydrogen (NADPH) oxidase and produces ROS such as hydrogen
peroxide (H2O2), superoxide (O2-), hypochlorous acid (HOCl), and hydroxyl radicals (OH)
in gastric epithelial cells independently of inflammatory cells, thus triggering infection
responses in the target host’s innate immune cells [134,135].

ROS production by H. pylori activates the oxidant-sensitive transcription factor NF-κB,
which induces the expression of oncogenes and cell cycle regulators and plays an important
role in apoptosis and DNA damage in gastric epithelial cells [136]. It was observed that ROS
activity increased and antioxidant compounds such as vitamin C decreased in H. pylori-
positive individuals. Thus, gastric cancer develops due to the DNA damage caused by H.
pylori [137]. It is also known that H. pylori infection disrupts the function of some oncogenes
and tumour suppressor genes (e.g., p53) in gastric tissue, and this may trigger the initial
carcinogens [138,139].

Since H. pylori infection affects the oxidative stress process, it is thought that some
antioxidant foods and nutrients may be effective. This is also emphasised in the literature
investigating the relationship between H. pylori infection and nutrients, which suggests
that the inclusion of these nutrients in the diet may have a protective effect, unlike some
other nutritional components such as salt (Figure 2).
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Garlic (Allium sativum L.), a member of the lily family, known worldwide and most
widely cultivated in Asia, is a medicinal plant. It contains 33 sulphur compounds, especially
allicin. Garlic is known as an effective free radical scavenger against various diseases caused
by ROS [140]. Chung et al. showed in 1998 for the first time that garlic components can
suppress the growth of H. pylori [141]. Zardast et al. argued that garlic had antibacterial
effects against H. pylori in H. pylori-positive individuals who consumed two medium raw
cloves of garlic (3 g) with daily meals twice a day for 3 days [142]. In the suppression of
H. pylori, the allicin in garlic inhibits the activation of NF-κB by inhibiting the Toll-like
receptor 4 (TLR4) signalling pathway, resulting in an anti-inflammatory effect [143].

Turmeric (Curcuma longa) contains curcumin, a polyphenolic compound, and has
a yellow pigment. It is widely used as a food colouring agent [144]. Curcumin has a
wide range of beneficial properties, including antioxidant, anti-inflammatory, anticancer,
antiproliferative, antifungal, and antimicrobial properties [145]. Judaki et al. formed two
groups of H. pylori-positive individuals and applied the same treatment protocol to both
groups by adding 700 mg of oral curcumin three times a day to the second group. After 3
months, they reported a significant reduction in the amount of oxidative DNA damage in
the curcumin group [146].

Lycopene, a natural antioxidant, is a carotenoid that gives fruits and vegetables their
red colour [147]. Some studies revealed that lycopene inhibits DNA damage and the
cellular response of H. pylori-infected gastric carcinoma cells (AGS) [148,149]. In a study by
Shidfar et al., it was shown that the effect of lycopene was not significant in the treatment
of H. pylori-positive patients [150]. The main findings of some dietary interventions in
H. pylori are summarised in Table 1.

Table 1. The main findings of dietary interventions in H. pylori.

Dietary Intervention Study Design Main Outcomes Reference

High-salt diet

*Mongolian gerbils were infected with a
wild-type (WT) CagA(+) H. pylori strain or an

isogenic CcagA mutant strain.
A regular diet or a high-salt diet was given to the

animals.

Among animals infected with the WT strain, those
fed a high-salt diet had more severe gastric
inflammation, higher gastric pH, increased

parietal cell loss, increased gastric expression of
interleukin 1β (IL-1β), and decreased gastric

expression of hepcidin and hydrogen potassium
ATPase (H, K-ATPase) compared with those fed a

regular diet.

[107]

Vitamin C
32 patients were supplemented with ascorbic acid

(500 mg twice daily for 2 weeks)
48 patients were not supplemented

High ascorbic acid may lower the incidence of
gastric cancer, although its protective impact may
be enhanced if gastritis is addressed (for example,

by H. pylori eradication).

[125]

Vitamin C

Patients with H. pylori were randomly divided
into two groups;

-Group A (n: 162) were given a treatment regimen
-Group B (n: 150) received the same regimen + 500

mg of vitamin C/day

The H. pylori treatment regimen with vitamin C
may significantly increase the H. pylori eradication

rate.
[126]

Garlic
15 patients with H. pylori

During 3 days, two medium-sized cloves of garlic
(3 g) were given twice/day with meals.

Raw garlic has antibacterial effects against H.
pylori residing in the stomach.

It may be prescribed with drugs in the treatment
of H. pylori infection.

[142]

Curcumin

Two groups of H. pylori-positive patients
The same treatment protocol was applied to both

groups
700 mg of oral curcumin (three times/day) was

added to the second group.

Curcumin may be a useful supplement to
improve chronic inflammation as well as

preventing carcinogenic changes associated with
H. pylori in patients with chronic gastritis.

[146]

Lycopene
54 H. pylori-positive patients;

Four standard drugs were given to Group 1.
Lycopene (30 mg/day) was given to Group 2.

Lycopene does not have any significant effects on
eradicating H. pylori when compared with the

standard antibiotic therapy.
[150]

EGCG

56 clinical isolates of H. pylori, including 19
isolates highly resistant to metronidazole (MTZ)

and/or clarithromycin (CLR), were used to
determine in vitro sensitivity to tea catechins.

EGCG may be a valuable therapeutic agent
against H. pylori infection. [151]

Sulforaphane

48 H. pylori-infected patients were randomly
divided into two groups:

Broccoli sprouts (70 g/day, containing 420
micromoles of sulforaphane precursor) for 8

weeks
Placebo—consumption of an equal weight of
alfalfa sprouts (not containing sulforaphane)

The treatment seemed to enhance
chemoprotection of the gastric mucosa against H.

pylori-induced oxidative stress.
[152]
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Pepper, a member of the Solanaceae family, has high nutritional value in terms of
antioxidant properties, as it is a rich source of carotenoids and provitamin A, in addition to
vitamins E and C [153]. Capsaicin, the active component of hot peppers, gives peppers a
characteristic pungent flavour [154]. It was thought that capsaicin might have a protective
effect against H. pylori infection, and in 1997, Jones et al. showed that capsaicin produced
effective inhibition of H. pylori growth in vitro, depending on the time and concentra-
tion [155]. Capsaicin has also been suggested as a potential anti-inflammatory drug by
inhibiting IL-8 production in the gastric epithelium of H. pylori-positive individuals [156].
More research is needed to better understand its effects and to determine the amount for
daily consumption.

Epigallocatechin-3-gallate (EGCg) is the major and the most significant polyphenol
found in green tea and is effective in health as an anti-inflammatory, antioxidant, and anti-
atherogenic agent [157]. It was thought that it might be effective against infection caused
by especially resistant H. pylori strains [158]. An in vitro study by Yanagawa et al. revealed
that the addition of EGCg to antibiotic treatments resulted in increased antibacterial activity
and showed a relatively slow but strong activity against the growth of H. pylori [151].

Another structure with bactericidal properties against H. pylori infection, which con-
tributes to the formation of stomach cancer, is sulforaphane. It is abundant in broccoli
sprouts and has a protective effect on injuries caused by various types of oxidative stress
thanks to its phytochemicals and antioxidant enzymes [159]. Sulforaphane not only in-
creases the antioxidant activity of the gastrointestinal mucosa but also inhibits the growth
of various microorganisms, including some human pathogens, and has anticarcinogenic
activity [160,161]. H. pylori infection in the gastric mucosa induces oxidative stress. It is
known that genes encoding nrf2 (NF-E2 p45-related factor-2) and keap1 (Kelch-like ECH-
related protein 1) play a critical role in the activities of antioxidant enzymes. Sulforaphane
stimulates antioxidant enzyme activities linked to the nrf2 gene, thus enabling H. pylori to
inhibit oxidative damage in cells [152].

In a study by Yanaka et al., people who were H. pylori-positive were fed broccoli
sprouts (70 g/day) and compared with the placebo group. People who consumed broccoli
sprouts for 8 weeks showed positive effects in the clinical laboratory results. However,
a regression to the starting point shortly after the end of his study was observed [162].
Therefore, more studies are needed to determine its long-term effects.

13.5. H. pylori, Nitrite, and Nitrosamines

Nitrosamines are formed by the reaction of secondary amines with nitrites. N-nitroso
compounds (NOCs) and nitrosamines contribute to gastric carcinogenesis. They can be
formed exogenously (during fermentation, smoking, cooking, and storage) or endoge-
nously in the stomach unless inhibited by vitamin C or other antioxidants [163,164]. The
nitrite-clearing ability of vitamin C depends on the stomach pH and the vitamin C/nitrite
ratio, so it causes an increase in NOCs in the case of pH>4 and a decrease in the vitamin
C/nitrite ratio [165].

H. pylori stimulates the macrophage system via the L-arginine/NO pathway [166]. It
is thought that H. pylori infection will not only trigger the formation of NO endogenously
but also cause DNA damage and increase the risk of cancer [166,167]. On the other hand,
various foods such as pickled foods and processed meat, which are sources of nitrites
and/or nitrosamines, are also important sources of salt [168]. In general, H. pylori-positive
individuals with a high dietary salt intake have an increased risk of gastric cancer compared
with those who are H. pylori-negative and with low-salt intake, and red meat-related gastric
cancer risk, endogenous nitrosamine formation, or consumption of processed meat is only
more common in H. pylori-positive individuals [169].

13.6. H. pylori and Probiotics

The term “probiotic” is of Greek origin and is translated into our language as “pro
bios” (pro: for, bios: life) meaning “for life” [170]. According to the publication of the
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International Scientific Association of Probiotics and Prebiotics (ISAPP) in 2021, probiotics
are defined as live microorganisms that, when taken in sufficient amounts, provide health
benefits to the host [171].

Probiotic bacteria can bind to recognition receptors, such as TLR expressed on the
surface of epithelial cells, thereby triggering several immunological defence mechanisms.
It has been reported that probiotics can modify the immunological response by increasing
the production of anti-inflammatory cytokine-regulating (IL-10 and TGF-b) cells and/or
suppressing cytokines (IL-4, IL-5, IL-6, and especially IL-8), thus reducing gastric activity
and inflammation, that is, the effect of H. pylori infection [172].

In the Maastricht-5 Consensus Report, it was stated that the stomach microbiota
decreased with the use of various antibiotics and it was accepted that probiotics were
beneficial, but the level of evidence was evaluated as moderate with a low recommenda-
tion [78]. Additionally, the use of adjuvant probiotic treatments (Lactobacillus spp. and
Saccharomyces boulardi) in combination with antibiotics may be beneficial [78]. In patients
with H. pylori infection, Lactobacillus spp. supplementation in addition to triple therapy
may be beneficial in improving H. pylori eradication rates, especially in children, and in
reducing treatment-related side effects (especially the incidence of diarrhoea) [173,174].
The first meta-analysis study conducted in 2010 on the use of Saccharomyces boulardi as an
adjuvant therapy found that it generally reduced the side effects of H. pylori infection [175].
Saccharomyces boulardi supplementation along with the standard triple therapy provided
additional support to increase H. pylori eradication rates [176].

To sum up, it has been reported that some probiotics reduce the side effects of infection
in the treatment to eradicate H. pylori. More clinical research is needed to gain insight
into the direct efficacy of specific probiotic strains, including the duration and dosages
of adjuvant probiotic therapy, the individual’s lifestyle (such as alcohol, diet, or cigarette
consumption), and geographic differences [132].

14. Conclusions

H. pylori is estimated to infect half of the world’s population and causes permanent
infections as well as many health issues such as gastritis and MALT lymphoma, as well
as peptic ulcer and gastric cancer. In H. pylori infection, there are some treatment limita-
tions due to its ability to create resistance to antibiotic treatments in treatment strategies.
Therefore, it has become necessary to seek alternatives to fight against H. pylori infection.
Especially in the last few years, research has clearly shown the pathogenicity, microbial
activity, and genetic predisposition to help understand the severity of gastric atrophy and
gastric cancer caused by H. pylori. This situation is expected to affect the treatment process
positively. Combination treatments, including with phytochemicals and probiotics found
in natural products, seem to have beneficial effects in the eradication of H. pylori.

Due to the effects of hormones such as ghrelin and leptin, which control both growth
and appetite, and the formation of malabsorption of various nutrients such as vitamin
C, iron, cobalamin, and vitamin E in H. pylori-infected individuals, detailed nutritional
information should be provided during and after treatment. It is important to provide
optimal nutrition through the determination of strategies and the application of a suitable
diet for the person by authorised dietitians. Besides, there have been some promising
effects for probiotics added to treatment strategies; however, detailed research is needed.
Most importantly, a diet rich in fruits and vegetables and reduced in salt and processed
meat products has good prophylactic potential, especially against cancer in the eradication
of H. pylori.
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