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Abstract: The article presents research on the treatment of infiltration water with increased am-
monium ion and nitrate(V) content through reverse osmosis. Then, research was conducted on
the phenomena related to the decrease in the permeability of the membrane used for the research.
The search for an appropriate interpretation of the phenomena was carried out using mathematical
modeling. Based on the assumptions of the hydraulic model of the filtration resistance, calculations
were made to forecast the efficiency of the osmotic membrane used in the discussed process. For this
purpose, the following indicators were determined experimentally for the membrane: change in the
volumetric flow of treated wastewater during low-pressure filtration, total hydraulic resistance, and
component resistances, i.e., the resistance of the “new” membrane and resistances resulting from the
reversible and irreversible fouling phenomena. It has been observed that irreversible resistance arises
in the short and early stages of the process. The efficiency is determined by reversible resistance,
which is confirmed by the literature.

Keywords: water; reverse osmosis; model of hydraulic filtration resistance; performance prediction

1. Introduction

The contamination of infiltration water with nitrogen compounds is more and more
frequent, which means that classic systems for its treatment are more and more developed.
Properly functioning infiltration should remove nitrogen compounds or significantly re-
duce their concentrations [1–3]. The cleaning processes taking place in the soil do not,
however, guarantee satisfactory water quality. It is characterized by low turbidity and
reduced content of organic substances. The degree of mineralization is much lower com-
pared to groundwater. Due to the possibility of treating infiltration water with increased
content of nitrogen compounds using reverse osmosis (RO), there is a need for technologi-
cal research to learn about all the technical aspects of using the reverse osmosis method
for purifying infiltration water [1,2,4,5]. An inherent element of membrane processes is
reducing their efficiency related to the accumulation of organic or inorganic substances
on the membrane surface, called fouling. This phenomenon occurs mainly in the case
of porous membranes, i.e., microfiltration and ultrafiltration membranes, but may also
occur in nanofiltration, reverse osmosis, or electrodialysis processes [1,5]. Fouling may be
irreversible or reversible [1,2]. Characteristic for reversible fouling is the partial recovery
of the membrane permeability due to its cleaning (mainly periodic hydraulic backwash).
Particles that are not removed by mechanical or chemical cleaning of the membrane are
responsible for the irreversible fouling, leading to the deterioration of the membrane
performance. These are mainly particles adsorbed in the pores of the membrane [2,3].
Fouling can be described in terms of total resistance, which includes both the resistance
of the membrane and the substances accumulated on the surface of the membrane and in
its pores. Fouling also increases the transmembrane pressure during the process under
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steady flux conditions and a decrease in the permeate flux under constant transmembrane
pressure conditions [4–6]. The pursuit of maximum efficiency is associated with finding
the cause of lowering the permeate flux in the membrane filtration process. The nature of
mass transport towards the membrane and back diffusion along the membrane surface
(underflow conditions) determines the degree of mass accumulation near the membrane. It
makes it possible to determine the resistance to the permeate flux where a precipitate or
gel layer has formed on the membrane surface.

It makes it possible to determine the resistance to the permeate flux where a precipitate
or gel layer has formed on the membrane surface. Mass transport processes can also
resolve the critical conditions for the fouling of solutes on the membrane [1,6,7]. They
contribute to lowering the efficiency of the process, thus harming its economy. To ensure the
correct operation of the reverse osmosis installation, the rate and degree of blocking of the
membranes with the feed should be determined. Membrane mass transport is complicated
to model mathematically due to the complexity of the membrane transport mechanism
and numerous interactions between all components of the so-called cross effect [6–8].

The search for an appropriate interpretation of the phenomena was carried out using
mathematical modeling, which will allow researchers to determine the working conditions
and learn about the advantages and limitations of using a given method [8,9]. Many math-
ematical models describe decreasing the volumetric permeate flux during the process of
pressure membrane filtration conducted under steady and transient operating conditions.
The obtained test results made it possible to verify the model of hydraulic filtration resis-
tances based on the measurements of the change in the size of the RO permeate flux over
time, the graphically determined value of the time constant characterizing the reduction of
the process efficiency (to a value below economic profitability) and on the experimentally
determined value of the resistances: the total membrane, the “not working” membrane, as
well as resistances related to fouling phenomena.

Forecasting the Efficiency of Membranes in Reverse Osmosis in the Process of Purification of
Infiltration Water with Increased Concentration of Nitrogen Compounds, Based on the Model of the
Hydraulic Filtration Resistance

The modeling of the membrane performance was based on the analysis of the re-
sistance of the flowing liquid membrane and the phenomena caused by the interaction:
membrane—substances found in natural waters. The change in resistance in individual
test cycles is associated with blocking membranes (fouling). The model of series resistances
is based on the equation describing the dependence of the permeate flux on the transmem-
brane pressure, considering hydraulic resistance of the membrane to the liquid flowing
through the membrane, resistance related to reversible fouling, and resistance related to
irreversible fouling [7,10–14].

Jv =
∆P

η(Rm + Rfo + Rfn)
(1)

where:
Jv—temporary volumetric flux of permeate [m3 m−2·s−1];
Rm—membrane resistance value of the ”new” membrane [m−1];
Rfo—resistance to reversible fouling [m−1];
Rfn—resistance to irreversible fouling [m−1];
∆P—transmembrane pressure [Pa];
η—dynamic viscosity of liquid [Pa·s].
The individual components of the resistance were determined:
From the relationship JvH2O = f(t) for a new membrane with deionized water, the

value of the resistance of the new membrane (Rm) was determined. Since under these
conditions of the process Rtotal = Rm, after transforming the Equation (1), we obtain the
relationship:

Rm = ∆P/η·JH2O (2)



Membranes 2021, 11, 314 3 of 10

where: JH2O—experimental temporary flux of deionized water [m3 m−2 s−1],
η—dynamic viscosity of liquid [Pa·s].
From a similar relationship, it is possible to calculate the total resistance for natu-

ral waters:
total = ∆P/η·JH2O (3)

where: Rtotal—total hydraulic resistance of working membrane [m−1] (Rtotal = Rm + Rfo
+ Rfn)

η—dynamic viscosity of water at 20 ◦C
The resistance generated by the irreversible fouling effect results from permanent

blockage of the membrane, making it difficult to restore its original performance [6,13].
To determine its value, the volumetric flow of the deionized water was determined for a
polyamide membrane after reverse osmosis for infiltration water:

Rfn(∆P/η·JH2O)) − Rm (4)

where: Rfn—resistance related to irreversible fouling [m−1],
JvH2O—experimental temporary flux of deionized water after pressure filtration plant

RO, [m3 m−2·s−1]
By subtracting the corresponding resistance values obtained in the three series of mea-

surements, the reversible resistance Rfo, and the irreversible resistance, Rfn were calculated.
To determine the value of the experimental reversible fouling resistance of polyamide

membranes, the following formula (Equation (5)) should be used:

Rfo exper = Rtotal − Rm − Rfn (5)

where: Rfo exper—experimental resistance of reversible fouling.
It was assumed that the changes in the reversible resistance over time could be

described by the equation analogous to the Equation (6) defining the changes in the
permeate flux over time:

d/dt(J0 − J∞) + 1/t0·(J0 − J∞ ) = 0 (6)

d/dt(R∞ − Rfo) + 1/tRO·(R∞ − Rfo ) = 0 (7)

Integrating this equation we get:

Rfo = R∞[1−exp( − t/tRO)] (8)

where: Rfo—initial resistance of reversible fouling (Rfo = 0 at t = 0), [m−1];
R∞ resistance of a reversible fouling over an infinitely long period of time [m−1];
tRO—time constant [min].
Equation (9) was used to determine the time constant tRO. The value of tRO is

determined graphically from the equation:

tRO = |
1
a

| (9)

where: a—the slope of the line described by the equation y = a t, which characterizes the
filtration process for the tested membrane.

After taking the logarithm, the equation of a straight line that passes through the
origin of the system of coordinates was obtained. A coefficient tR0, which allowed the
calculation of the theoretical reversible fouling resistance, was determined from the straight
line inclination.

The use of the modeling of the membrane capacity based on the analysis of the
hydraulic resistance of the water flowing through the membrane made it possible to
determine the values of the individual components of the membrane resistance [13,14]. It
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was found that the irreversible resistance arising at the very beginning of the process for
a membrane operating on the water is lower relating to water with ammonium ion and
nitrates(V). It was at the level of 2.300–3.104 × 1014 m−1 in the infiltration water alone,
from 2.272 × 1014 to 3.109 × 1014 m−1 with nitrates(V) and 2.645–3.524 × 1014 m−1 with
ammonium ion.

2. Materials and Methods
2.1. Subject of Study

The research was carried out using infiltration water taken from infiltration wells. It
was carried out in several stages, differing in terms of the adopted technological parame-
ters and the types of infiltration and model water samples (infiltration and enriched with
ammonium and nitrates(V)). The treatment efficiency of the tested water was assessed
based on the retention coefficient. The following values of pollution indicators were inves-
tigated: color, turbidity, conductivity, reaction, calcium, magnesium, total iron, manganese,
chlorides, ammonium, nitrates (III and V), and chemical oxygen demand (CODMn). The
determinations were made using the test method on a HACH DR 4000 spectrophotometer
(Hach Lange GmbH, Düsseldorf, Germany).

2.2. Technological Research

In the conducted research, the RO process was carried out in a continuous system with
partial recirculation of the concentrate at a small reverse osmosis (RO) station. The tests
were carried out on a composite membrane made of aromatic polyamide by Dow Filmtec
(Edina, MN, USA) with a spiral module and an area of 2.5 m2 in a cross-flow filtration
system. The osmotic membrane in the initial filtration was conditioned by filtering the
distilled water in the range of transmembrane pressures of 1.1–1.2 MPa to obtain stable
operating parameters. The transmembrane pressure was chosen based on the characteristics
of the membrane manufacturer. Then, the infiltration water and the infiltration water with
added nitrates(V) and ammonium ions were filtered. After 6 h of filtration of the test water
through the membrane, the final testing of the membrane with deionized water was carried
out for this part of the tests in the same way as in the initial filtration. The above work cycle
was considered as one series. To ensure the RO membrane module’s correct operation,
the SDI15 clogging index was determined for the infiltration water [11]. During the entire
research period, the index was determined three times and ranged from 1.29 to 1.7.

3. Results and Discussion

During the purification of the infiltration water and model water (infiltration water +
nitrogen compounds) performed with the use of RO (Tables 1 and 2), it was noticed that the
retention rates of the chemical compounds oscillated with a slight spread from the mean ±
10%. The turbidity and bacteria were eliminated.

The remaining parameters examined were removed in the range from 71% to 100%,
except for nitrates(III), for which the retention coefficient was at the level of from 49% to
51% (Table 2).

During the purification of the infiltration water (Figure 1), a decrease in the volume
flow of water (Jv) was observed in the first half an hour, which then reached the “pseudo-
constant” value. A significant reduction in the deionized water stream was observed after
testing on natural water. The performed disinfection and rinsing improved the properties
of the membranes, although the obtained results were lower than in the test with deionized
water performed for the new membrane. The Jv value for infiltration water was lower than
for deionized water before and after the process (Figure 1).
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Table 1. Effectiveness of removing selected contaminants from infiltration water in the RO process.

Test Parameter Unit

Raw Water Infiltrate Retention Factor R (%)

Values Values Values

Mean Median Mean Median Mean Median

Color mg Pt/L 42.46 44.00 1.23 1.00 97.31 97.42
Turbidity mg SiO2/L 5.64 2.00 0.0 0.0 100.0 100.0

Conductivity µS/cm 433.0 424.00 7.54 7.00 98.40 98.40
Reaction pH 7.18 7.20 6.08 6.00 - -
Calcium mg Ca2+/L 84.93 82.30 0.89 0.00 99.21 100.0

Manganese mg Mn/L 0.19 0.19 0.05 0.04 77.71 78.90
Ferrumtot. mg Fe/L 0.71 0.61 0.03 0.03 95.70 95.71
Chlorides mg Cl−/L 19.30 14.00 0.85 0.70 94.90 93.83
Nitrate(V) mg NO3

−/L 3.355 3.80 0.045 0.020 99.11 100.00
Nitrate(III) mg NO2

−/L 0.025 0.025 0.013 0.013 49.60 50.81
Ammonia ion mg NH4

+/L 0.587 0.45 0.022 0.020 95.10 96.00
CODMn mg O2/L 10.02 9.20 0.43 0.33 89.39 90.15

Table 2. The results of the removal of individual indicators at an increased dose of NH4
+ ammonia

ion and NO3
−.

Test Parameter Value Retention Factor [%]

Color [mg Pt/L] 39.0 74.3
Turbidity [SiO2/L] 39.0 100

Conductance [µS/cm] 543 88.45
pH 7.30 -

Calcium [mg Ca2
+/L] 82.6 92.4

Manganese [mg Mn/L] 0.18 75.0
Ferrum [mg Fe/L] 0.67 84.8

Chlorides [mg Cl−/L] 16.2 76,0
Nitrate(V) [mg NO3

−/L] 148 71.3
Nitrate(III) [mg NO2

−/L] 0.02 88.0
Ammonia ion [mg NH4

+/L] 12.6 83.6
CODMn [mg O2/L] 10.7 70.7

To verify the proposed model for the experimental results, the resistance value due to
reversible fouling was calculated using Equation (7) (Table 3, Figure 2). The volumetric
permeate flux described by Equation (1) was calculated by substituting the values of
membrane resistance and irreversible fouling resistance determined from the experiment—
the value of the reversible resistance was calculated from the model Equation (7).
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Figure 2. The method of determining the constant tR0 of the reverse osmosis process: (a) NH4
+ enriched infiltration water,

(b) NO3
− enriched infiltration water.

Table 3. Rfo resistance values determined from the experiment and theoretical for tRO.

Water Type Resistance Rfo Determined
from the Experiment (m−1)

Resistance Rfo Calculated
from the Formula

(m−1)

tRO Calculated from
the Formula

(min)

Infiltration water 1.829 × 1013 6.974 × 1013 156.0
Infiltration water amended with NH4

+ 8.722 × 1013 5.140 × 1013 65.0
Infiltration water amended with NO3

− 4.085 × 1013 4.671 × 1013 83.0

The obtained dependencies from the model calculations and the experimental mea-
surement points are presented in Figures 1 and 3.

Irreversible resistance in all examined cases systematically increased. However,
there were no significant fluctuations or differences between the values of the tested
samples. It was also found that in all empirical cases, the total resistance was in the
range 7.199–9.17 × 1014 m−1 (Figure 3). Based on the obtained experimental values of
the components of total resistances, the proposed model was verified by calculating the
theoretical reversible resistance from the model equation (No. 7), and the coefficient of the
equation tRo determined graphically, and then the theoretical permeate flux was calculated
on their basis.

The resistance model of reversible contamination is correct, but requires more ex-
perimentation [13,15–18]. It is necessary to obtain the membrane characteristics with
deionized water, both for the new membrane and after the “work” process, to determine
the individual components of the resistance occurring in Equation (1) [9,19–24].

The most considerable difference between the empirical and theoretical reversible
resistance in time tRo (Table 3) for Rfo experim. 1.829 × 1013 m−1, and Rfo theor. 6.974 × 1013

m−1 was recorded with the infiltration water alone. Much smaller fluctuations occurred
in the NH4

+ enriched infiltration water, where the experimental Rfo was at the level of
8.722 × 1013 m−1 and Rfo theor. 5.140 × 1013 m−1. In the case of NO3

−, the differences
were minimal.
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The obtained components of total resistance allowed us to determine the dependence
of changes in the value of resistance on the concentration of individual nitrogen forms in
the infiltration water. Function:

y = a·(1 − exp( − b· x)) + c (10)

describes the relationship Rck, Rm, Rm + Rfn, Rfn, Rfo, Rfo theor. on the concentration of
NO3

−, as well as Rck, Rm, Rm + Rfn, Rfn, Rfo theor. on the amount of NH4
+, while for Rfo

on the concentration of NH4
+ the function took the form of a polynomial formula:

y = a + b·x +c·x2 + d·x3 + e·x4 (11)

There was no significant effect of changes in the concentration of nitrogen species in
the infiltration water on the growth of individual resistance values (Rfo, Rfo theor., Rm).

The obtained values of the empirical and theoretical permeate flux in Figure 4 (calcu-
lated with the reversible resistance model) were characterized by slight differences among
themselves. In general, the theoretical volumetric flux of permeate achieved results higher
than or equal to the experimental one. In both cases, no significant stabilization of the
flux was found after some time. For infiltration water, the observed dependence of the
volumetric permeate flux on time reached Jv = 1.498 × 10−6 m3 m−2 s−1 at the beginning
of the process, at the end 1.197 × 10−6 m3 m−2 s−1, and theoretical Jt = 1.525 ÷ 1.225 ×
10−6 m3 m−2 s−1. During membrane filtration of the water enriched with ammonium
ion, the initial value of the theoretical volumetric flux of the permeate was Jt = 1.457 ×
10−6 m3 m−2 s−1, experimental Jv = 1.357 × 10−6 m3 m−2 s−1, and the final value was
identical in both cases and equal to 1.233 × 10−6 m3 m−2 s −1. The relationships between
the volumetric flow of the experimental and theoretical filtrate and time for water enriched
with nitrates(V) were almost identical and ranged 1.407 ÷ 1.194 × 10−6 m3 m−2 s−1. The
measure of compliance of the model fit with the experimental values is the calculated val-
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ues of correlation, which in all tested cases were high and ranged from r = 0.8730 ÷ 0.9978.
Additionally, the calculated percentage of deviation between the volumetric theoretical
permeate flux and the experimental one was small and fluctuated from –0.45 ÷ 7.75%.
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The verified model of the permeate flux value change based on Darcy’s law [10,14–17],
described as temporal changes in mass transport resistances in the membrane process,
was used to identify and estimate the resistances generated in the reverse osmosis process.
During the RO process and its components, the total membrane resistance resulting from
reversible and irreversible fouling and concentration polarization was determined. It has
been shown that irreversible resistance arises in the short and initial period of the process.
The efficiency is determined by reversible resistance, confirmed by the literature [18–31].
The values of individual resistances are much higher, relating to the values in other mem-
brane processes. It is related to the more significant pressure difference occurring on both
sides of the membrane, which is characteristic of this process [6,9,13,26,27,32]. Based on
the research, it was found that the value of irreversible resistance increases over time
and is much greater than the reversible resistance. Still, it did not exceed the membrane
resistance. It should be assumed that there were substances in the water that tended to
form a permanent deposit on the membrane, even though the SDI15 index was within the
range for reverse osmosis [10,11]. The course of the determined resistances was stable,
and the diaphragm’s resistance remained unchanged throughout the research period. The
analysis of the obtained resistances relating to water quality confirms the influence of
nitrogen forms on their value. The dependence of changes in reversible resistance with
time was determined, obtaining a constant presented as tRO.
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4. Conclusions

1. The obtained high values of the correlation coefficients in the case of comparing
the instantaneous values of the experimental permeate fluxes with the theoretical
instantaneous fluxes allow for the conclusion that that the model of hydraulic filtration
resistance used in the calculations allows the forecasting of the membrane efficiency
in the discussed process.

2. The resistance model for reversible contamination is correct. In order to determine
this resistance, it is essential to obtain the membrane characteristics with deionized
water, both for the new membrane and after the “working” process.

3. The value of irreversible fouling resistance is higher than the reversible resistance,
indicating additional unrecognized contaminants in the water.

4. The analysis of the experimental data obtained in the process of purification of
water with an increased concentration of nitrogen compounds with the use of the
series resistances model enables the determination of the primary mass transport
resistances, the resistance of the active layer of the membrane, as well as reversible
and irreversible fouling, and also the identification and evaluation of the range of
phenomena reducing the membrane’s efficiency.
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