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Abstract: This study investigated the effects of resveratrol (RES) supplementation on the growth
performance, carcass and meat quality, blood lipid levels and ruminal bacterial microbiota of fattening
goats. A total of forty castrated Nubian goats (28.25 ± 0.26 kg body weight) were randomly divided
into four groups and provided with diets containing different levels of RES (0, 150, 300 and 600
mg/kg) for 120 d. The results showed that RES increased redness and intramuscular fat content,
whilst reducing shear force in the longissimus dorsi muscle of goats (p < 0.05). In addition, the final
weight, average daily gain, hot carcass weight, net meat weight, carcass lean percentage and eye
muscle area of goats were significantly increased in the 150 mg/kg RES group compared with the
other three groups, while those in the 600 mg/kg RES group significantly decreased (p < 0.05). RES
significantly decreased serum triacylglycerol and LDL-C contents (p < 0.05), and increased HDL-C
content and the HDL-C/TC ratio (p < 0.05). Supplementation with 150 mg/kg RES also increased
the proportion of Acetitomaculum and Moryella, genera comprising short-chain fatty acid-producing
bacteria. The present study indicated that an appropriate supplemental level of RES could improve
the growth performance, neat percentage, meat quality, ruminal microbiota and serum lipid levels of
fattening goats.

Keywords: resveratrol; goat; growth performance; meat quality; ruminal microbiota

1. Introduction

Resveratrol (RES) is a variety of non-flavonoid polyphenol with a stilbene structure,
which mainly occurs in grape, peanut, mulberry and polygonum cuspidatum [1]. It is reported
that RES has a wide range of biological activities, including antioxidant activity [2], anti-
inflammatory activity [3] and a regulatory role in energy metabolism [4]. Therefore, RES
has the potential to be an effective dietary supplement to regulate body metabolism.

Recently, more and more scholars have performed numerous studies on the effects
of RES supplementation in livestock and poultry production. In poultry, dietary RES
supplementation has been shown to improve the quality of pork by changing the muscle
fiber characteristics and antioxidant capacity [5,6]. Moreover, RES has been shown to act as
an antioxidant to reduce the degradation in meat quality observed in broilers subjected to
transport and heat stresses [7,8]. Maternal dietary RES has been found to increase average
daily weight gain in piglets [9]. However, the effects of dietary RES supplementation on
the growth performance and meat quality of fattening goats have not been reported.

Although RES has a variety of biological activities, its low bioavailability is in contrast
to its biological function [10–12]. Azorín-Ortuño et al. (2011) found that only 0.5% of RES
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and its metabolites remained in the tissues and organs of pigs, and up to 65.1% of RES and
its metabolites remained in the gastrointestinal tract after 6 h following feeding with RES
(5.9 mg/kg BW) [13]. Dietary RES supplementation has been shown to significantly affect
the growth of gut microbiota, increase the abundance of beneficial bacteria in rats [14] and to
ameliorate obesity and liver steatosis through regulation of gut microbiota composition [11,15].
In ruminants, the rumen is one of the most important of all the gastrointestinal organs for
digestion, metabolism and nutrition absorption, where feed components can be degraded,
transformed and utilized by ruminal microbiota [16,17]. Therefore, it is of great significance
to clarify the effects of dietary RES on rumen fermentation and rumen microbiota. However,
previous studies on RES in ruminants mainly focus on its impact on methane emissions [18,19],
whilst the effects of dietary RES supplementation on the rumen microbiota of fattening goats
have not been reported.

This experiment was conducted to study the effects of different levels of RES on carcass
traits, meat quality traits, serum lipid metabolism levels and ruminal microbial diversity in
goats to clarify the application potential of RES in goat production.

2. Material and Methods
2.1. Animals and Experimental Diets

All experiments were approved by the Institutional Animal Care and Welfare Commit-
tee of Guangxi University (Nanning, China). A total of 40 (180 ± 3 d old) healthy castrated
male Nubian goats with an average initial body weight of 28.25 kg were randomly divided
into four groups with 10 duplicates in every group. Each goat was housed in a pen with a
size of 3.0 m × 1.5 m. The goat houses were cleaned and disinfected regularly to keep the
paddock ventilated, sanitary and dry. The groups were stochastically allotted to each of
four dietary treatments including a control diet (basal diet) and RES containing diets (150,
300 or 600 mg/kg RES + basal diet). Ingredient compositions and nutrient contents of the
basal diets for goats are presented in Table 1. The RES used in the research was purchased
from Wan Fang Biotechnology CO., Ltd. (Xi’an, China) and had a purity of 98.9%. We
first mixed RES into corn starch to achieve the required proportions for each diet. The
goats were then fed with the corresponding RES-supplemented feed at 7:00 every morning.
Goats were free to eat basal diets from 7:30 to 19:30 every day. Goats also had free access
to water and a salt block during the trial period. The feeding experiment lasted for 120 d,
and the daily feed intake of each goat was recorded to calculate average daily feed intake
(ADFI). Individual body weight was determined before and after the trial to calculate the
average daily gain (ADG) and feed conversion ratio (FCR). FCR was calculated as the ratio
of total feed intake to total weight gain over the entire trial period.

Table 1. Dietary ingredients and nutrient content of basal diets in fattening goats.

Ingredients, % Content Nutrition Levels, % Content

Corn 16.30 Crude protein 17.00
Palm Kernel Expeller 21.00 Neutral detergent fiber 43.52

Peanut vine 12.00 Crude fat 2.72
Soybean meal 3.00 Calcium,Ca 0.65

Molasses 2.00 Total Phosphorus,TP 0.43
Manioc waste 12.00 Crude ash 7.76

Bagasse 6.00 Nitrogen free exteact 51.2
Corn skin 4.00 Acid detergent fiber 22.65

Cassava alcohol residue 9.00
rice mill by-product 5.00

Urea 1.20
Dicalcium phosphate 0.40

Limestone 1.00
Bentonite 4.00

Rumen protected fat 1.00
Premix feed 2.10

Total 100.00
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2.2. Slaughter Surveys and Sampling

At the end of the trial, the goats were fasted for 24 h. Before slaughtering, blood
samples were collected from the jugular veins of each goat using empty collection tubes.
The serum samples (supernatant) were collected immediately after the blood samples
had been centrifuged at 3000× g for 15 min at 4 ◦C and were then stored at −80 ◦C for
hematological analysis.

Six goats from each group were randomly selected for slaughter, which was conducted
in the large animal slaughtering room of the animal science teaching experimental base of
Guangxi University. All goats were slaughtered in accordance with the agricultural industry
standard of the People's Republic of China (NY/T3469-2019). Twenty-four goats were
stunned, bled, skinned, gutted and then split along the midline. Hot carcass weight and net
meat weight were recorded, then used to calculate dressing percentage and neat percentage.
The dressing percentage refers to the percentage of carcass weight to pre-slaughter body
weight, which is calculated as dressing percentage (%) = (hot carcass weight/pre-slaughter
body weight) × 100. The net meat percentage refers to net meat weight as a percentage of
hot carcass weight, i.e., (%) = (net meat weight/ hot carcass weight) × 100. The longissimus
dorsi (LD) area between the 12th and 13th rib was measured using a square cm (cm2) grid.

Rumen fluid samples were collected from the rumen of each goat immediately after
slaughter. The rumen contents were filtered through four layers of cheesecloth and collected
into cryopreservation tubes, which were immediately frozen in liquid nitrogen and then
stored at −80 °C for subsequent analysis.

2.3. Meat Quality and Blood Chemical Analysis

The meat quality of 24 goats was tested and analyzed according to the agricultural
industry standard of the People’s Republic of China (NY/T1333-2007). A sample of LD
muscle from the same area of each carcass was collected to determine pH value, color,
conductivity, shear force and intramuscular fat (IMF) content.

The pH value in the LD muscle was determined at 45 min and 24 h postmortem using
a pH meter (pH-STAR, Matthäus GmbH & Co. KG, Germany) equipped with a temperature
compensation and calibrated using two buffers (pH 4.64 and 7.0). The meat color was
detected at 45 min postmortem using a colorimeter (OPTO-Star, Matthäus GmbH & Co. KG,
Germany) based on the specific parameters: L* (lightness), a* (redness) and b* (yellowness).
The colorimeter was calibrated using a white tile before measurements were taken. After
removing other connective tissue, the surface of the LD muscle was exposed to air for 20
min of blooming, and then measured for meat color. The conductivity of the LD muscle
samples was measured using a carcass conductivity meter (LF-Star, Matthäus GmbH &
Co. KG, Eckelsheim, Germany). The instrument was calibrated before measurements were
taken. The probe was inserted into the sample, following the muscle fiber direction, and
the conductivity values were recorded after a stabilization period. The pH, meat color and
conductivity were measured repeatedly a total of 6 times, and the average values were used
for further data analysis. Warner–Bratzler shear force (WBSF) was measured using a Shear
Force Instrument (Mecmesin Ltd., West Sussex, UK). Briefly, the LD samples were placed
in a water bath at 80 ◦C. After the central temperature reached 70 ◦C, the samples were
removed and cooled to room temperature. Six cylindrical cores with a diameter of 1.27 cm
were taken from each sample parallel to the direction of the muscle fibers to measure the
shear force. The IMF content of the LD muscle was determined using the Soxhlet extraction
method with petroleum ether extraction according to AOAC (1995) methods [20], and the
results were expressed as percentages of the weight of wet muscle.

Concentrations of triglycerides (TG), total cholesterol (TC), low-density lipoprotein
(LDL-C) and high-density lipoprotein (HDL-C) of serum samples were determined using
automatic biochemical analyzer and direct enzymatic kits (Shanghai Kehua Bio-engineering
Co., Ltd., Shanghai, China) according to the manufacturer’s instructions. Blood physi-
ological indexes were measured using an automatic animal blood cell analyzer (Prokan
Electronics Inc., Shenzhen, China).
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2.4. Microbiota Analysis by 16S Sequencing

The genomic DNA was extracted from each goat’s rumen fluid sample (approx.
20 g) using a PowerSoil®DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA,
USA) according to the manufacturer’s protocol. The concentration and purity of genomic
DNA were measured using a NanoDrop 2000 instrument (Thermo Fisher Scientific, Dreie-
ich, Germany), and the quality was evaluated via agarose gel electrophoresis analysis.
The full-length bacterial 16S rRNA genes were amplified using rumen fluid genomic
DNA as a template. The primers for PCR amplification were universal primers 27F (5′-
AGRGTTTGATYNTGGCTCAG-3′) and 1492R (5′-TASGGHTACCTTGTTASGACTT-3′) la-
beled with 16 nt barcodes. PCR reactions were conducted using a 30 µL reaction including
1.5 µL of extracted genomic DNA, 3 µL of each primer (10 µM), 5 µL of KOD OneTM
PCR Master Mix (Toyobo Co., Ltd., Osaka, Japan) and 10.5 µL of nuclease-free Water. The
thermocycling program was as follows: an initial denaturation at 95 ◦C for 2 min; followed
by 25 cycles of 98 ◦C for 10 s before annealing at 55 ◦C for 30 s and at 72 ◦C for 1.5 min;
and a final extension at 72 ◦C for 2 min. PCR results were verified using 1.8% agarose gel
electrophoresis, subsequently purified using the PureLink PCR Purification Kit (Thermo
Fisher Scientific, Waltham, MA, USA) and then quantified using a Qubit 2.0 Fluorometer
(Thermo Fisher Scientific, Waltham, MA, USA). The amplicon sequencing libraries were
built and quality controlled. Then, qualified libraries were sequenced on PacBio Sequel II
platform (Pacific Biosciences of California, Inc., Menlo Park, CA, USA).

The bioinformatics analysis of this study was carried out with the help of Biomarker
Technologies Corporation, Beijing, China. The circular consensus sequencing (CCS) reads
obtained from the raw reads were distributed to the matching samples on the basis of their
barcodes using the LIMA software (version 1.7.0). Then, the CCS reads without primers
and outside of the length range (1200–1650 bp) were removed using the Cutadapt software
(version 2.7). The chimeric sequences were identified and removed to obtain the sequences
of effective CCS using the UCHIME software (V4.2). USEARCH software (V10.0) was used
to cluster reads with a 97% similarity cutoff to obtain the operational taxonomic unit (OTU),
and the OTU was filtered when RE abundance was less than 0.005%. The RDP Classifier
(version 2.2) was used to sort the feature sequences into different taxonomic groups based
on the SILVA 132 reference, with a confidence threshold of 80%.

2.5. Statistical Analysis

Data were presented as the mean ± standard error (SEM) and statistically analyzed
using a one-way analysis of variance (ANOVA) and least significant difference (LSD) test
using SPSS 22.0. Statistical difference was considered significant or extremely significant at
p < 0.05 or p < 0.01.

Diversity analyses of 24 samples were calculated and displayed using the QIIME
(V1.8.0) and R software (V3.2.0), respectively. The measurement indexes of α diversity
analyses, including Chao1, Ace, Shannon, Simpson and Coverage, were assessed using
mothur (version 1.30.1). Chao1 and Ace indexes are used to measure species richness,
while Shannon and Simpson indexes measure species diversity. Beta diversity analysis was
computed using the Bray–Curtis distance matrix to calculate the distance between samples,
and Principal coordinates analysis (PCoA) plots were used to evaluate the variation among
different groups.

Characteristic differences among different treatments were analyzed using the lin-
ear discriminant analysis effect size (LEfSe). The LEfSe analysis was conducted using
non-parametric factorial Kruskal–Wallis and Wilcoxon rank sum-rank tests with a lin-
ear discriminant analysis (LDA) score > 3 and p < 0.05. The function prediction of the
ruminal microbiota was performed using phylogenetic investigation of community by
reconstruction of unobserved States 2 (PICRUSt2).
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3. Results
3.1. Growth and Carcass Characteristics

As shown in Table 2, compared with the control group, the final weight and ADG were
significantly increased (p < 0.05) in the 150 mg/kg RES group and observably decreased
(p < 0.05) in the 600 mg/kg RES group. Furthermore, the 600 mg/kg RES group had lower
ADFI (p < 0.05) and higher FCR (p < 0.05) than the other three groups. Dietary 300mg/kg
RES supplementation had no significant effect on the growth performance of goats.

Table 2. Effect of dietary supplementation with resveratrol on growth performance and carcass
characteristics of fattening goats.

Item Control 150 mg/kg 300 mg/kg 600 mg/kg

Final body weight (kg) 45.09 ± 0.63 b 48.90 ± 1.01 a 44.67 ± 0.47 b 38.04 ± 0.76 c

Initial body weight (kg) 28.32 ± 0.50 28.43 ± 0.49 28.05 ± 0.45 28.20 ± 0.68
ADG (g/d) 139.75 ± 4.08 b 170.59 ± 5.24 a 138.44 ± 4.10 b 82.06 ± 4.86 c

ADFI (kg/d) 1.10 ± 0.09 a 1.17 ± 0.11 a 1.11 ± 0.14 a 0.89 ± 0.07 b

FCR (kg/kg) 7.87 ± 0.33 b 6.99 ± 0.71 b 7.48 ± 0.45 b 9.20 ± 0.37 a

Hot carcass weight (kg) 20.24 ± 0.43 b 22.72 ± 1.00 a 20.46 ± 0.53 b 17.69 ± 0.51 c

Net meat weight (kg) 7.44 ± 0.13 b 8.62 ± 0.41 a 7.32 ± 0.11 b 5.71 ± 0.24 c

Dressing percentage (%) 45.32 ± 0.98 45.77 ± 0.93 45.11 ± 1.36 46.50 ± 1.15
Neat percentage (%) 36.38 ± 0.43 b 37.91 ± 0.45 a 36.21 ± 0.32 b 34.20 ± 0.72 c

LA (cm2) 13.33 ± 0.36 b 15.21 ± 0.34 a 13.83 ± 0.37 b 11.83 ± 0.54 c

ADG—average daily gain; ADFI—average daily feed intake; FCR—feed conversion ratio; LA—longissimus dorsi
area. Values are shown as mean ± SEM. For the first five indexes, n = 10; for the last five indexes, n = 6. Values
within a row followed by different lowercase letters are significantly different (p < 0.05). Dressing percentage (%)
= (hot carcass weight/pre-slaughter body weight) ×100; Net meat percentage (%) = (net meat weight/ hot carcass
weight) × 100.

Interestingly, dietary supplementation with 150 mg/kg RES resulted in greater hot
carcass weight, net meat weight, carcass neat percentage and enlarged LD muscle area than
were observed for the other supplemental levels (p < 0.05), while supplementation with
600 mg/kg RES had the opposite effect (Table 2). There was no significant difference in
growth performance and carcass characteristics between the control and 300 mg/kg RES
group. There was no noteworthy difference in dressing percentage among the four groups.

3.2. Meat Quality Characteristics

Dietary RES supplementation increased the a* value and IMF content and reduced the shear
force in the LD muscle of goats compared with the control group (p < 0.05). No differences in
these three indexes (p > 0.05) were observed among the 150 mg/kg, 300 mg/kg and 600 mg/kg
RES group (Table 3). There was no significant difference in other meat quality indexes (pH45min,
pH24h, L*, b* and conductivity) among the four groups (p > 0.05).

Table 3. Effect of dietary supplementation with resveratrol on meat quality of fattening goats.

Item Control 150 mg/kg 300 mg/kg 600 mg/kg

pH45min 6.46 ± 0.18 6.49 ± 0.07 6.46 ± 0.08 6.70 ± 0.07
pH24h 6.00 ± 0.06 5.80 ± 0.06 5.96 ± 0.17 5.86 ± 0.15

conductivity 3.04 ± 0.07 3.28 ± 0.11 3.04 ± 0.06 3.17 ± 0.06
Meat color:

L* 33.42 ± 0.43 33.00 ± 0.74 32.30 ± 0.85 32.80 ± 0.52
a* 7.32 ± 0.22b 8.40 ± 0.27 a 9.39 ± 0.49a 8.92 ± 0.28 a

b* 6.20 ± 0.21 6.66 ± 0.46 6.60 ± 0.35 6.75 ± 0.19
Shear force(N) 86.00 ± 4.10 a 70.16 ± 2.55 b 66.50 ± 2.01b 63.23 ± 3.41 b

IMF(%) 2.49 ± 0.10 b 3.31 ± 0.34 a 3.48 ± 0.17a 4.13 ± 0.46 a

L*—brightness of color; a*—redness; b*—yellowness; IMF—intramuscular fat content, n = 6. Values are shown
as mean ± SEM, n = 6. Values within a row followed by different lowercase letters are significantly different
(p < 0.05).
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3.3. Blood Physiological and Biochemical Indexes

RES had no effect on serum TC content (p > 0.05) but resulted in lower (p < 0.05) TG
and LDL-C contents, and a greater (p < 0.05) HDL-C content and HDL-C/TC ratio (Table 4).
In addition, there was no remarkable difference in blood physiological indexes among the
four groups of finishing goats (p > 0.05; Table S1).

Table 4. Effect of dietary supplementation with resveratrol on blood parameters of fattening goats.

Item Control 150 mg/kg 300 mg/kg 600 mg/kg

TG (mmol/l) 0.31 ± 0.01 a 0.27 ± 0.01 b 0.26 ± 0.02 b 0.20 ± 0.02 c

TC (mmol/l) 2.55 ± 0.14 2.52 ± 0.14 2.58 ± 0.13 2.50 ± 0.09
HDL-C (mmol/l) 0.96 ± 0.06 b 1.36 ± 0.08 a 1.49 ± 0.11 a 1.45 ± 0.09 a

LDL-C (mmol/l) 0.63 ± 0.13 a 0.21 ± 0.08 b 0.22 ± 0.07 b 0.25 ± 0.06 b

HDL-C/TC (%) 38.33 ± 4.00 b 54.29 ± 3.34 a 57.89 ± 3.38 a 58.28 ± 3.51 a

TG—triacylglycerol; TC—total cholesterol; HDL-C—high-density lipoprotein cholesterol; LDL-C—low-density
lipoprotein cholesterol. Values are shown as mean ± SEM, n = 6. Values within a row followed by different
lowercase letters are significantly different (p < 0.05).

3.4. Effects of Dietary RES Supplementation on Rumen Bacterial Microbiota
3.4.1. Taxonomic Identification of Rumen Bacteria across Treatments

To study the effects of dietary RES supplementation on rumen fermentation and
rumen microbiota, full-length 16S rRNA sequencing was used. This sequencing produced
a total of 185,712 raw CCS sequences (range = 6174 to 8031, SEM = 95), obtained from 24
samples using the PacBio platform (Table S2). After read-quality filtering, a total of 165,586
high-quality effective CCS sequences were acquired, with 6629± 274, 6980± 75, 6830± 177
and 7159 ± 33 sequences in the control, 150 mg/kg RES, 300 mg/kg RES and 600 mg/kg
RES group, respectively (Table S2). Based on a 97% sequence similarity, the average number
of OTUs among all samples was 195 (range = 77 to 293, SEM = 11). The rarefaction curves
on the number of OTUs showed that the sequencing depth in this study was sufficient to
characterize the bacterial microbiota of the rumen fluid samples (Figure S1).

As shown in Figure 1A, a group of 305 OTUs was shared among all four groups. The
numbers of OTUs exclusive to the ruminal liquid of the goats in the control, 150 mg/kg
RES, 300 mg/kg RES, and 600 mg/kg RES group were 5, 1, 11, 10, respectively, indicating
that the four treatment groups had different rumen microbial species. A total of 14 phyla,
19 classes, 25 orders, 39 families, 120 genera and 144 species were detected across all the
rumen fluid samples. The top 10 phyla, genera and species in terms of relative abundance
among the ruminal bacteria are shown in Figure 1B–D.

3.4.2. Effects of Dietary RES Supplementation on Microbial Diversity of Rumen Bacteria

The microbiota diversity values of the four groups exhibited no apparent differences
according to α diversity indexes (ACE, Chao1, Shannon and Simpson) and the PCoA
analysis based on both unweighted and weighted Unifrac distances (Figure 2), except that
the 600 mg/kg RES group exhibited a higher Chao1 diversity index than the 150 mg/kg RES
group (p < 0.05; Table 5), and some changes in the composition of the bacterial community,
largely at the genus (Figure S2A) and species (Figure S2B) levels, between different groups.
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Figure 1. Effect of dietary supplementation with resveratrol on ruminal microbiota composition of
fattening goats. (A) Operational taxonomic unit (OUT) Venn diagram. The number within each
differently colored overlapping area is the number of OTUs shared by the overlapping groups. Non-
overlapping areas indicate the number of OTUs unique to each group. The top 10 phyla (B), genera
(C) and species (D) of the ruminal bacteria across treatments. CON, the control group; R150, the
150 mg/kg RES group; R300, the 300 mg/kg RES group; R600, the 600 mg/kg RES group.

Figure 2. Effect of dietary supplementation with resveratrol on bacterial community structure
(Principal coordinate analysis (PCoA)) in rumen fluid samples of fattening goats. PCoA based on
unweighted (A) and weighted (B) Unifrac matrices.
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Table 5. Effect of dietary supplementation with resveratrol on bacterial alpha diversity indexes in
rumen fluid samples of fattening goats.

Item Control 150 mg/kg 300 mg/kg 600 mg/kg

Chao1 263.31 ± 38.20 ab 230.17 ± 12.65 b 218.45 ± 40.32 ab 280.51 ± 15.24 a

ACE 249.24 ± 27.79 228.30 ± 14.09 209.50 ± 40.54 274.90 ± 16.12
Shannon 5.08 ± 0.41 5.27 ± 0.19 4.84 ± 0.39 5.25 ± 0.37
Simpson 0.92 ± 0.023 0.93 ± 0.020 0.92 ± 0.019 0.92 ± 0.011

Values are shown as mean ± SEM, n = 6. Values within a row followed by different lowercase letters are
significantly different (p < 0.05).

3.4.3. Differential Rumen Bacterial Taxa among Different Treatments

We made pairwise comparisons of the relative abundances of specific microbes across
the four groups. At the phylum level (Figure 3A–E), the 600 mg/kg RES group showed a
higher relative abundance of Kiritimatiellaeota than the control group (p < 0.05). Compared
with the 150 mg/kg RES group, the 300 mg/kg RES group had higher abundance of
Bacteroidetes and lower abundance of Actinobacteria and Chloroflexi (p < 0.05). The relative
abundance of Proteobacteria in the 600 mg/kg RES group was significantly higher than
that in the 150 mg/kg RES group (p < 0.05). There were 23 bacterial genera significantly
affected by RES supplemental levels (Table S3). Importantly, obviously higher levels
of Acetitomaculum (Figure 3F) and Moryella (Figure 3G) were observed in the ruminal
microbiota of the 150 mg/kg RES group than in the other three groups (p < 0.05). In
addition, the 600 mg/kg RES group had a significantly higher relative abundance of
Desulfobulbus than the other three groups (p < 0.05, Figure 3H). A total of 26 bacterial species
showed significantly higher or lower relative abundance in the pairwise comparisons,
mostly corresponding to the genus level (Table S4).

Figure 3. Ruminal microbiota at the phylum (A–E) and genus (F–H) level affected by dietary
resveratrol supplementation in fattening goats. All values are expressed as means ± SEM, n = 6. * or
** represent a significant or extremely significant difference between the two groups at two terminals
of the bar appearing below these characters. * p < 0.05, ** p < 0.01. CON, the control group; R150, the
150 mg/kg RES group; R300, the 300 mg/kg RES group; R600, the 600 mg/kg RES group.

Significant differences in microbial species between the four groups of finishing goats were
identified following LEfSe analysis (LDA = 3). Specifically, the LEfSe analysis revealed that
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six genera were potential biomarkers to distinguish different treatment groups (Figure 4), with
one genus exclusive to the control group, four genera endemic to the 150 mg/kg RES group
and one genus unique to the 600 mg/kg RES group. The control group was characterized
by g_DNF00809 and s_uncultured_bacterium_g_DNF00809 (p < 0.05). The results revealed that
levels of the following were significantly enriched in the 150 mg/kg RES group: p_Chloroflexi,
c_Anaerolineae, o_Anaerolineales, f_Anaerolineaceae, g_Flexilinea, s_uncultured_bacterium_g_Flexilinea,
g_uncultured_bacterium_f_Atopobiaceae, s_uncultured_bacterium_f_Atopobiaceae, s_uncultured_bacterium
_g_Atopobium, g_Acetitomaculum, s_uncultured_bacterium_g_Acetitomaculum, g_Moryella and
s_uncultured_bacterium_g_Moryella. The 600 mg/kg RES group, on the other hand, was marked
by c_Deltaproteobacteria, o_Desulfobacterales, f_Desulfobulbaceae, g_Desulfobulbus and s_uncultured
_bacterium_g_Desulfobulbus. There were no biomarkers with statistical differences in the 300 mg/kg
RES group. These results indicate that different supplemental levels of RES could lead to charac-
teristic differences in ruminal bacterial taxa.

Figure 4. The LDA effect size (LEfSe) analysis of ruminal bacterial taxa affected by dietary resveratrol
supplementation in fattening goats. (A) Cladogram displays significantly enriched bacterial taxa
(from the class to the species level). (B) Bar chart displays LDA scores for different treatments. Differ-
ent colors represent particular bacterial taxa that were enriched in the different groups. Significant
differences are defined as p < 0.05 and LDA score >3.0. There were no biomarkers with statistical
differences in the 300 mg/kg RES group. CON, the control group; R150, the 150 mg/kg RES group;
R300, the 300 mg/kg RES group; R600, the 600 mg/kg RES group.
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3.4.4. Functional Prediction of Rumen Microbiota among Different Treatments

Alterations in the supposed function of the ruminal microbiota in fattening goats due
to dietary RES supplementation were evaluated using the PICRUSt2 software. The KEGG
Ontology (KO) abundances were mainly affected by the global and overview maps, carbo-
hydrate metabolism and amino acid metabolism across the different groups (Figure 5A).
Metabolism pathways of cofactors and vitamins were detected at significantly higher levels
in the microbiota of the 600 mg/kg RES group versus the 150 mg/kg RES group (p < 0.05;
Figure 5B), with no other significant difference in KO abundances in annotation pathways
across the treatments (p > 0.05; Table S5).

Figure 5. The different functions of the ruminal microbiota affected by dietary resveratrol supple-
mentation in fattening goats. The top ten KEGG pathways (A) and the significant different functions
(B) were predicted using PICRUSt2 software at level 2 across treatments. CON, the control group;
R150, the 150 mg/kg RES group; R300, the 300 mg/kg RES group; R600, the 600 mg/kg RES group.

4. Discussion

In order to investigate the effect of RES on fattening goats, we fed goats with dif-
ferent levels of RES (0, 150, 300 and 600 mg/kg) and studied the differences in growth
performance, meat quality and rumen microbiota sequenced using full-length 16S rRNA
sequencing. To our knowledge, this is the first research to report that adding different
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levels of RES could affect growth and rumen microbiota, as well as improving meat quality
and plasma lipid metabolism in fattening goats.

Some studies have shown that dietary RES supplementation had no significant effect
on the growth performance and carcass characteristics of finishing pigs [6,21]. However,
Meng et al. (2019) found that dietary RES in sows could increase the average daily weight
gains of piglets [9]. Likewise, dietary supplementation with 400 mg/kg RES improved
the FCR and final body weight of broilers subjected to transport stress [7]. In this study,
we observed that different supplemental levels of RES had different effects on the growth
performance and carcass characteristics of goats. Treatment with 300 mg/kg RES for 120 d
had no significant effect on food intake, body weight or carcass characteristics, which is
consistent with some previous studies in mice and pigs [5,6,21]. Dietary RES supplemen-
tation has previously been found to have no significant effects on carcass characteristics
including carcass weight, dressing percentage and LD muscle area in finishing pigs [6,21].
Consistent with this, our study found that supplementation with 300 mg/kg RES had no
significant effect on these carcass traits in fattening goats. However, we also found that
supplementation with 150 mg/kg RES did significantly increase the average daily gain
and carcass lean percentage of goats, while dietary supplementation with 600 mg/kg RES
had the opposite effect. The lowest daily feed intake was observed in the 600 mg/kg RES
group compared with the other groups, which was probably the reason for the significantly
slower growth rate in the 600 mg/kg RES group. Although so far no research has reported
adverse effects of RES on feed intake and growth rate, one study found that eugenol (an-
other phenol) administered at a high level (1600 mg/d) had negative effects on fattening
beef cattle [22]. High concentrations of some phenols inhibit rumen microbial growth and
rumen fermentation, which are crucial for nutrient transformation in muscle tissue [23–25],
but whether the mechanism of RES is consistent with these findings is a topic that requires
further study.

Meat color is one of the most important meat quality indicators determining consumer
acceptance and purchase decisions, and is related to myoglobin content, especially the a*
value. Our results indicate that the a* value of the LD muscle increases with an increase in
the RES supplementation level. These results were consistent with other studies on pigs [6],
chickens [8] and ducks [26]. It has been reported that RES has antioxidant properties
that protect mitochondrial function in muscles, prevent free radical attacks and reduce
myoglobin oxidation, thus improving the color of meat [27,28]. Therefore, the increase
in the a* value of the meat samples may be related to the effect of RES on antioxidant
performance. IMF content is a significant index affecting meat quality, essential for the
juiciness, tenderness and flavor of meat [29,30]. In this study, the IMF contents of the LD
muscle were significantly increased by RES supplementation in growing-fattening goats,
which is in line with findings from other studies in pigs [21] and ducks [26]. Another
previous study has reported that dietary RES supplementation could significantly improve
the IMF content in growing-finishing pigs, which might be connected with the promotion
of intramuscular lipid anabolism and repression of intramuscular lipid catabolism [21]. The
mechanism by which RES improves intramuscular fat content in fattening goats requires
further study. Shear force plays an important role in the evaluation of meat tenderness,
and is also one of the conventional indicators used in meat quality evaluation [31]. In this
study, dietary RES supplementation significantly reduced the shear force of the LD muscle,
a finding in line with a previous report on growing-finishing pigs [6]. These results reveal
that dietary RES supplementation improved some meat quality indexes (a* value, IMF
content and shear force) in the LD muscle of goats.

Elevated levels of total cholesterol, LDL cholesterol and triglycerides and decreased
levels of HDL cholesterol in the blood are characteristic of dyslipidemia and are associated
with an increased risk of cardiovascular disease [32–34]. Previous reports on animals
and humans have indicated that RES decreased levels of triacylglycerol and LDL-C and
increased the levels of HDL-C in the blood [15,32,35–37]. In this study, serum triacylglycerol
and LDL-C levels in the RES groups were significantly decreased versus the control group.
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A higher HDL-C level and HDL-C/TC ratio were observed in the RES groups, consistent
with the results reported by other authors [37]. HDL-C is widely referred to as good
cholesterol, because it transports cholesterol currently present in body tissues and blood
vessels to the liver for processing, thereby reducing the risk of developing atherosclerotic
diseases, such as heart attacks and strokes [38,39]. Our results demonstrated that RES could
greatly improve blood lipid profiles in fattening goats. The blood physiological indexes
showed that RES had no obvious effect on the health of goats, which was consistent with
the study reported by Huang et al. (2020) [5].

Up to now, the research on RES in ruminants has mainly focused on its impact on
methane emissions and rumen fermentation [18,19]. Wang et al. (2020) found that RES
mitigated methane production in in vitro fermentation techniques, which may be related
to a decreased abundance of Methanobrevibacter [19]. In addition, it has been reported
that dietary RES supplementation increased the proportion of Fibrobacter succinogenes, Ru-
minococcus albus and Butyrivibrio fibrisolvens (p < 0.001) while decreasing the abundance
of protozoa and methanogens in the rumen fluid of sheep [18]. In this study, the rumi-
nal microbiota was analyzed via full-length 16S rRNA gene sequencing. The results of
this phase of the experiment showed that although there were no apparent differences
in microbiota diversity values across the treatments, differences in ruminal microbiota
abundance were observed at the phylum, genus and species level. The 150 mg/kg RES
group exhibited a significant increase in the relative abundances of Acetitomaculum and
Moryella compared with the other three groups in this study. The genus Acetitomaculum is a
short-chain fatty acid-producing bacteria [40]. In addition, Acetitomaculum and Moryella
both belong to the family Lachnospiraceae, members of which are known for their ability to
synthesize short-chain fatty acids (SCFAs) through the fermentation of dietary polysaccha-
rides [41–44], and SCFAs in turn are an important substrate for maintaining gastrointestinal
epithelium and regulating the immune system and inflammatory response [45]. Consistent
with these findings, Meng et al. (2019) reported that maternal dietary resveratrol increased
the relative abundance of butyrate-producing bacteria in weaning piglets, and, moreover,
that dietary supplementation with 600mg/kg RES increased the relative abundance of
Deltaproteobacteria, including Desulfobulbus [9]. The class Deltaproteobacteria is the main
representative of sulfate-reducing bacteria, which can counter the accumulation of toxic
hydrogen sulfide gas, produced when ruminants consume large amounts of sulfate [46,47].
Elsewhere, it has been reported that hydrogen sulfide can inhibit the production of SCFAs,
in particular preventing the oxidation of butyrate, therefore affecting energy acquisition,
weight gain and feed efficiency [48]. The results of the present research showed that dietary
RES supplementation could affect the composition of rumen microbiota in goats, and that
these effects differ depending on the level of RES supplementation.

5. Conclusions

In this study, we found that an appropriate supplementation of RES (150 mg/kg)
can ameliorate growth performance and carcass traits, improve meat quality and blood
lipid metabolism levels and alter the composition of rumen microbiota in fattening goats.
However, feeding high doses of RES (600 mg/kg) reduced the growth rate and meat yield
of goats. Moderate use of RES can improve the production performance of fattening goats,
and has potential to be developed into a goat feed additive.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11040598/s1, Figure S1. Rarefaction curves on the OTU
numbers of all the rumen fluid samples in fattening goats. X-axis represents the number of sequences
picked randomly; Y-axis represents the OTU number based on the clustering of these sequences;
individual curves represent each sample and are marked by different colors. The control group (CON)
includes six samples: CON1-6; the 150 mg/kg RES group (R150) include six samples: RES7–RES12;
the 300 mg/kg RES group (R300) include six samples: RES7–RES12; and the 600 mg/kg RES group
(R600) include six samples: RES13-RES18. Figure S2. Relative abundances of genera(A) and species
(B) in the rumen fluid samples of fattening goats are presented as heatmaps. CON, the control group;
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R150, the 150 mg/kg RES group; R300, the 300 mg/kg RES group; R600, the 600 mg/kg RES group.
Table S1. Effect of dietary resveratrol supplementation on blood physiological index of goats. Table
S2. Summary of the full-length 16S rRNA sequencing data of rumen fluid samples in fattening
goats. Table S3. The 23 bacterial genera significantly affected by dietary resveratrol supplementation
in fattening goats. Table S4. The 26 bacterial species significantly affected by dietary resveratrol
supplementation in fattening goats. Table S5. Comparison of the appointed KEGG pathways across
treatments using t-test based on PICRUSt2 software.
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