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Abstract

Congenital Heart Disease (CHD) is one of the most common birth defects. Elucidating the molecular mechanisms underlying
normal cardiac development is an important step towards early identification of abnormalities during the developmental
program and towards the creation of early intervention strategies. We developed a novel computational strategy for
leveraging high-content data sets, including a large selection of microarray data associated with mouse cardiac
development, mouse genome sequence, ChIP-seq data of selected mouse transcription factors and Y2H data of mouse
protein-protein interactions, to infer the active transcriptional regulatory network of mouse cardiac development. We
identified phase-specific expression activity for 765 overlapping gene co-expression modules that were defined for obtained
cardiac lineage microarray data. For each co-expression module, we identified the phase of cardiac development where
gene expression for that module was higher than other phases. Co-expression modules were found to be consistent with
biological pathway knowledge in Wikipathways, and met expectations for enrichment of pathways involved in heart lineage
development. Over 359,000 transcription factor-target relationships were inferred by analyzing the promoter sequences
within each gene module for overrepresentation against the JASPAR database of Transcription Factor Binding Site (TFBS)
motifs. The provisional regulatory network will provide a framework of studying the genetic basis of CHD.
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Introduction

Congenital heart disease (CHD) has been reported to occur in 5

to 8 per 1,000 live births [1]. Due to its pathological severity, CHD

has become an important public health issue as a leading cause of

infant mortality. According to a clinical report on the infant

mortality resulting from CHD in the US [2,3], up until 2006, the

infant mortality rate due to CHD decreased but was still as high as

37.69 per 100,000 live births. In addition to the high infant

mortality rate, up to half of the surviving children will have the

impaired neurodevelopmental outcomes across a wide spectrum of

domains [1]. Other than cases of syndromic CHD, It is also

believed that for fetuses with CHD, hypoxemia from the

intracardiac mixing of blood can cause cerebral hypoxia, and

inadequate fetal cerebral oxygen delivery thus results in impaired

cerebral development [1]. It is thus crucial to understand the

mechanisms of cardiac development to be able to elucidate the

mechanisms of pathogenesis in CHD for improving diagnostic

approaches and therapeutic strategies.

Several recent studies have focused on cardiac developmental

genetics with the aim of identifying the genetic basis of congenital

heart disease [4] (Table S1)[5]. Multiple transcription factor

genes with defined functions in mouse cardiac development have

been identified [6] (Table 1). To complement knowledge of the

required normal gene functions during cardiac development,

investigators are digging deeper into the mechanisms correspond-

ing to these gene functions by uncovering the molecular

interactions that define developmental pathways. Some of the

most important interactions to consider include protein-DNA

interactions, protein-protein interactions and genetic interactions

(genetic associations without a clearly defined molecular mecha-

nism). Figure 1 gives an example of a molecular interaction

network comprising several genes that are important in mouse

cardiac development. This interaction network graph was

generated using Cognoscente, which provides a knowledge base

of biomolecular interactions supported by the literature [7].

Figure 1 illustrates an example of complex transcriptional

regulation during mouse cardiac development, where the Foxh1

transcription factor physically and functionally interacts with the

Nkx2-5 transcription factor to combinatorially regulate transcrip-

tion of the Mef2c gene, while the Mef2c protein product is also a

known transcription factor that directly regulates the transcription

of the Calreticulin gene and the BOP gene (not shown in this

graph) [8–10]. Therefore, for a comprehensive understanding of

cardiac development, elucidation of the transcriptional signal

propagation between transcription factors (TFs) or between TFs

and their non-TF targets in the genomic scope is one of the highest

priorities (see examples of the transcriptional signal propagation in

Figure S1, which summarizes the literature-based mouse

transcriptional interactions from the public version of the

TRANSFAC database [11,12]). This knowledge is conveyed in

the structure of a Transcriptional Regulatory Network (TRN). A

TRN is the collection of connected transcriptional interactions

involved in transcription-level regulation of a developmental

process, homeostatic process, or disease process. Representations

of TRNs by Cognoscente contain hypernodes which may
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correspond to genes or their corresponding products (e.g. protein),

while edges with a red arrow pointing from the TF to its target

gene represent a physical interaction between the TF protein and

their target genes. One possible role for protein-protein interac-

tions is combinatorial regulation by TFs of a specific target.

Deciphering the details of underlying TRNs is a major goal of

modern research in cardiac development, and will result in an

important resource for genetic counseling and for developing more

effective treatment plans for congenital heart disease.

Sea urchin and Drosophila have been two of the most useful

models for studying TRNs [13,14]. Investigators have traditionally

defined developmental TRNs by assembling knowledge of

transcriptional regulation member molecules from individual

experiments into a network structure. This laborious approach

to elucidating TRNs from respective experiments of single (or

several) transcriptional regulation(s) produces reliable biological

information. However, elucidating the complete networks in more

complex organisms, such as human or mouse, would be extremely

difficult using this strategy, as much time and labor are required to

characterize the role of just one gene in a physiological or

pathological state. The strategy described above is the bottom-up

approach of network construction. Computational strategies offer

a top-down approach to network construction in the genome-wide

scope that complements the bottom-up approach. In the wake of

biotechnology advancements, high-content experimental data is

fueling this top-down research to foster TRN reconstruction in the

genome-wide scope using computational strategies. Previous

studies have applied the top-down approach on high-content

experimental data to examine the cardiac TRN comprised of

several key TFs [15], and to infer spatio-temporal protein

networks active in human heart development [16].

There are several popular computational strategies for inferring

TRNs, including Boolean networks, Bayesian networks, systems of

differential equations, genome-wide pairwise correlation and

genome-wide pairwise Mutual Information [17]. However, each

of them has certain drawbacks. The Boolean algorithm assigns

each variable a binomial value, which could omit important

information about multinomial/continuous variables. Bayesian

network construction is very promising for representing and

inferring causal relationships, but this strategy is only effective for

the construction of small TRNs, due to the super-exponential

increase in algorithm running time for large networks. Defining a

differential equation model of a TRN requires knowing the

equation of dynamics, then calculating the parameters to optimize

the TRN model against real data. However, deriving an

appropriate equation of dynamics remains as a challenge.

Furthermore, solving a differential equation system of any realistic

complexity presents a challenge. As to the correlation and mutual

information algorithms, manually setting the appropriate thresh-

olds without a principled reference poses difficulties in most cases.

Strategies applying algorithms with these drawbacks are thus not

satisfying. In recent decades, a large amount of experimental

information about biological networks has been collected, and

opportunities have thus increased for deciphering their topological

features, including defining their identity as scale-free networks,

small world networks, adaptive motifs, feed-back motifs, ‘AND’

and ‘OR’ logic motifs and modular networks (Klipp, E. et al.

2009). This motivates a systematic effort of determining network

topological features, which will benefit the effectiveness and utility

of network reconstruction. High modularity is one of the most

accepted network topological features of TRNs [18,19]. Modu-

larity is a measure of the structure of networks, where networks

with high modularity have dense connectivity between nodes

within defined modules (or groups), and relatively sparser

connectivity between nodes from different modules.

Based on the modularity feature of TRNs, we first describe a

novel computational strategy for inferring the TRN of mouse

cardiac development in the genomic scope. We developed an

approach of comprehensive clustering to retrieve the optimal set of

co-expression gene modules by analyzing the transcriptomic data

associated with mouse cardiac development. We defined the

optimal set of modules using the Davis-Bouldin Index (see

RESULTS). We then identified modules with phase specific

expression activity in the phases of mouse cardiac development.

Next we applied an alignment strategy that identifies the putative

transcription factor binding sites (TFBS) along gene promoter

sequences of every selected module, and determined overrepre-

sented TFBS(s) whose corresponding TF(s) may initialize co-

expression in the module via co-regulation. Overrepresented

pathways represented in each module were also annotated. We

created a graphic representation of inferred transcriptional

regulations to visualize the provisional reconstruction of the

TRN for mouse cardiac development (The transcriptional

regulations were represented in the graph as TFs with arrows

pointing to their corresponding targets). Finally, we applied the

source data of sampled TF genomic binding sites from the

ENCODE database to evaluate the provisional transcriptional

regulations from our analysis. Taken together, we have established

the novel computational strategy for inferring the TRN in mouse

cardiac development that advances a provisional gene regulatory

atlas.

Results

Retrieving the optimal set of co-expression gene
modules corresponding to the minimal Davies-Bouldin
Index

Modularity provides a control structure for silencing or

activating discrete parts of a network. Modularity of a biological

network thus provides a selection advantage that appears to have

been conserved through evolution [20]. Modularity of TRNs

follows this tendency to be well conserved in the complex

organisms, such as human and mouse [21–24]. In biological

networks, modules can be understood in terms of subsystems. The

modularity of TRNs can be represented by co-expression gene

modules inside each of which the modular genes are expressed

covariantly across a large collection of expression sets of different

samples [18,19]. Here we leveraged mouse as a model to study the

TRN of cardiac development with our computational strategy

based on the modularity feature of co-expression. We used

publicly available microarray data from the Gene Expression

Ominbus (GEO), from which we collected transcriptomic data

from 239 selected microarray experiments (arrays) as our source

data (see MATERIALS AND METHODS). These experiments

are all based on mouse heart tissues or mouse embryonic stem cells

(i.e. heart lineage samples).

By leveraging the modularity feature of TRNs, we have the

opportunity to infer TRNs when the co-expression gene modules

are properly retrieved. Module structure implies the coordination

of TFs responsible for the co-expression in such modules.

Clustering, a type of unsupervised machine learning, is the routine

approach used to identify co-expression gene modules from

transcriptomic data [25]. However, due to the non-overlapping

design of standard clustering algorithms, each gene is assigned

membership to only one specific co-expression gene module. This

is not likely to accurately represent biological circuits, where a

gene may have multiple TF regulatory binding sites on the
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promoter and may thus be the member of multiple co-expression

gene modules [18]. Moreover, modular overlap has been revealed

in many biological network systems [26,27]. Therefore, some

genes have multiple modular memberships of co-expression in the

TRN due to the complexity of TF regulation. There are thus

compositional overlaps in the membership of biological modules.

We designed a novel comprehensive clustering algorithm

(Figure 2; see MATERIALS AND METHODS) as an improve-

ment to non-overlapping clustering strategies to retrieve overlap-

ping co-expression gene modules. Systematic optimization was

used in this clustering approach for selecting the most likely

coregulated genes from several sets of co-expression gene modules.

We defined the optimal set of co-expression gene modules as the

set of modules that obtained the best configuration of those

modules in the genomic scope as evaluated by the Davis-Bouldin

Index (DB Index). This best configuration of modules is a best

approximation of biological co-expression gene modules given the

selected data [18,19].

We applied this strategy of comprehensive clustering to generate

a plot of DB Indices throughout the computed top sets (Figure 3)

of co-expression gene modules. The DB Index for the top set

where N = 520 was the minimum computed DB Index (4.9047),

which corresponds to the best configuration of modules. We found

around 34.6% genes have more than one modular membership

within the set. The optimal set of 765 co-expression gene modules

that we computed for the mouse cardiac development dataset are

listed in Table S2. All 15711 selected gene features were included

in the 765 co-expression gene modules. The maximal re-

occurrence of a gene in different modules is 8, and the mean

occurrence of genes in different modules is 1.49. We compared

this improved clustering algorithm with other overlapping

clustering algorithms: fuzzy clustering and biclustering. We set

the cluster number to 765 for the other clustering algorithms to

obtain respective sets of co-expression gene modules from the

cardiac development microarray sets. We applied gene ontology

term enrichment tests (molecular function category only) to

identify the enriched molecular functions in each set where the

ratio of modules having at least one term enriched out of all the

modules is the metric used to make the comparison [28]. We

found the improved clustering (272/765) and fuzzy clustering

(271/765) shared similar degree of annotated modules in their

respective sets, while biclustering resulted with very few modules

when we set the parameter related to cluster number to 765 and

none of them was annotated by any enriched term. Therefore, we

can conclude that our improved clustering outperforms bicluster-

ing, and it performs as good as fuzzy clustering when parameters

for fuzzy clustering are chosen appropriately (e.g. fuzziness and

memberships for each observation/gene).

Phase specific expression activity in inferred modules for
mouse cardiac development

We analyzed expression profiles for the co-expression gene

modules during the period of prenatal cardiac development

(E10.5,E18.5) using the arrays in the dataset that were associated

with these distinct phases of development (GSE1479). In order to

inspect whether there is differential expression among the phases

in the modules, we first grouped the arrays based on the seven

phases: E10.5, E11.5, E12.5, E13.5, E14.5, E16.5 and E18.5. We

then graphed the expression trace of each module in the

developmental time order of the seven phases. For each module,

we compared the expression among phases to identify the phase

specific expression within the module.

Figure 1. Molecular interaction network results from the literature-based Cognoscente knowledgebase where several genes with
important roles in cardiac development were queried: Nkx2-5, Gata4, Gata5, Tbx1, Tbx5, Pitx2 and MEF2c (red boxes). Red arrows
point from the TFs (proteins) to their targets (DNA), black solid lines represent protein-protein interactions and red dashed lines represent genetic
interactions. Stacked boxes (which sometimes repeat the same gene name) in the figure show orthologs of genes in organisms where the ortholog
has a documented interaction. Node colors indicate different model organisms as defined in the Taxa Key. Here, one example of the complicated
transcriptional regulation is that Foxh1 transcription factor physically and functionally interacts with Nkx2-5 transcription factor to regulate the
expression of Mef2c gene (inset region).
doi:10.1371/journal.pone.0083364.g001

Table 1. Signature genes expressed in mouse during cardiac development.

Cardiac Crescent Linear Heart Chamber Formation Maturation/Septation

Gata4 Gata4 Gata4 Gata4

Nkx2-5 Gata5 Nkx2-5 Nkx2-5

Mesp1/2 Tbx5 Tbx5

dHand RxRa

eHand FOG-2

Pitx2 Pitx2

MEF2C Sox4

NF-Atc

TEF-1

Tbx1

Hey2

CITED

ZIC3

Cardiac development follows a procession of the following four stages: cardiac crescent, linear heart, chamber formation and finally maturation/septation. Gene
functions during cardiac development are generally described in terms of these four milestones [5].
doi:10.1371/journal.pone.0083364.t001
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Figure 2. Computational strategy of our comprehensive clustering approach. 239 selected arrays for distinct phases of mouse cardiac
development were used as source transcriptomic data. In step 1, for each iteration (N = N0:u:Nmax) a cumulative set of modules is constructed using k-
means clustering of the current iteration (k = N, circle represents a module, where circles of the same color are from one instance of k-means
clustering) and this instance is combined with the cumulative set of modules from the previous iteration (cumulative set 1, cumulative set 2, …
cumulative set x). In step 2, the top set from each of the cumulative sets is created by selecting the modules corresponding to the top robustness
scores to cover all the genes on the array (top set 1, top set 2, … top set x). The Davis-Bouldin Index (DB Index) of every top set is calculated to
measure modular configuration in the set (DB Index 1, DB Index 2, … DB Index x). In step 3, the minimal calculated DB Index describes the best
modular configuration and corresponds to the optimal set of co-expression gene modules. (see details in METHODS).
doi:10.1371/journal.pone.0083364.g002
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Figure 4 shows differential expression in phases for sampled

modules. Modules in group 1 have the highest level of expression

at E10.5; modules in group 2 have the highest level of expression

at E11.5; modules in group 3 have the largest level of expression at

E16.5 and the modules in group 4 have the highest level of

expression at E18.5. We analyzed the whole optimal set of

modules and found that (1) 55.4% modules have significantly

different expression (FDR adjusted p,0.05) among the phases; (2)

46% modules have significantly different expression (FDR

adjusted p,0.05) between E10.5 and the other phases; (3)

33.2% modules have significantly different ial expression (FDR

adjusted p,0.05) between E11.5 and the other phases; (4) 16.1%

modules have significantly different expression (FDR adjusted

p,0.05) between E16.5 and the other phases; (5) 35.9% modules

have significantly different expression (FDR adjusted p,0.05)

between E18.5 and the other phases (Table S3). We assigned

each of the modules to pattern groups corresponding to their

phase specific expression.

Module phase categories were assigned in the table of

differential expression analysis (Table S3) and module assign-

ments were summarized according to the phase specificity of gene

expression in the modules (Figure 5): category P_non (includes

modules having no significantly different expression among

phases), category P10.5 (includes modules having the significantly

largest level of expression at E10.5), category P11.5 (includes

modules having their significantly highest level of expression at

E11.5), category P12.5 (including modules having their signifi-

cantly highest level of expression at E12.5), category P13.5

(includes modules having their significantly highest level of

expression at E13.5), category P14.5 (includes modules having

their significantly highest level of expression at E14.5), category

P16.5 (includes modules having their significantly highest level of

expression at E16.5) and category P18.5 (includes modules having

the ir significantly highest level of expression at E18.5).

Known molecular pathways formalize the developmental
program in mouse heart

The symphony of life is performed by numerous molecular

reactions in an interconnected network. The great abundance of

new high-content experimental data is fueling an understanding of

molecular pathways with the formalized composition of intercon-

necting reactions. Wikipathways provides an open and collabora-

tive platform dedicated to the curation of experimentally-

supported biological pathways [29,30]. In order to inspect the

known molecular pathways implementation in the developmental

program of mouse heart, we developed a strategy leveraging the

Wikipathways knowledgebase to estimate the overrepresentation

of known mouse molecular pathways throughout our optimal set

of co-expression gene modules (Figure 6; see MATERIALS AND

METHODS).

We obtained 161 well-known mouse molecular pathways from

the Wikipathways knowledgebase. For each module from the

optimal set for mouse cardiac development, we applied enrich-

ment tests to inspect the overrepresentation of the known

pathways in the module. We thus obtained a table of pathway

overrepresentations (FDR adjusted p,0.05) from systematic

enrichment tests (Table S4). Overrepresented pathways may

have central roles in the developmental program of mouse heart.

As every module was assigned to one phase category according

to the highest level of modular expression in that phase, the

overrepresented pathways in a category are highly expressed in the

corresponding phase. Figure 7 shows the most frequently

overrepresented pathways (top 25) in P10.5 (A) and P18.5 (B),

where module members are highly expressed at E10.5 and E18.5,

respectively. In the phase of E10.5, pluripotency-related pathways

are highly expressed; while in the phase of E18.5, metabolism-

related pathways are highly expressed. The two featured series of

pathways fit well with their respective phases of early development

and late development in mouse heart. In addition, we found the

Wnt, TGF-beta and EGFR1 signaling pathways were highly

expressed in the phase of E10.5. The interferon, TNF-alpha, NF-

kB, B cell receptor, inflammatory response, Toll-like receptor, IL1,

IL4, IL5 and IL6 signaling pathways are highly expressed in the

phase of E18.5. We also found that the two phases shared one

highly expressed pathway: MicroRNAs in cardiomyocyte hyper-

trophy. These pathways are highly expressed to mediate the

respective phase transitions of mouse cardiac development.

Transcriptional regulations driving the developmental
program of mouse heart

JASPAR is a curated database that collects known Transcrip-

tion Factor Binding Site (TFBS) motifs in various organisms from

the experiment-based literature [31]. We selected mouse-specific

TFBS motifs and mouse-homologous TFBS motifs as the baits in a

promoter pool (promoters were obtained from MPromDb and the

UCSC Genome Browser) of every co-expression gene module

from the optimal set for mouse cardiac development to identify

possible TFBSs on the modular gene promoters via sequence

alignment tests. Once we identified the possible TFBSs, we

inferred the possible transcriptional regulations between the

corresponding TFs and the module. However, alignments can

arise from random sequence variation that produces false positive

hits of TFBS motifs on the gene promoters. We therefore applied

TFBS enrichment tests to each module to exclude the false-

positive cases in our prediction of transcriptional regulations for

each module (Figure 6, see details in MATERIALS AND

METHODS).

Figure 3. DB Index as a function of N. N is the number of
iterations of comprehensive clustering used specify each top
set of co-expression gene modules. The arrow marks the lowest
calculated DB Index of 4.9, where N = 520. Lower DB Index values
correspond to better configuration, so the top set of clusters for N = 520
is the optimal set of co-expression gene modules.
doi:10.1371/journal.pone.0083364.g003
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We obtained 160 known TFBS motifs (mouse-specific and

mouse-homologous) from JASPAR. For each module from the

optimal set for mouse cardiac development, we applied enrich-

ment tests to inspect the overrepresentation of the known TFBS

motifs in this module. We compiled a table of TFBS motif

overrepresentation (FDR adjusted p,0.05) from these systematic

enrichment tests to infer the putative transcriptional regulations of

the modules (Table S5). The predicted transcriptional regulations

are the basic components of our provisional TRN of mouse

cardiac development.

TFs corresponding to the overrepresented TFBS motifs in a

category are likely to be responsible for the increased expression in

the corresponding phase. Figure 8 shows the TFs that correspond

to the most frequently overrepresented TFBS motifs (top 15 from

mouse, human and rat) that have a Pearson correlation . = 0.3

with module expression in categories: P10.5 (A), P11.5 (B) and

P18.5 (C). Expression of modules in these phases is thus likely

mediated by TFs for the respective overrepresented TFBS. In the

phases of E10.5, E11.5 and E18.5, which denote the early and late

heart development, several TFs such as Sox5, Sox9 and Prrx2, are

shared as the top-ranked lists of TFs across these developmental

phases. There are also TFs in the list of top-ranking overrepre-

sented TFBSs that are uniquely enriched in distinct phases. For

example, Gata2, Nkx3-2 and Mef2a are enriched in E10.5

modules, Gata3, Stat3 and Jun in of E11.5 modules, Brca1 and

Stat1 in E18.5 modules. Taken together, TFs work together both

across phases and in a phase-specific manner to regulate phase

specific expression and mediate phase transitions during normal

cardiac development.

We integrated the table of pathway overrepresentation with the

table of TFBS motif overrepresentation to assign the TFs

Figure 4. Heatmap of expression profiles across the cardiac developmental phases (E10.5–E18.5) for sampled modules. The modules
in group 1 (G1) have the highest level of expression at E10.5; the modules in group 2 (G2) have the highest level of expression at E11.5; the modules
in group 3 (G3) have the highest level of expression at E16.5; the modules in group 4 (G4) have the highest level of expression at E18.5.
doi:10.1371/journal.pone.0083364.g004

Figure 5. The optimal module set was classified into eight
categories according to the phase specific expression in the
modules. The table and bar plots summarize the classifications.
doi:10.1371/journal.pone.0083364.g005
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corresponding to those TFBS motifs with pathway annotations,

thus providing clues for TF involvement in known molecular

signaling pathways for mouse cardiac development (Table S6).

A provisional transcriptional regulatory atlas of mouse
cardiac development

To develop a network structure conveying the transcriptional

regulations of mouse cardiac development in the genome-wide

scope, the TRN was represented using the Graphviz network

drawing tool to present the transcriptional regulations inferred in

the previous section. TF-gene regulations were established by

assigning every inferred TF-module regulation to each gene

member of the module. We distinguish between two types of TF-

gene regulations: TFBS-aligned regulations where a specific TFBS

is found on the regulated gene promoter and TFBS-non-aligned

regulation where the specific TFBS is not found on the regulated

gene promoter (Table S7). There are several possible explana-

tions for the TFBS non-aligned regulations, including incomplete

information of the TFBS motifs. We examined the inferred

transcriptional regulations and identified a recurring pattern

whereby multiple TFs in the same module regulate individual

genes in another module. In these cases, target genes had similar

expression profiles because their respective TF regulators had

similar expression profiles (Figure 9B). In these examples, non-

aligned targets may be thought of as indirect or incidental

regulatory targets. Because of the evident likelihood that non-

aligned targets were indirect targets, we only used TFBS-aligned

regulations as transcriptional regulations in the assembly of the

provisional TRN of mouse heart development. To summarize the

provisional TRN, we assembled the core network of regulations

between sampled mouse transcription factors (Figure 9A). As the

core of the TRN, the transcriptional regulations among sampled

TFs formed a sub-network where the number of edges is ten-fold

greater than the number of nodes. This graph lifts a corner of the

complexity in the TRN of mouse cardiac development.

Transcriptional regulation of a target gene is the collaborative

work among several TFs, co-activators and co-repressors. There-

fore we integrated a compendium of documented knowledge of

TF protein – TF protein interactions with the inferred transcrip-

tional regulations to define the TRN of mouse cardiac develop-

ment [32] Table S8: TF regulatory complex of 2 TFs; Table S9:

TF regulatory complex of 3 TFs). These combinatorial regulations

are well supported by evidence that the target gene is regulated by

multiple interacting TFs. Gata1 and SFPI1 are well-studied

examples having a physical interaction, and are found in our

provisional TRN to co-regulate AT1B in a co-expression gene

module that doesn’t show differential expression across develop-

mental phases (Figure 9C). Our result is consistent with AT1B

being previously defined to play key role in mouse normal cardiac

morphology [33]. GFI1, TCF3 and BRCA1are the well-studied in

development and cancer. From the provisional TRN, we infer that

these TFs co-regulate ErbB4 (Figure 9D). This novel complex

regulation was retrieved in a co-expression gene module that has

its significantly highest level of expression at E18.5. We note that

not every documented TF – TF interaction was successfully

incorporated with the inferred regulations to offer a complete

description of combinatorial regulation of gene transcription.

Coverage of the array platform used in the definition of gene

modules is incomplete, and we posit that the context of heart

lineage development is central to our findings, so we expect that

gene regulations specific to other contexts will not be identified

with the dataset employed here. To summarize the TRN at the

modular scope, we graphed modules so that node diameter is

proportional to the log10 of module size (number of genes in

module), node color corresponded to phase category (as measured

by phase specific expression), and directed edges were drawn

between modules containing transcription factors and those

modules containing their respective inferred targets (Figure 10).

Figure 6. Flow chart summarizing further analysis after computing the optimal set of co-expression gene modules. We applied the
hypergeometric enrichment test to each module to inspect the overrepresentation of known pathways central to mouse cardiac development. In
parallel, hypergeometric enrichment tests were performed for transcription factor binding sites (TFBS) in modules to obtain the overrepresented/
enriched TFBSs and infer the corresponding transcriptional regulations comprising the TRN in the mouse cardiac developmental program. Finally, the
ENCODE associated transcriptional regulations were used as a reference set to test the performance of our strategy for inferring the TRN.
doi:10.1371/journal.pone.0083364.g006
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Evaluation of the provisional transcriptional regulatory
network using the ENCODE database

The ENCODE database offers source data from large-scale

ChIP-seq experiments of selected TFs to identify the correspond-

ing DNA binding sites in mouse genome [34]. We obtained data of

genomic binding sites for several TFs (Usf1, Tcf3, Tbp, Tal1, Srf,

Pax5, Nrf2, Max, Gata2, Gata1, Ets1, Ctcf, Cmyc, Cjun) from the

ENCODE database to evaluate the inferred transcriptional

regulations of those TFs in our provisional TRN of mouse cardiac

development. Based on the ChIP-seq data, the regulated gene pool

of every sampled TF was estimated from the analysis for the

location associations between its genomic binding sites and the

Figure 7. Overrepresented pathways for P10.5 and P18.5. A. The top 25 overrepresented pathways in P10.5, where modules in this class have
their highest level of expression at E10.5. Pathways in red boxes are pluripotency-related pathways enriched in P10.5 modules; pathways highlighted
in yellow are also enriched in P18.5. B. The top 25 overrepresented pathways in P18.5, where modules in this class have their highest level of
expression at E18.5. Pathways in blue boxes are metabolism-related pathways enriched in P18.5 modules; pathways highlighted in yellow are also
enriched in P10.5.
doi:10.1371/journal.pone.0083364.g007
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gene promoters. The metric used in the evaluation is the ratio of

the number of the inferred transcriptional regulations for a specific

TF found in the regulated gene pool based on the ChIP-seq data

for this TF (regulations in agreement) to the number of all the

inferred transcriptional regulations (regulations inferred from

enrichment tests) for this TF (Table 2).

This ratio varies across the sampled TFs. ENCODE projects

were performed on specific cell lines and for specific experimental

conditions. Unfortunately, relatively few ENCODE samples are

relevant to cardiac development. Access to TF binding sites on the

genome is dynamic across diverse cell or tissue types [35].

Therefore, computing this ratio gives a sense of the concordance of

ENCODE results and our inferences, but is not able to completely

evaluate the inferred transcriptional regulations of the sampled

TFs in cardiac development. However, the agreements between

the predicted regulations in the TRN and the regulations obtained

from ChIP-seq data in the ENCODE database support the

analytical power of our novel algorithm for inferring several

transcriptional regulations that were also inferred by another

completely different analysis. We also show that ChIP-seq data for

different cell types or different conditions have reasonably good

agreement. Therefore, by obtaining additional ChIP-seq data of a

sampled TF for heart lineage samples in the future, we expect that

the ratio may become a more reliable metric to evaluate

inferences.

Discussion

Our novel algorithm to retrieve the optimal set of co-expression

gene modules in the genomic scope from a large selection of

microarray data associated with mouse cardiac development

allows overlap among the modules to maximally approximate

biological co-expression gene modules. Differential expression

among phases in the modules was identified. We applied the

hypergeometric enrichment test to identify overrepresented

pathways of the modules to infer important pathways involved

in the developmental program of mouse heart. These pathways

thus provide important clues for understanding the mechanisms

underlying the phase transitions during cardiac development. In

order to infer the provisional TRN of mouse cardiac development,

we applied the hypergeometric enrichment test to find true-

positive transcriptional regulations for each module by identifying

overrepresented TFBSs in the module. We further integrated

documented TF protein – TF protein interactions with the

inferred transcriptional regulations to include TF combinatorial

regulation in the TRN of mouse cardiac development. Gata1 and

SFPI1 were found in the TRN to co-regulate AT1B. GFI1, TCF3

and BRCA1 were found to co-regulate ErbB4. In addition, we

used the obtained ChIP-seq data of genomic binding sites from the

ENCODE database for the sampled TFs to evaluate the inference

of the TRN. The agreements between the inferred regulations in

the TRN and the regulations obtained from ChIP-seq data imply

the inferential power of the novel algorithm.

With the fast development of the next generation sequencing

(NGS), RNA-seq may become the mainstream technology for

generating transcriptomic data based on improved accuracy and

the capacity of detecting novel transcripts. Using better source

transcriptomic data in our algorithm will infer the TRN with

closer approximation to the biological TRN. DNA-seq is

developing fast with the evolution of NGS. The genomic binding

sites of sampled TFs from DNA-seq can be integrated with

transcriptomic data by our algorithm to infer transcriptional

regulations. However, due to the unavailability of molecular

probes for many TFs, it will remain a challenge to infer TRNs at

Figure 8. The top 15 TFs (mouse, human or rat) corresponding
to the most frequently overrepresented TFBS motifs having a
Pearson correlation . = 0.3 with module expression in phase
categories. P10.5 (A), P11.5 (B) and P18.5 (C). Blue bars represent
frequency of TFBS motif overrepresentation (left axis); red dots show
the Pearson correlation of expression (right axis).
doi:10.1371/journal.pone.0083364.g008
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Figure 9. Partial visualization of the TRN for mouse cardiac development. A. Sub-network structure of the TRN, focusing on the sampled
TFs only. Nodes and their respective outgoing arrows are colored to help clarify arrow paths. B. An explanatory example showing TFBS non-aligned
transcriptional regulations. Foxd3 and Sox2 are in a co-expression gene module (beige box) and their individual TFBS aligned gene targets Tbr1 and
Syt4 are in another co-expression gene module (light blue box). As shown, Syt4 is TFBS non-aligned gene target for Foxd3 and Tbr1 is the TFBS non-
aligned gene target for Sox2, as Foxd3 and Sox2 are inferred TFs regulating Tbr1-Syt4 modular transcription. More complex scenarios for explaining
co-regulation for non-aligned TFBS motifs are possible. C and D show combinatorial transcriptional regulations in the TRN inferred from the
integration of the inferred transcriptional regulations with documented TF protein – TF protein interactions.
doi:10.1371/journal.pone.0083364.g009
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the genomic scope. In addition to the genetic regulation,

epigenetic regulation is an important contributor to transcriptional

regulation [36]. One future direction for this work is to integrate

the inferred TRN with known epigenetic regulations to define

important connections between genetic and epigenetic regulation

in cardiac development.

A disease is rarely a consequence of an abnormality in a single

gene but rather the consequence of a sustained perturbation in a

complex network of molecular interactions. Therefore, identifying

the perturbed sub-network in a specific disease process will provide

opportunities for improved diagnoses and more effective therapies.

We speculate that in the near future the integration of omics data

from a patient, including genome sequence and transcriptome

analysis, together with an accurate TRN of heart development will

provide a strong basis for indicating the status network perturba-

tions, and greatly assist the diagnosis and the formation of a

personalized therapeutic strategy for CHD. Defined disease

modules can be applied as network-based biomarkers for

diagnosis. A recent example illustrates this potential with the

identification of network-based biomarkers for classifying breast

cancer metastasis [37]. Network-based medicine is a promising

Figure 10. Provisional atlas of TRN modules for cardiac lineage development. Nodes are labeled with module index numbers. Node
diameter is proportional to the log10 of the number of genes in each module, node color corresponds to phase class as shown in the legend, and
directed edges (same color as the module they point from) represent transcriptional regulation between modules.
doi:10.1371/journal.pone.0083364.g010
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concept for innovative diagnostic approaches and therapeutic

strategies [38].

Materials and Methods

Microarray dataset
Public domain microarray data used in this study covered

important temporal phases of cardiogenesis for elucidating the

transcriptional landscapes active during mouse cardiac develop-

ment. Array descriptions (15711 selected gene features) are in

Table S10. We used the Robust Multi-array Average (RMA)

algorithm to normalize the 239 microarrays, which were

experiments all performed on the Affymetrix Mouse Genome

430 2.0 Array platform (GEO accession: GPL1261) [39].

Comprehensive clustering algorithm
The algorithm of comprehensive clustering: N was defined as

the number of the newly generated candidate modules in one

iteration of the algorithm such that N = N0: u: Nmax, where N was

the number of modules (N = k) to form using k-means clustering, N0

was the initial (smallest) number of modules to start with, and u

was the size of an incremental increase per iteration, up to Nmax.

The distance measure for k-means clustering was 1-r, which was

one minus the correlation of the expression profiles between genes.

The expression profiles of genes in the module were centered and

normalized to calculate the component-wise mean of them as the

centroid. N was increased incrementally by u to Nmax, or until a

single-gene module occurs (natural stopping condition). The

cumulative set of co-expression gene modules for a given N was

defined as the aggregation of co-expression gene modules from k-

means clustering for k = N together with the cumulative set of co-

expression gene modules formed for (N-u) that contained all the co-

expression gene modules from multiple rounds of k-means

clustering for k = N0 to k = (N-u) with the incremental increase of

u per round. Thus after several iterations, we obtained several

cumulative sets of co-expression gene modules and each set was

labeled with its corresponding N. Generally, co-expression gene

modules newly retrieved in the iteration with larger k of clustering

are more robust. We defined robustness score of each such module

in a cumulative set by the probability of its existence in the

iterations of k-means clustering that contribute to this cumulative

set. ‘Existence’ is based on the criterion that a module’s genes are

all represented together in a module, although this single module

may have other members. The more frequently the genes of a

module all appear together in other modules, the higher its

robustness score will be. We then sorted all the modular robustness

scores in the cumulative set labeled by its specific N to retrieve the

top co-expression gene modules by ordering robustness scores

from large to small until we obtain complete coverage of all genes

on the array. These ordered modules are collectively called the

‘top set’ of co-expression gene modules for the given N. We thus

obtained several top sets corresponding to the cumulative sets. In

order to identify the optimal configuration of co-expression gene

modules among those several top sets, we examined each set with

the DB (Davies-Bouldin) Index to calculate the overall goodness of

the overlapping modular configuration in this set (where the top

set of co-expression gene modules satisfied the overlap condition).

The optimal set of co-expression gene modules among the top sets

was determined by identifying the top set with the minimal DB

Index, which indicated the optimal configuration of modules in the

set.

IDB~
1

k

Xk

j~1

max
j=l

WDB(j)zWDB(l)

BDB(j,l)

� �
ð1Þ

DB Index: k is the total number of modules; WDB(j or l) is the

intra-module compactness for module j or module l, respectively;

and BDB(j, l) is the separation between module j and module l

(Figure 11).

A gene’s transcription is regulated by a combinatorial group of

TFs [32]. Each TF group can regulate several genes as

demonstrated by co-expression gene module members that

cooperatively accomplish specific biological functions [18]. Each

of hundreds of TFs has several co-association TF subsets (size of

the subset generally ranges from 2 to 5) based on genomic binding

overlaps from ChIP-seq experiments [40]. Therefore hundreds (or

Table 2. Summary of the agreements between the inferred transcriptional regulations and the regulations obtained from ChIP-
seq data in the ENCODE database for several sampled TFs.

TF Regulations in agreement Regulations inferred from enrichment tests Ratio

Usf1 38 220 0.17

Tcf3 160 2867 0.06

Tbp 1492 3807 0.39

Tal1 78 126 0.62

Srf 0 2 0

Pax5 0 127 0

Nrf2 0 22 0

Max 5 32 0.16

Gata2 419 3736 0.11

Gata1 3049 4102 0.74

Ets1 289 467 0.62

Ctcf 7 8 0.88

Cmyc 40 132 0.30

Cjun 973 3041 0.32

doi:10.1371/journal.pone.0083364.t002
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greater) of TF combinatorial groups are possible in a given

physiological/pathological process. Accordingly, hundreds of their

corresponding co-expression gene modules are possible. We

therefore assigned N0 with 100 as the initial smallest value to

consider for k-means clustering. Starting with the obtained

modules from the k-means clustering of k and from the k-means

clustering of (k+10), every gene was assigned into two modules, one

module from the clustering of k and the other module from the

clustering of (k+10), and between the two modules we found that

on average (k was assigned incrementally) genes grouped together

with at least one of the same gene neighbors in 80% of the total

tested genes. This demonstrated good robustness of modular

membership of genes between the clustering and the subsequent

clustering when the increment u was set to 10. We then set the

increment u to 10 for subsequent iterations of the comprehensive

clustering algorithm. As we performed comprehensive clustering

with overlap [18], we specified the top set of co-expression gene

modules with overlap rate . = 1% as the qualified set.

Analysis of the differential modular expression
throughout developmental phases

Samples were assigned to phases as described in Table S10.

We used ANOVA to test the differential expression in the module

among the phases. The False Discovery Rate (FDR) was applied

for multiple test correction. To test the differential expression in

the module between one phase and the others, we applied t-tests to

modular expression data and FDR was applied for multiple test

correction.

Enrichment tests
In order to identify the TFs that drive co-expression in a defined

gene module, we inspected the known TFBS motifs on the gene

promoters of this module. However, matching hits of known TFBS

motifs on gene promoters can be spurious false positive hits. We

evaluated the matching hits of TFBS motifs in a module against a

hypergeometric distribution to exclude the cases of random motif

matches in the module. The hypergeometric function describes the

probability of exactly k successes in n draws from a finite

population size T where the number of successes in the whole

population is m.

P(X~k)~

m

k

� �
T{m

n{k

� �

T

n

� � ð2Þ

By letting k = integers k through n, the hypergeometric

probabilities may be summed to find P(X. = k), and obtain the

probability of the proposition that the number of successes

observed or a higher number of successes in n draws would occur

by chance. If this is less than 0.05 (a typical choice), we

demonstrate that the situation of k successes in n draws is

significantly unlikely due to chance. Thus, the attribute corre-

sponding to the success is defined to be overrepresented in the n

draws against the background of m successes in T population. In

the case of evaluating the hits of the known TFBS motif onto the

gene promoters in a module, this approach is specified as the

Figure 11. Algorithm for comprehensive clustering.
doi:10.1371/journal.pone.0083364.g011
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TFBS motif enrichment test. In our study, for any known TFBS

motif, k was the number of gene promoters that had the binding

site of this TFBS motif in the co-expression gene module being

tested, n was the number of genes in this module and m was the

number of gene promoters that had the binding site of this TFBS

motif in the tested genome and T was the number of genes in the

tested genome. Via referring the overrepresented/enriched TFBS

motifs to their corresponding TFs, we inferred their transcriptional

relations in each module.

The hypergeometric test was also used for the pathway

enrichment tests in this study. For any pathway, k was the number

of genes or gene products which had functional positions in a given

pathway from the co-expression gene module being tested, n was

the number of genes in this module, m was the number of genes or

gene products that had functional positions in the complete

pathway and T was the number of genes in the tested genome.

Overrepresentation was assessed when k.1 for a given TFBS

motif or pathway.

Databases
MPromDb (Mammalian Promoter Database) is a curated

database that annotates gene promoters identified with ChIP-seq

which is one of the most robust approaches of defining gene

promoters [41]. The ChIP-seq data sets of RNAP-II and various

TFs were included in significance tests to retrieve the gene

promoters archived in this database. To complete retrieving the

gene promoters in the genomic scope, gene promoters (from

5000 bp upstream the TSS to 1000 bp downstream the TSS) that

are not covered by MPromDb were retrieved from UCSC genome

browser [42].

JASPAR is a curated database of known TFBS motifs for

various organisms from the experiment-based literature [31], and

was used in this study to identify motif matches in the promoters of

module genes. TFBS motifs are stored as a position weighted

matrix (PWM) in JASPAR.

TRANSFAC is a curated database of eukaryotic transcription

factors, and includes experimentally-proven binding sites and

regulated gene targets [11,12]. Publicly available TRANSFAC

knowledge was summarized in Figure S1.

Wikipathways is an open, collaborative platform dedicated to

the curation of biological pathways, in order to facilitate the

contribution and maintenance of the pathway information

[29,30]. The Wikipathways knowledgebase was used in this study

as the basis for evaluating pathway overrepresentation in the

defined co-expression modules.

We collected the ChIP-seq data for the sampled TFs of mouse

from Encode database (Experiment details for the sampled TFs

can be found in Table S11). ChIP-seq data reveal genomic

binding sites for TFs. The regulated gene pool of every sampled

TF was estimated from an analysis of proximity between genomic

binding sites from ChIP-seq and the gene promoters.

TFBS motif alignment
TFBS is a motif alignment program that was obtained from

JASPAR (http://tfbs.genereg.net/). It is able to align the TFBS

motif onto the gene promoters either in the co-expression gene

module or in the genome. In this program, within one promoter

sequence, the PWM of one TFBS motif slides over the sequence in

1-bp increment, and each potential binding site is evaluated

against the PWM on both strands through a quantitative score.

The quantitative score for a potential binding site of a specific

TFBS motif is produced by summing the relevant nucleotide

PWM values, analogous to the probability of observing this

potential binding site given the source of this TFBS motif [43].

Then we defined the hits of the TFBS motif on the promoter with

the quantitative scores above the corresponding threshold as the

predicted binding sites that contribute to k or m in the TFBS motif

enrichment test.

Data access
Results are available in the Supporting Tables. In-house

software used to conduct this investigation is available upon

request. The normalized expression dataset is available in a

compressed archive (Dataset S1).
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